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Abstract—Developing deep learning models on tiny devices (e.g.
Microcontroller units, MCUs) has attracted much attention in
various embedded IoT applications. However, it is challenging
to efficiently design and deploy recent advanced models (e.g.
transformers) on tiny devices due to their severe hardware
resource constraints. In this work, we propose TinyFormer, a
framework specifically designed to develop and deploy resource-
efficient transformer models on MCUs. TinyFormer consists
of SuperNAS, SparseNAS, and SparseEngine. Separately, Su-
perNAS aims to search for an appropriate supernet from a
vast search space. SparseNAS evaluates the best sparse single-
path transformer model from the identified supernet. Finally,
SparseEngine efficiently deploys the searched sparse models
onto MCUs. To the best of our knowledge, SparseEngine is
the first deployment framework capable of performing inference
of sparse transformer models on MCUs. Evaluation results on
the CIFAR-10 dataset demonstrate that TinyFormer can design
efficient transformers with an accuracy of 96.1% while adhering
to hardware constraints of 1MB storage and 320KB memory.
Additionally, TinyFormer achieves significant speedups in sparse
inference, up to 12.2x comparing to the CMSIS-NN library.
TinyFormer is believed to bring powerful transformers into
TinyML scenarios and to greatly expand the scope of deep
learning applications.

Index Terms—TinyFormer, TinyML, Transformer, NAS, De-
ployment, Sparsity.

I. INTRODUCTION

S IoT applications are becoming increasingly popular

recently, microcontroller units (MCUs) have received
extensive attention among various kinds of application sce-
narios. These low-cost, low-power tiny devices are wildly
used in plug-and-play scenarios with extreme resource con-
straints. The devices are usually deployed near the sensor end,
gathering the freshest data once produced. Accordingly, Tiny
Machine Learning (TinyML) is a growing field in computer
science, aiming to apply machine learning technology on
MCUs, thereby enabling various applications [1]. Several well-
established TinyML applications, such as Keyword Spotting
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Fig. 1: Accuracy and resource usage comparison among dif-
ferent compact models when evaluated on CIFAR-10. Tiny
devices only have MB-level storage and KB-level memory,
which is a huge difference between the resources available on
edge or cloud platforms.

[2], Anomaly Detection and Raise to Wake, only involve simple
machine learning algorithms. Some higher-end applications,
such as Wildlife Detection and Food Edibility Detection, usu-
ally require powerful deep learning models [3]. However, most
of these scenarios only have MCUs available to be exploited,
which poses new challenges to TinyML.

Bringing powerful deep neural networks to MCUs can
greatly expand the scope of deep learning applications [4, 5].
However, the available resources of MCUs are strictly limited.
For example, ARM Cortex-M7 has only 1MB storage (Flash)
and 320KB memory (SRAM) The resources of ARM Cortex-
M7 are even less than that of mobile devices (such as mobile
phones, Raspberry Pi) which are up to GB-level. As shown in
Fig. 1, there is a large gap between the required resources of
deep learning models and the available hardware capacities of
tiny devices. To deploy ResNet-18 [6] (with 11M parameters)
on MCUs, at least 90% of weights have to be shrunk, which
leads to significant accuracy degradation. Moreover, weight
pruning does not reduce the peak memory of deep learning
models. It is necessary to redesign the neural network to
reduce the peak memory. Therefore, it is difficult to deploy
powerful models on such resource-constrained devices.

Recently, transformers have achieved great performance in
various fields, including computer vision, speech recognition,
and natural language processing [7-9]. Deploying these power-
ful transformer models on MCUs can be exciting for satisfying
the requirement of high-demanding scenarios in TinyML.
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However, transformers contain a large number of parameters.
Even the lightweight transformer models [10, 11] can not
satisfy the strict resource constraints. Deploying powerful
transformer models on edge devices or even MCUs remains
difficult.

Aiming to bring powerful transformers to MCUs, Tiny-
Former is proposed as an efficient framework to design and
deploy sparse transformers on resource-constrained devices.
To be noticed, a sparse transformer in this paper refers to a
hybrid model that consists of transformer encoders and convo-
lution layers, with a weight pruning strategy. TinyFormer con-
sists of SuperNAS, SparseNAS, and SparseEngine. SuperNAS
aims to produce an appropriate supernet from a large search
space for further searching. SparseNAS performs single-path
model searching in the supernet and model compressing for
evaluating hardware constraints and accuracy. SparseEngine
automatically deploys and optimizes the compressed models
with the highest accuracy on targeted MCUs. The main
contributions of this paper are as follows:

o TinyFormer is proposed as an efficient framework to
develop transformers on resource-constrained devices.
TinyFormer brings powerful transformers into TinyML
scenarios by making it extremely small and efficient on
MCUs.

o With the joint search and optimization of sparsity con-
figuration and model architecture, TinyFormer produces a
sparse transformer with the best accuracy while satisfying
hardware constraints.

o We propose SparseEngine, an automated deployment tool
for sparse transformers-based hybrid models. To the best
of our knowledge, it is the first deployment tool capable
of performing sparse inference for transformers, with a
guaranteed latency on targeted MCUs.

With the cooperation of SuperNAS, SparseNAS, and
SparseEngine, TinyFormer brings powerful transformers into
resource-constrained devices, and enables a faster sparse in-
ference process compared with existing inference engines.
Experimental results on CIFAR-10 show that TinyFormer
could achieve an accuracy of 96.1%, with an inference la-
tency of 3.9 seconds running on STM32F746. Compared
to the light-weight transformer CCT-7/3x 1 [12], TinyFormer
achieves higher accuracy improvement while saving 74% stor-
age. Benefiting from the automated SparseEngine, TinyFormer
could obtain up to 12.2x speedup in sparse model inference
compared to CMSIS-NN [13].

The rest of the paper is organized as follows. Section II
reviews the related background and provides our motivations.
Section III demonstrates the details of the TinyFormer frame-
work. Experimental results are presented in Section IV and
conclusions are given in Section V.

II. RELATED WORKS AND MOTIVATIONS

Aiming to bring transformers to TinyML scenarios, the fol-
lowing issues have to be comprehensively considered. Firstly,
the transformer architecture should be light-weighted to satisfy
the extremely demanding resource constraints. Moreover, the
sparsity configuration and architecture of the model have

coupled effects on accuracy. Thus, we are supposed to consider
these coupled effects in the model architecture exploration
and compression stage. Finally, it is essential to provide
specialized deployment support for targeting to MCUs. These
representative investigations motivate us to enable powerful
deep-learning models on MCUs through various technological
paradigms. Our three primary motivations are listed below:

Motivation @: Design light-weight transformer for MCU.

Existing deep learning models on MCU for computer vi-
sion tasks are mostly CNNs. Aiming to meet the resource
constraints, researchers use mixed precision quantization to
deploy CNN models on MCUs [14, 15]. MCUNet [16, 17] is
a system-algorithm co-design framework to search and deploy
extremely tiny models on the MCU platform. MCUNet aims
to find the models with low resources required, and their
architectures are derived from the basic structures of CNNs.
Some researchers even attempt to train deep learning models
on edge devices [18].

Besides CNNs, Transformers have demonstrated success in
a large amount of downstream tasks [7-9] including computer
vision ones. However, there are fewer works to deploy Trans-
former on MCUs due to the large amount of parameters and
high peak memory during inference. Even the light-weight
transformers require resources far beyond the upper limit of
MCU constraints [10-12]. Pulp-transformer [19] introduces
a library of attention kernels to accelerate transformers’ in-
ference. MCUFormer [20] brings transformer on MCU and
achieves high accuracy in image classification on ImageNet-
1k. However, MCUFormer is mainly focused on optimizing
the computational graph to accelerate the inference process
with dense models. Applying pruning methods and exploiting
the sparsity of the model can further improve the performance
of transformers on MCU.

It is still challenging to deploy very small transformers on
MCUs. From our perspectives, these efforts will bring trans-
formers into TinyML scenarios, enhancing the applicability of
numerous tiny devices.

Motivation @: Joint search with model architecture and
sparsity configuration.

Neural Architecture Search (NAS) is an advanced approach
in automatically model architecture design [21] and achieves
remarkable results in various fields. Since model deployment is
bounded by hardware constraints (including storage, memory
and inference latency), Hardware-Aware Neural Architecture
Search (HW-NAS) algorithm is proposed to adopt NAS algo-
rithms for target hardware devices. Most HW-NAS approaches
are targeting GPU [22], mobile devices [23, 24] or custom
hardware [25].

Most NAS approaches aim to search for a dense model
for better performance. However, the lack of considering
model sparsity in NAS limits the potential benefits of ef-
ficient TinyML exploration. SpArSe proposed a sparse ar-
chitecture search algorithm for resource-constrained MCUs
[26]. However, SpArSe optimizes the network’s morphology
and performs searching and pruning on respective stages.
Hence, it ignores the coupled influence of pruning parameters
and network architecture on model accuracy. Aiming to fully
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Fig. 2: TinyFormer is a hardware-aware framework. SuperNAS
is co-designed with SparseNAS to produce sparse models
with transformers under resource limits. SparseEngine enables
sparse inference on MCUs.

consider the interaction between sparsity configuration and
dense single-path model, we add pruning steps in two-stage
NAS for validation.

Motivation @: Deploy efficient sparse models on MCU.

Model compression can significantly reduce the model
size while maintaining the accuracy. Accordingly, deploying
compressed models on MCUs requires particular support from
deployment tools. For example, deployment tools should sup-
port sparse model storing and execution to accommodate their
extremely severe resource constraints. Existing deployment
tools and libraries for MCUs include TensorFlow Lite Mi-
cro [27], CMSIS-NN [13], MicroTVM [28], CMix-NN [29].
TinyEngine [16] is a code generator-based library to save the
resource consumed by the interpreter during inference.

However, these frameworks are mainly targeted at small-
scale computing by utilizing the locality in dense form for
acceleration. Support of sparse coding and inference enables
deployment tools to accommodate larger deep-learning mod-
els. To the best of our knowledge, there are few deployment
tools or libraries that support sparse model inference, limiting
the scale and performance of models. To further exploit the
advantage of sparsity, a specialized deployment tool should be
developed for sparse model inference on MCUs.

III. TINYFORMER: A FRAMEWORK OF
RESOURCE-EFFICIENT MODEL SEARCHING AND
DEPLOYMENT

Based on these motivations, we propose TinyFormer, a
resource-efficient framework to design and deploy sparse
transformer-based hybrid models on resource-constrained de-
vices. In Sec. III-A, we provide a macro view of the Tiny-
Former’s architecture. In the rest of the subsection, we discuss
about the key components of TinyFormer: SuperNAS, Sparse-
NAS, and SparseEngine. We present essential algorithms in
SuperNAS and SparseNAS and illustrate how they corporate to
search the best sparse model in Sec. III-B and Sec. III-C. The
implementation method of SparseEngine and the procedure of
sparse inference is provided in Sec. III-D.

A. Overview

As shown in Fig. 2, TinyFormer consists of three parts:
SuperNAS, SparseNAS, and SparseEngine. SuperNAS aims
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Fig. 3: Our supernet architecture design. We design four types
of choice modules: Downsample Module, MobileNetV2 Mod-
ule, Transformer Module and Pooling Module. Each choice
module contains 2 or 3 architecture candidates inside. The
single-path model is sampled from the supernet with only one
architecture candidate invoked per choice module.

to automatically find an appropriate supernet in a large search
space Sgyp(er)- In this work, a supernet is built as a pre-trained
over-parameterized model, where the following single-path
models are sampled from the supernet. SparseNAS is adopted
to find a sparse transformer from the supernet. SparseNAS
searches for a single-path model in the supernet with a set
of sparse configurations in search space Sgpq(rse). Weight
pruning is performed in Conv2d (convolution in 2d) and
Linear operators, and full-integer quantization with INT8
format is applied on all layers. Finally, SparseEngine au-
tomatically generates binary code on STM32 MCUs with
several functional implementations. SparseEngine deploys the
obtained sparse model to MCUs, enabling sparse inference to
save hardware resources.

B. SuperNAS: Supernet Architecture Search

When designing a supernet structure to search models and
deploy on MCUs, we are facing a trade-off between model
sparsity and capacity. The accuracy of the smaller dense mod-
els is limited by capacity, while pruning with higher sparsity
on the larger models could lead to a drastic drop in accuracy.
The balance between model sparsity and capacity should shift
according to hardware resource constraints, challenging the
design of the supernet.

Therefore, we propose SuperNAS to automatically de-
sign the supernet. SuperNAS searches appropriate supernet
in search space S;,,. Appropriate supernet should satisfy
two following conditions. Firstly, most of the sparse models
obtained from supernet are supposed to satisfy the resource
constraints strictly. Secondly, the average validation accuracy
of these models should be achieved as high as possible.

With the design of the search space for supernet (S,;), Su-
perNAS first analyses the probability of accepting the designed



TABLE I: Search space design in Sec. III-B and III-C.
Configurations of supernet are sampled in Sy, p(cr), and con-
figurations of the single-path model is sampled in S,q(,se)
with a given supernet. MHSA is the abbreviation of Multi-
head Self Attention.

Symbol | Invovled Configurations Choices
Number of heads in MHSA [1, 2, 4]
Number of MobileNetV2s in DoT [1, 2]

s Number of Transformers in DoT [1, 2]

sup(er) Embedding dimension size in DoT1 [32, 44]

Embedding dimension size in DoT2 [96, 128, 256]
Dimension of the Last Linear [512, 768, 1024]
Single-path choice of module Shown in Fig. 3

Sspa(rse) | Pruning block size [2, 4]
Pruning sparsity [0, 0.4~0.8:0.1]

search space. Then SuperNAS randomly samples supernet
configurations from search space and evaluates the average
accuracy of the sparse single-path models in the supernet. The
supernet with the best accuracy will be sent to SparseNAS for
further search.

1) Supernet Architecture design: The search space of Su-
perNAS Sq,,, contains hyper-parameters that are related to the
supernet architecture design, shown in Tab. I. The supernet
architecture design is shown in Fig. 3, using the same ap-
proaches as the single-path-one-shot (SPOS) [30]. Supernet
contains choice modules in different branches, and the single-
path model is sampled by selecting a choice module at each
branch. We build supernet architecture based on four types of
choice modules: Downsample module, MobileNetV2 module,
Transformer module and Pooling module. The four types
of modules contain multiple different architecture candidates
respectively. The condidate parameter set in Sy, is determined
based on emperical enginerring practices, and takes multiple
aspects into account, including memory usage, storage usage,
hardware efficiency, and the trade-off between searched results
and the search time in total.

In Fig. 3, Conv represents a standard 3x3 convolution
with 1x1 padding unless stated otherwise. In Downsample
module, Conv-Maxpool refers to a standard convolution
following a 2 x 2 max pooling. Architecture candidates that
perform downsampling are tagged with | 2. MobileNetV2
module refers to inverted residual block in [31] with expansion
factor \. In Transformer module, Conv 3x3—1x1 is a
standard 3x3 convolution following a 1x1 convolution with
no padding. Conv 1x1—3x3 is similar to the expression
above. Encoder is a standard transformer encoder similar to
[9], with ReLU [32] as the activation operation for efficient
calculation on MCUs. SegPool and AvgPool in Pooling
module indicate sequence pooling in [12] and 2x2 average
pooling, respectively.

Unlike CNNs, transformers lack spatial inductive biases
and rely heavily on massive datasets for large-scale training.
Therefore, we insert MobileNetV2 module before transformer
module to address this issue. Referring to MobileViT [10], we

Algorithm 1: Search Space Analysis in SuperNAS

1 Input: Search space Syyp,Sspa, memory limit £, and
storage limit £, lower bound ratio \;, and upper
bound ratio A, iteration count Tgyy,.

2 Output: Probability to accept Sy, for search space.

3 [naccpta neval} — [Oa 0]

4 for i =1 to Ty do

5 Csup, Cspa < RandomSample(Ssup; Sspa)

6 M« CreateModel(Csup, Cspa)

7 [1L,,1L] < ResourceEval(M?)

8 if !, <L, and [I! < L, then

9 Neval € Neval T+ 1

m.

10 N} wram < ParamsEval(M")

11 if Mol < Nporgm < AupLlo, then
12 Nacept < Nacept + 1

13 end

14 end

15 end

16 return ngcept/Neval

insert Conv 3x3—1x1 and Conv 1x1—3x3 before- and
after- the encoder instead of positional encoding.

We take DoT, an architecture stacked by Downsample
module, MobileNetV2 module and Transformer module, as
the basic layer of the supernet. MobileNetV2 module and
Transformer module in DoT structure are repeatable, which
makes DoT a more flexible feature extraction architecture.
The supernet architecture adopts two DoTs as the backbone,
followed by some post-processing operators.

2) Search Space Analysis: As mentioned in III-B, the
balance between model sparsity and capacity is essential in
search space design, and the configurations of search space
determine the supernet and single-path model architecture.
Therefore, we need to evaluate search space before sampling
supernet. Alg. 1 shows how we analyze the search space.
Before the analysis, we set the hyper-parameter \;, and A, as
the lower and upper bound of the single-path model’s capacity.
We randomly sample configurations c,j,, including sparsity
and block-pruning configuration in each layer, from the search
space and build sparse single-path models. If the sparse single-
path model meets the hardware constraint, we evaluate the
count of parameters in the model and accept the model if the
count is between the given boundary. Finally, we calculate the
statistical probability to represent how many sampled single-
path models are acceptable in the search space. If the statistic
probability (Ngceept/Mevar) is higher than 90%, we accept the
search space for further deployment. Otherwise, we adjust the
search space in advance to avoid unnecessary searches. The
adjustment of search space is performed by:

y = Round(k(x —T) + b), ()

where x and y are dimensional settings before- and after-
adjustment. Symbols with overline refer to the average values.
Round functions projects floats to their nearest integers. The



Algorithm 2: Supernet Architecture Seach

Algorithm 3: Single-path Model Search in SparseNAS

1 Input: Search space S, memory limit £,, and
storage limit L,, iteration count 7;, 7T;.

2 Output: An optimal supernet Ag,,,.

3fori=1to 7, do

4 Chup < BvolutionarySample(Sgyy)

5 A' « CreateSupernet(cy,,)

6 if TestSupernet(A*') # True then

7 ‘ continue

8 end

9 | Train A° for 10 epochs

10 for j=1to 7; do

11 Cspa < RandomSample(Sspa,)

12 M%<+ CreateModel(cspa, A')

13 [lm; ls] <= ResourceEval(M™, k)
14 ifl,, > L,, or [, > L, then

15 ‘ continue

16 end

17 METE « OneShot Prune(M™ ¢k )
18 Acc + Accuracy Eval( ML)

19 AvgAcc? + UpdateAvgAcc(Acc)

20 AvgAcc «+ UpdateAvgAcc(AvgAcct)
21 end

2 Asup < UpdateBest(A?, AvgAcc')
23 end

24 return A,

slope k in equation 1 is given by:

kb — Naccept + 10%’
Neval

2

where ngccept and Neyqr is counted in Alg. 1. The intercept b
in equation 1 is given by:

Npar(zms - Nmin
N, mazr N, min
where N,,;, and N,,,, are the minimum and maximum value
in Parameters Evaluations (Npgrams): Tmin and Tp,q, are

named in the same way.

To be specific, only the dimensional setting will be adjusted,
while the number of heads in MHSA and number of modules
in DoT are fixed. The search space can be also tuned manually
to adapt the implementation of calculation (e.g set dimension
to a multiple of 4).

In detailed implementations, we choose \;, = 0.8 and
Aup = 2.8 based on our preliminary experience. We conducted
experiments in three types of search space: Small, Normal,
and Large, which denote the model size sampled from them.
The experiments results prove that the search space analysis
allows SuperNAS to optimally balance sparsity and accuracy
trade-offs. Detailed experiments of search space analysis can
be found in Sec. I'V-B.

3) Supernet Architecture Search: The search process of
supernet is shown in Alg. 2. For each sampled supernet, we

b= Tmin + 3)

(xmax - xmin)v

1 Input: Search space Sy, supernet architecture A,
memory limit £,, and storage limit L, iteration
count Tgpq.

2 Output: An optimal pruned single-path model M .y,

3 for i =1 to 7,p, do

4 Cspa < EvolutionarySample(Sspq)

5 | M+« CreateModel(cspq, A)

6 [ln,ls] < ResourceEval(M?)

7 ifl,, > L,, or [, > L, then

8 | continue

9 end

10 | Train M? for 10 epochs

1 M,  Tterative Prune(M?)

12 Acc' « AccuracyEval(M;,,.,,)

13 Mprun, Csp <— UpdateBest(M

14 end

15 Return M,

Acc?)

7
prun’

perform a simple test on it before the actual search (expressed
as TestSupernet in Alg. 2). Specifically, we randomly sample
100 single-path models from the supernet and evaluate the
memory usage of each model. If half of the models exceed
the memory limit of hardware constraint, we skip the search
procedure for this supernet.

After the simple test of supernet, we take two steps to evalu-
ate its sensitivity to sparsity. Firstly, we randomly select single-
path models from the supernet. For each single-path model,
compression is conducted by generated sparse configuration
to check whether the model occupies more resources than the
practical scenario. Then we take the average accuracy as the
performance metric of the supernet. The configuration sampled
in S, is updated with evolutionary algorithm (expressed as
EvolutionarySample in Alg. 2). The supernet with the highest
performance metric will be adopted for the next search stage.

To reduce the search cost, we evaluate the storage and peak
memory usage of the sparse models for skipping the ones
that do not satisfy the resource requirements. In addition, the
one-shot weight-magnitude pruning algorithm without tuning
is adopted to reduce the runtime cost (presented as OneShot-
Prune in Alg. 2).

C. SparseNAS: Hardware-Aware Sparse Model Search

SparseNAS aims to obtain the best sparse single-path model
from the supernet. Differently from the original SPOS ap-
proaches from [30], the compression procedure is performed,
including pruning and quantization, among the searching steps.
Moreover, in order to reduce the cost of training and compres-
sion procedures, SparseNAS is divided into two stages. In first
stage (selection stage), SparseNAS aims to find the best sparse
single-path model with pruning and quantization procedures.
For the second stage (compression stage), SparseNAS only
performs pruning and fine-tuning operations to recover the
model’s accuracy.

1) Two-stage process: SparseNAS consists of the selection
stage and the compression stage. The selection stage of Sparse-
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NAS is presented in Alg. 3 for single-path model selection.
In the selection stage, SparseNAS trains randomly-sampled
sparse single-path models for a few epoch, then performing
iterative pruning and accuracy evaluation. The model with
highest accuracy is sent to the compression stage for further
training. We skip the model candidates that do not satisfy
hardware constraints by evaluating the storage and memory
usage.

For the compression stage, SparseNAS performs iterative
pruning again and fine-tuning on the model for accuracy
improvement. After the compression stage, the model will
be sent to SparseEngine for efficient deployment. Two-stage
procedures reduce the training and compression cost while
maintaining the obtained single-path model’s accuracy.

2) Pruning Method: Different from the one-shot pruning
method in SuperNAS, AGP iterative pruning method [33] is
utilized in two-stage NAS. AGP method can avoid significant
accuracy degradation caused by pruning. We only perform
weight pruning in Conv2d and Linear operators.

SparseNAS utilizes a blockwise pruning method, grouping
multiple continuous weights as a block to prune. Pruning

configuration (sparsity and block size) affects both accuracy
and hardware resource usage in deployment, and the effects
vary from different layers. Therefore, we adopt a mixed-
blockwise pruning strategy in Conv2d and Linear layers,
as shown in Fig. 5. In mixed-blockwise pruning procedure,
SparseNAS selects elastic block size (2 or 4) for each layer
to prune. When sampling the single-path model, each choice
module is set to a random configuration of sparsity and block
size.

In SparseEngine, we applied the blockwise convolution
in width direction to exploit spatial locality in computation.
Therefore, as an exception, the block size of blockwise con-
volution is set to 3, for the kernel size is fixed to 3x3.

3) Quantization Method: Floating-point calculations on
MCUs are inferior in latency and power consumption com-
pared to integer calculations. Therefore, we quantize the model
weights and activations to INT8 by Post-Training Quantiza-
tion (PTQ) algorithm [34]. However, LayerNorm calculations
in transformer is not suitable for directly quantized. Perform-
ing linear quantization on LayerNorm will cause a significant
accuracy drop. The original LayerNorm is defined as:

y=m*v+ﬁ, )

olx)+e
where p(z) = 15¢ 2, and o(z) = /I8¢, (z; — p)? are

the mean and variance values of input z in channel-wise
direction (c is the number of channels). z,opm = o)

\o(x)te

is the normalization result before affine transformation. v and
[ are the learnable parameters in affine transformation. € is
a significantly small value to prevent the denominator to be
zero. In linear quantization, the normalization result x .y, 1S
supposed to be rounded to integer. However, directly rounding
Tnorm to INT16 incurs a significant loss of precision.

To verify the conjecture, we count the distribution of Z,,orm,
of LayerNorm in first DoT Architecture. As shown in Fig. 4(a),



Self-adaptive Sparse Coding

-~

dense matrix Q
Analyzer 3
e ] Sparse :-ng
Weight ; - =
- Coding =
Sparse configuration T
E’J? Automatic Memory Allocation
<
S o in Out [
a u n
c Out
2. Graph _ % 5 L |Free| |& o
& |Free| 15 |Free| |5 S S
< [ N out jw In s
(J In
_— high [ 24t Res E

</>

Code
Generation

——

-
STM32F746

; — Sparse FC

:L Compilation
Ef@-’ & Excution

Inference output
DoT | DoT

o]

emory [T Sorae

e e —

[ conv

[ Linear

Latency |:| Matmul
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and memory allocation. Then, different kinds of layers’ computations are transformed via automatic code generation for the

following compilation and execution on targeted MCUs.

the normalized data is mapped to the range of —2.0 to 9.3.
Rounding the small range of normalization results to INT16
causes a large loss of precision. On the other hand, the range
of INT16 is not fully utilized by x,¢pm. Adopting INT16 to
store the normalized data will waste 99.98% of integer values,
presented in Fig. 4(a).

To tackle this problem, Scaled-LayerNorm is proposed to
perform integer-only inference instead of naive quantized
LayerNorm. As shown in Fig. 4(b), we enlarge the normalized
results by 28~ to reduce the numeric precision loss in
quantization. After the linear transformation, the results are
stored as INT16 format, while it also includes the 2(8—1)
factor. In re-quantization step, we fold 2(8%1) into scaling
factor S to ensure mathematical equivalence. Expanding the
numerical range of x,,,.n,, prevents significant accuracy drop
caused by large precision loss. With the approaches above, we
reach a significant speed-up in LayerNorm inference, with only
slight accuracy drop. Detailed experimental results of Scaled-
LayerNorm is presented in Sec. IV-C.

D. SparseEngine: Efficient Deployment Library of Sparse
Transformers

SparseEngine is a deployment tool for sparse transform-
ers on MCUs. It consists of a deployment library based
on C++ language, and a code generator. SparseEngine can
automatically allocate memory to each layer and generate
codes that can directly deploy on STM32 MCUs. Compared
with CMSIS-NN and TinyEngine, SparseEngine supports extra
functions, including dynamic sparse calculate of Conv2d
and Linear operations, to efficiently inference a sparse
transformer. Moreover, SparseEngine optimizes softmax oper-
ation, which is more frequently used in transformer inference.
Comprehensive details of SparseEngine are illustrated in Fig.
6.

Firstly, the models obtained from SparseNAS are analyzed
to extract the required information, including sparse configura-
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Fig. 7: Blockwise run-length coding for 3D matrix.

tion, model architecture and memory usage, etc. To efficiently
utilize the available memory on MCUs, a head-tail-alternation
allocation strategy is adopted to automatically allocate mem-
ory for models inference, presented in Fig. 6. Meanwhile,
inspired by the run-length coding algorithm [35], we perform
the self-adaptive sparse strategy with blockwise run-length
coding in UINT8. With self-adaptive strategy, weights are
stored as sparse format only if sparse coding could reduce the
storage occupation. Finally, targeted codes could be generated
for deployment on MCUs. The code generator in SparseEngine
converts ONNX model to C-like code executable on on MCU.
The adoption of ONNX as an intermediate representation en-
ables TinyFormer to maintain interoperability across multiple
machine learning pipelines.

Compared with other deployment approaches on MCUs,
SparseEngine aims to further exploit the sparsity on TinyML
deployment and model inference. The sparsity exploitation in-
cludes sparse encoding/decoding, and sparse calculations (both
Conv2d and Linear layers). Moreover, targeting on model
inference with transformer modules, Softmax operator is
also optimized to accelerate the inference on MCUs.



1) Sparse Coding: In sparse coding, based on run-length
coding algorithm [35], we perform blockwise run-length cod-
ing in 8-bit to adopt block pruning. At first. the original
3D matrix (tensor) is flattened into array format. The spare
weights are stored in (dis, valy,vals...,valy) format, as pre-
sented in Fig. 7, where dis represents the distance between
non-zero blocks as the position information, val; indicates the
i-th weight in the non-zero block whose length is b. We insert
zero elements if dis is beyond the maximum value of INT8.

Compared with Coordinate (COO) and Compressed Sparse
Row (CSR) formats, blockwise run-length coding has a higher
compression ratio. It only requires one element to represent
the position of adjacent non-zero weights. The compression
ratio of this encoding format could be obtained by

1
1—p)x (1+3)

where 7 indicates the compression ratio, p refers to the
sparsity and b is the block size of pruning. Consequently,
the compression ratio of blockwise run-length encoding could
be larger along with the increasing of sparsity and block
size. Cooperating with mixed-blockwise pruning in Sparse-
NAS, blockwise run-length encoding significantly reduce the
required size of sparse coding.

2) Sparse Convolution and Linear: Decoding sparse
weights and then computing convolution in dense format oc-
cupies a large amount of memory footprint [36, 37]. To avoid
unnecessary memory usage, we perform sparse convolution
calculation directly in sparse format. Fig. 8 presents the details
of the sparse Conv calculation. Sparse weights are decoded
to obtain the coordinates and values. Each weight value cor-
responds to a sub-matrix of the input matrix. After extracting
the sub-matrix, we execute element-matrix multiplication and
accumulate the results as the output. Specifically, we decode
two weight values simultaneously and extract two correspond-
ing elements from the sub-matrix. Then, two INT8 values
are sign-extended to INT16 and concatenated as INT32
format. Thus, the above multiply-accumulate calculations can
be performed by SIMD instructions. Meanwhile, the sparse
linear layers are implemented by the same manner, despite
the difference in dimensions.

3) Softmax Optimization: According to our profiling, the
Softmax layer is very time-consuming due to the required
exponential operations. The computation of Softmax can be
described as

= 3)
77( (

emi ewifwmaw

Softmazx(z;) = 2?21 o = Z?:l P — (6)
where x; indicates the i-th value and x,,,, 1S the maximum
value in z (n is the number of elements in one channel). Since
the inputs of Softmax are in INT8 format, the exponents
range from -256 to 0. Consequently, redundant calculations
will be increased according to the input size of Softmax.
Therefore, we optimize the Softmax operator with a lookup

table to reduce redundant computations.
Targeting at calculating the negative exponential functions,
SparseEngine adopts the absolute value of the exponential
factor as an index to query the bitmap. If the corresponding
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Fig. 8: Sparse Convolution with SIMD instruction. Each
block’s weight information are extracted by sparse decoding
procedure. Among them, the location information are adopted
to find the sub-matrix in original input matrix. After con-
catenate & sign extension 8(sign-ext) operations, sub-matrix
and weight values are sent for computations with SIMD
instructions acceleration.

bit exists in the bitmap, SparseEngine obtains the result from
the lookup table and reuses it in Softmax computations.
Otherwise, it calculates the exponential function and stores
the result in the table, updating the corresponding bit in
the bitmap. According to the evaluation of SparseEngine, its
memory usage on bitmap and lookup table is less than 1.2KB.
Since SparseEngine reuses the buffer memory of convolution
when performing Softmax optimization, there is no extra
memory cost in calculations.

IV. EXPERIMENTAL RESULTS

Here we present experimental results to demonstrate the ef-
fectiveness of our TinyFormer framework. The results mainly
consist of offline evaluation and runtime validation. In Sec.
IV-B, we provide offline evaluation results with algorithmic
performance to demonstrate the effectiveness of SuperNAS
and SparseNAS. In Sec. IV-C, we are focused on the runtime
efficiency on MCU platform, and present the runtime valida-
tion of SparseEngine.

A. Evaluation Setup

1) Dataset: According to requirements in TinyML sce-
nario, our TinyFormer is mainly evaluated on CIFAR-10 [39]
and ImageNet-32 [40] dataset for image classification. CIFAR-
10 contains 50 thousand and 10 thousand images for training
and validation respectively. ImageNet-32 contains 1.28 million
and 50 thousand images for training and validation respec-
tively. Images in both datasets are set at 32 x 32 resolution in
RGB format.



TABLE II: Top-1 accuracy comparison and hardware resources evaluation. Different models are evaluated under different
hardware constraints. TinyFormer-120K and TinyFormer-300K indicate that the peak memory limit is set as 120KB and 300KB,
respectively. Texts that end with * indicate that the peak memory or storage usage is beyond the limitations of STM32F746

MCU.
Model Peak Mem. Storage CIFAR-10  ImageNet-32
MobileNetV2 [31] 416KBx 2.13MBx* 94.61% 38.22%
CCT-7/3x1 [12] 512KBx* 3.52MB* 95.72% 39.04%
MobileViT-XS [10] 160KB 1.91MBx 90.11% 34.16%
MobileViTV2-0.75 [38] 172KB 3.48MBx 91.30% 34.99%
MCUNet-in3 [16, 17] 22KB 0.89MB 84.26% 26.60%
TinyFormer-120K (ours) 120KB 0.94MB 94.52% 38.53%
TinyFormer-300K (ours) 300KB 0.91MB 96.10% 39.37%

2) Training Settings: In the training process, we use
AdamW [41] as the optimizer. The learning rate starts with a
warm-up phase, increasing from 1x 1076 to 5.5 x 10~* for the
first 10 epochs, and then follows a cosine annealing schedule,
gradually decreasing to 1 x 10~°. During the model’s training,
label smoothing with a probability of 0.1 is employed, as
suggested by Szegedy et al. [42]. Unless otherwise specified,
all involved models are trained from scratch for 300 epochs
using a batch size of 128.

The weights of models are initialized using the method
from [43]. All models are performed INT8 quantization.
The reported top-1 accuracy of image classification task is
evaluated on full-integer models if not specifically stated.

Some baseline models are designed towards the ImageNet
dataset with higher resolution. To ensure a fair comparison, we
maintain the original architecture of baseline models, except
for the number of classes in classification.

3) Platforms: The offline experiments in Sec. IV-B are
conducted on 8 NVIDIA V100 GPU. The runtime experiments
in Sec. IV-C are conducted on with SparseEngine for accu-
racy and efficiency evaluation. We select STM32F746 MCU
platform (Cortex-M7 core @ 216MHz, with 320KB RAM and
IMB Flash) and STM32H743 MCU platform (Cortex-M7 core
@ 480MHz, with 512KB RAM and 2MB Flash) to conduct
the runtime experiments. All program is burned by Keil5 MDK
supporting ARM-based microcontrollers.

B. Offline Evaluation

In offline evaluation, we have mainly trained two model
with different hardware constraints (TinyFormer-300K and
TinyFormer-120K). In the NAS process, SuperNAS takes 15.2
GPU hours per sampling, and SparseNAS takes 1.5 GPU hours
per sampling.

Tab. II shows the comparison results of our TinyFormer
and other state-of-the-art lightweight models. With the co-
optimization of SuperNAS and SparseNAS, TinyFormer-300K
could satisfy the hardware constraints of STM32F746 MCU
platform and achieve a record accuracy with CIFAR-10 and
ImageNet-32 on MCUs. As illustrated in Fig. 3, TinyFormer
is designed as a hybrid model that contains both convolution

TABLE III: Ablation of TinyFormer in offline evaluation.
Basic TinyFormer structure has two DoTs and mixed block
size. All the models are searched with hardware constraints of
300KB Memory and 980KB Storage in CIFAR-10. #Params
indicate the number of effective weights.

Model Accuracy #Params Storage
TinyFormer 96.10% 731K 942KB
TinyFormer (w/o Tr.) 94.62% 756K 963KB
TinyFormer (Single DoT) 93.92% 572K 655KB
TinyFormer (Block Size = 2) | 95.88% 730K 950KB
TinyFormer (Block Size = 4) | 95.52% 807K 962KB

and transformer encoder layers. Compared to other lightweight
hybrid models, such as MobileViT-XS, TinyFormer better
combines the advantages of CNN and transformer to achieve
higher accuracy with limited resources. Compared with CCT-
7/3x1 designed for CIFAR-10, TinyFormer-300K achieves
higher accuracy while reducing peak memory and storage by
41% and 74%, respectively. Meanwhile, TinyFormer-120K is
searched for stricter peak memory constraints. Compared with
MobileViT-XS, TinyFormer-120K improves the accuracy by
4.4% with less peak memory and storage.

1) Search Space: The search space design affects the sam-
pled model size. An inappropriate search space have a negative
impact on the experimental results. As shown in Fig. 9(a), we
conduct experiments on three different sizes of search spaces
based on the parameters counts in sampled supernet, including
small (0.3~1M), normal (0.6~3M), and large (1.3~10M).
With hyper-parameter A, = 0.8 and A\p; = 2.8, only
normal space has acceptance probability higher than 90%. The
small and large space has an acceptance probability less than
30%. The small search space mostly contains dense models
with low capacity, while models in /arge search space have
both higher parameter counts and higher sparsity. Figure 9(b)
illustrates trade-off between sparsity and accuracy. We set
three search space: Small, Normal, and Large. The models
in Small search space are with lower scale and lower sparsity,
The Large search space demonstrates the inverse relationship.
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The Normal search space represents an intermediate configu-
ration. Within the Small search space, lower sparsity results
in lower accuracy degradation (0.20%). However, the accuracy
of model in Small search space is substantially constrained by
the hardware constraints. By contrast, the Large search space
searches dense models with highest accuracy, but experiences
more significant accuracy degradation (5.45%) during pruning
for MCU deployment. The Normal search space optimally
balances sparsity and accuracy trade-offs, with higher accuracy
of dense model compared with small search space, and less
accuracy degradation during pruning compared with large
search space.

2) Ablation Study: In this part, we show the ablation
study on TinyFormer from Tab. III, which consists of three
perspectives: whether to use transformer block, number of

DoTs, and whether to adopt mixed block size pruning in search
stage. In Tab. III, TinyFormer refers to the TinyFormer-300K
model in Tab. II, with transformer block, two DoTs, and mixed
block size pruning.

To discover the impact of transformer block in TinyFormer,
a CNN model without transformer block is searched and
denoted as TinyFormer (w/o Tr.). TinyFormer (w/o Tr.) deletes
the transformer block in DoT architecture, and only remains
the downsample block and MobileNetV2 block. Compared to
TinyFormer (w/o Tr.), TinyFormer obtains better accuracy un-
der almost the same resource usage. These results suggest that
incorporating transformer-related blocks or layers can offer
advantages in achieving improved performance for TinyML.

Additionally, we conduct experiments to evaluate the im-
pact of the number of DoT layers on the model’s accuracy.
TinyFormer (Single DoT) is derived from the supernet that
exclusively consists of a single DoT architecture, while adher-
ing to the same hardware constraints. With the same search
space, TinyFormer (Single DoT) utilizes only 66.8% of the
storage limitation, resulting in a decrease in accuracy by
1.48%. When employing a single DoT, the main bottleneck
for TinyFormer (Single DoT) arises from memory constraints.
By contrast, the model with two DoTs almost approaches the
limits of both storage and memory, effectively maximizing
resource utilization. Therefore, two DoTs are utilized in our
basic experiments.

Finally, we evaluate the effectiveness of the mixed block
size strategy in two stages of SparseNAS. In particular,
TinyFormer (Block Size = 2) and TinyFormer (Block Size
= 4) denote models with a fixed block size of 2 and 4 in
block pruning respectively. Tab. III demonstrates that larger
block sizes allow for more efficient storage of weights within
the given limitations. However, setting all block sizes to 4
adversely affects the model’s accuracy. Based on these results,
the pruning method employing a mixed block size scheme
strikes the best balance between block size and the number
of effective weights, thereby yielding the most suitable model
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with optimal performance.

C. Runtime Evaluation

At the runtime level, we have developed SparseEngine for
performing sparse inference on MCUs. The implementation
of SparseEngine has successfully reduced the inference time
to 3.8 seconds on our highest-accuracy searched model. To
evaluate the performance of SparseEngine, we deploy the
same sparse model in both CMSIS-NN and SparseEngine. As
illustrated in Fig. 10, SparseEngine outperforms CMSIS-NN
both in terms of inference latency and storage occupation. By
leveraging sparse inference support, SparseEngine achieves a
significant reduction in storage requirements on MCUs, rang-
ing from 9% to 78%. Through the utilization of specialized
optimizations, SparseEngine achieves an impressive accelera-
tion of inference, ranging from 5.3x to 12.2x. Specifically, in
Fig. 10, we mainly focus on how sparse configurations affect
the inference speed and storage usage, rather than the accuracy.
For the simplicity of presentation, we have not shown the
accuracy of models in the figure.

To identify the bottleneck in the inference process, we eval-
uate the runtime breakdown for different layers. As depicted
in Fig. 11(a), our findings indicate that the Softmax operator
is responsible for the majority of the inference time. Within
the Softmax operator, the most time-consuming step is the
negative exponential calculation. We discovered that as the
input size increases, the results of the negative exponential can
be reused. Leveraging this observation, SparseEngine employs
a bitmap lookup table to reduce redundant calculations and

TABLE IV: Comparasions of LayerNorm (LN) inference. Ex-
perimental configurations are similar to TinyFormer-300K in
Tab. II except for the LayerNorm implementations. We make
an ablation study on different methods of LN: inference with
FP32 format (FP32-LN), inference with naive quantization to
INT8 (INT8-LN (naive)), and our proposed method in Sec.
III-C3 (INT8-LN (scaled))

Method of LN Accuracy Shape Latency
256 x 44 194
FP32-LN 06,119 | 220> 44 =
[64 x 192] | 208ms
25 44 5
INTE-LN (naive) | 95.02% | o044 | oms
[64 x 192 4ms
256 x 44 5
INTSLN (scaled) | 96.10% | 220> 441 | 5ms
(64 % 192] | 4ms

optimize the Softmax operator. Fig. 11(b) provides a com-
parison of the inference time for the main operators between
CMSIS-NN and SparseEngine. Since the dense model can
not be deployed on MCU using CMSIS-NN, to make a fair
comparison, we use CMSIS-NN to perform sparse inference
with the same algorithm as SparseEngine in Fig. 8, but without
the SIMD acceleration. The setting allows all the engines has
the same memory usage when calculating the same operators.
The algorithm first decodes the sparse weight to get the
weight information. After decoding, the algorithm extracts the
corresponding sub-matrix from the activation map, transform-
ing it to column and perform the multiple-add calculation.
Compared with CMSIS-NN, SparseEngine achieves 1.33x to
1.55x acceleration rate in Conv2d and Linear operator,
and 22.5x acceleration in Softmax operator.

Moreover, we conducted a comparative analysis of power
consumption between CMSIS-NN and SparseEngine on the
STM32F746. Under the same voltage, the average power
consumption of TinyFormer was measured at 473 mW, with a
3% reduction compared to the average power consumption of
CMSIS-NN. Adoption of a lookup table for softmax cut down
the amount of calculation, and results in a slight reduction
on power consumption. Although the power reduction effect
of SparseEngine is not particularly significant, SparseEngine
achieve much less inference time compared to CMSIS-NN.
The total power consumption of SparseEngine for image
recognition tasks was only 14% of that of CMSIS-NN. The
analyzing results suggest that SparseEngine holds a strong
advantage in the TinyML applications that use transformers
and require low-energy consumption.

Additionally, we conduct an experiment involving Scaled-
LayerNorm in TinyFormer. Scaled-LayerNorm executes
integer-arithmetic calculations, making it more suitable for
model inference on MCUs. Scaled-LayerNorm addresses the
issue of precision loss in quantization by expanding the
range of normalization results during the rounding opera-
tion. Tab. IV illustrates the impact of Scaled-LayerNorm on
acceleration. Remarkably, the accuracy of TinyFormer using
Scaled-LayerNorm is nearly equivalent to that of the normal



LayerNorm computed in FP32 format, while the inference
procedure is accelerated by a factor of 38.8x to 52.0x.
These experimental results align with our expectations, as
Scaled-LayerNorm significantly enhances the efficiency of
LayerNorm inference without any noticeable loss in accuracy.
In summary, the experimental results for both Softmax and
Scaled-LayerNorm validate our observations and highlight the
substantial acceleration effects achieved by SparseEngine.

V. CONCLUSIONS

In this work, TinyFormer is proposed as an innovative
framework for developing efficient transformers on MCUs
by integrating SuperNAS, SparseNAS, and SparseEngine.
One notable feature of TinyFormer is its ability to produce
sparse models with high accuracy while adhering to hardware
constraints. By integrating model sparsity and neural archi-
tecture search, TinyFormer achieves a delicate balance be-
tween efficiency and performance. Along with the automated
deployment approaches, TinyFormer can further accomplish
efficient sparse inference with a guaranteed latency on targeted
MCUs. Experimental results demonstrate that TinyFormer
could achieve 96.1% accuracy on CIFAR-10 under the lim-
itations of 1MB storage and 320KB memory. Compared with
CMSIS-NN, TinyFormer achieves a remarkable speedup of
up to 12.2x and reduces storage requirements by up to 78%.
These achievements not only bring powerful transformers into
TinyML scenarios but also greatly expand the scope of deep
learning applications.
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