An STT-MRAM based reconfigurable computing-in-memory architecture for general purpose computing

Image credit: Unsplash

Abstract

Recently, many researches have proposed computing-in-memory architectures trying to solve von Neumann bottleneck issue. Most of the proposed architectures can only perform some application-specific logic functions. However, the scheme that supports general purpose computing is more meaningful for the complete realization of in-memory computing. A reconfigurable computing-in-memory architecture for general purpose computing based on STT-MRAM (GCIM) is proposed in this paper. The proposed GCIM could significantly reduce the energy consumption of data transformation and effectively process both fix-point calculation and float-point calculation in parallel. In our design, the STT-MRAM array is divided into four subarrays in order to achieve the reconfigurability. With a specified array connector, the four subarrays can work independently at the same time or work together as a whole array. The proposed architecture is evaluated using Cadence Virtuoso. The simulation results show that the proposed architecture consumes less energy when performing fix-point or float-point operations.

Publication
In CCF Transactions on High Performance Computing(CCF HPC) 2020
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.