
380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 75, NO. 1, JANUARY 2026

CIMinus: Empowering Sparse DNN Workloads
Modeling and Exploration on SRAM-Based

CIM Architectures
Yingjie Qi , Jianlei Yang , Senior Member, IEEE, Rubing Yang , Cenlin Duan , Xiaolin He , Ziyan He ,

Weitao Pan , Member, IEEE, and Weisheng Zhao , Fellow, IEEE

Abstract—Compute-in-memory (CIM) has emerged as a piv-
otal direction for accelerating workloads in the field of machine
learning, such as Deep Neural Networks (DNNs). However,
the effective exploitation of sparsity in CIM systems presents
numerous challenges, due to the inherent limitations in their rigid
array structures. Designing sparse DNN dataflows and developing
efficient mapping strategies also become more complex when
accounting for diverse sparsity patterns and the flexibility of
a multi-macro CIM structure. Despite these complexities, there
is still an absence of a unified systematic view and modeling
approach for diverse sparse DNN workloads in CIM systems. In
this paper, we propose CIMinus, a framework dedicated to cost
modeling for sparse DNN workloads on CIM architectures. It
provides an in-depth energy consumption analysis at the level of
individual components and an assessment of the overall workload
latency. We validate CIMinus against contemporary CIM archi-
tectures and demonstrate its applicability in two use-cases. These
cases provide valuable insights into both the impact of sparsity
patterns and the effectiveness of mapping strategies, bridging the
gap between theoretical design and practical implementation.

Index Terms—Compute-in-memory, sparsity, deep learning,
SRAM-CIM.

I. INTRODUCTION

DUE to the growth of computing power and the avail-
ability of big data, the field of machine learning has

witnessed significant advancements in recent years. The rapid
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development of intelligent applications has motivated many
dedicated accelerator designs for Deep Neural Networks
(DNNs) [1], [2]. However, the ever-increasing scale and com-
plexity of DNN models make conventional NN accelerators
suffer from severe data movement overhead [3]. To address
this bottleneck, compute-in-memory (CIM) architectures have
emerged as a promising solution, reducing data transfer over-
head by integrating computation logic within memory tech-
nologies such as SRAM [4], [5], [6], ReRAM [7], [8], and
MRAM [9]. Among these viable candidates, SRAM is widely
adopted across industry and academia due to its faster write
speeds, lower write energy consumption, and compatibility with
existing logic technologies [10].

Alongside the evolution of CIM architecture designs, there
is an increasing emphasis on software-hardware co-design ap-
proaches that integrate hardware capabilities with model-level
optimizations. Among co-design approaches, sparsity exploita-
tion is one of the most popular strategies for improving energy
efficiency [11], [12], [13], [14], [15]. Although sparsity sup-
port has been widely adopted in conventional accelerators, the
methods employed are not readily adaptable to CIM architec-
tures. Due to the constraints of rigid crossbar structures, the
irregularities brought by sparse data structures often lead to
under-utilization problems in CIM macros. Designers also face
a wide range of design choices when developing in-memory
architectures for sparse DNN workloads. For instance, while the
multi-macro organization in contemporary CIM accelerators
offers accommodation for more complex workloads [16], it may
also complicate the design of efficient sparse dataflows and their
corresponding mapping strategies.

Prior studies have proposed several SRAM-based CIM de-
signs to leverage DNN sparsity [17], [18], [19], [20]. How-
ever, the domain of sparsity exploitation within CIM has not
been thoroughly investigated, as the strategies for selecting
sparsity patterns and mapping methods in these accelerators
largely rely on heuristic or empirical approaches. Such reliance
may overlook optimization opportunities in both CIM archi-
tectures and DNN sparsity. Particularly, finer-grained sparsity
patterns in DNN weights tend to preserve model accuracy but
pose significant challenges for efficient utilization. Moreover,
when accounting for the diversity of sparsity patterns available
within the constraints of a multi-macro CIM framework, the
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design of sparse DNN dataflows and the formulation of map-
ping strategies also become exceedingly complex. The absence
of a systematic approach, combined with the complexities in
evaluating sparse workloads on CIM architectures, poses signif-
icant challenges for exploring the space of algorithm-hardware
co-design.

This paper introduces CIMinus, a cost modeling framework
that enables designers to efficiently navigate the expansive co-
design space. CIMinus provides an efficient interface for both
software and hardware descriptions, accurately estimating the
energy consumption and latency of sparse workloads on CIM
architectures while simplifying the user effort involved. To
facilitate the exploration of various sparsity patterns and their
impact on CIM performance, CIMinus also incorporates a prun-
ing workflow that generates sparse DNN weights in accordance
with our proposed FlexBlock sparsity abstraction. Compared
with the reported results in recent sparse CIM accelerators,
CIMinus can accurately estimate the speedups and energy sav-
ings brought by DNN sparsity within the error margin of 5.27%.
We also demonstrate the capabilities of CIMinus through two
use-cases exploring sparsity exploitation and mapping strate-
gies. The contributions of this paper include:
• We present FlexBlock sparsity, an expressive abstrac-

tion for describing sparsity patterns under structural con-
straints, streamlining the process of integrating sparse
DNNs with CIM architectures.

• We propose CIMinus, an expedient cost modeling frame-
work for sparse DNN workloads on SRAM-based digital
CIM architectures and validate it against contemporary
CIM architectures.

• We demonstrate the practical applicability of CIMinus
through two illustrative use-cases, bridging theoretical de-
sign and practical implementation in DNN sparsity and
mapping exploration.

The rest of this paper is organized as follows. Sec. II provides
background on SRAM-based CIM architectures and their chal-
lenges in sparsity exploitation. Sec. III details the constraints
and hardware support for sparsity in CIM architectures and in-
troduces the FlexBlock sparsity abstraction. Sec. IV and Sec. V
present the CIMinus framework and its modeling methodology,
followed by their validation and runtime analysis in Sec. VI.
Sec. VII explores the impact of sparsity patterns and mapping
strategies, Sec. VIII discusses the related works, and concluding
remarks are given in Sec. IX.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss the major design trends of
SRAM-based CIM to establish the groundwork of our study.
We explain the shift from analog to digital in the computing
paradigm, and then highlight the challenges associated with
sparsity exploitation in CIM, which motivate the development
of our proposed framework.

A. Design Trends in SRAM-Based CIM

CIM architectures perform Multiply-Accumulate (MAC) op-
erations in close proximity to or directly within memory arrays,

Fig. 1. Comparative overview of CIM architectures and sparsity patterns.

reducing the data movement bottleneck of traditional von Neu-
mann architectures. Many of the initial CIM designs in literature
(such as [5], [21], [22]) implement analog MAC operations
using current or voltage signals. The inherent analog deviations
and the overhead associated with analog-to-digital converters
(ADCs) significantly constrain the accuracy and utilization of
the memory array. This limitation results in a confined activa-
tion granularity within the array, often termed as an Operation
Unit (OU). Consequently, a clear trend in CIM architecture
design is the shift towards digital implementations. Digital
CIM integrates digital MAC logic into SRAM cells, effectively
avoiding the challenges posed by analog non-idealities [6], [23],
[24], [25], [26], [27]. As depicted in Fig. 1(a), digital CIM
implementations offer the potential to activate all rows simulta-
neously, significantly enhancing computational parallelism and
array utilization.

To support a wider range of intelligent applications, another
notable trend in CIM design involves integrating more macros
into the CIM systems. This approach not only increases the
capacity of the in-memory architecture, but also improves the
overall system performance and efficiency [16], [22]. More-
over, as the complexity of DNN workloads keeps increasing,
sparsity exploitation has also become an important strategy
for improving the computational efficiency in CIM systems.
By leveraging sparsity introduced through pruning techniques,
CIM systems can significantly reduce both storage and compu-
tation requirements, enabling them to efficiently handle larger
and more complex DNN models. While efforts have been made
to utilize sparsity in analog SRAM-based CIM architectures
[16], [17], [18], [28] as well as in other technology-based CIMs
[11], [12], [13], [14], [15], the full array activation constraint in
digital CIM architectures greatly limits the efficient utilization
of sparse workloads. This has led to relatively few studies [19],
[20] focusing on sparsity exploration in digital CIM.
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B. Challenges and Design Space

Performing sparse computations in-memory is not without
challenges. To fully utilize the high parallelism and energy
efficiency promised by CIM designs, the executed workloads
need to exhibit a certain degree of regularity or structure. This
requirement is particularly critical in digital CIM architectures,
where the activation granularity spans the entire array. Conse-
quently, sparsity patterns in DNN workloads must adhere to
structural constraints for effective execution in these systems.

As illustrated in Fig. 1(b), the sparsity patterns employed
by recent CIM architectures involve a wide range of granu-
larities, which can be categorized as patterns directly acquired
from pruning filters, and those derived from pruning within
reshaped weight matrices. Coarser-grained sparsity patterns are
typically attained by pruning values from specific dimensions
of DNN weights, while finer-grained patterns are obtained in
a block-wise fashion. The blocks are typically configured to
either have matching sizes to the OU/array in CIM architec-
tures [16], [19], or to maintain a fixed ratio of non-zero values
[20]. Although finer granularity in sparsity patterns can pre-
serve model accuracy, it also inevitably introduces additional
storage and indexing overhead. Furthermore, while most CIM
systems adopt a weight stationary mapping approach, where
DNN weights are mapped onto CIM macros for data reuse,
the introduction of sparsity can lead to workload imbalances
among these macros. The random nature of sparsity often pre-
vents a perfect mapping of compressed weights onto multiple
CIM macros, resulting in reduced spatial parallelism and macro
under-utilization.

To fully leverage the flexibility of multi-macro digital CIM
systems and the advantages of sparsity, it is essential to ex-
plore a broad design space of software/hardware co-design.
However, many existing CIM accelerator designs are often tai-
lored to specific patterns of DNN sparsity. Moreover, model-
ing tools for CIM designs [29], [30], [31], [32] emphasize on
accurately emulating the hardware designs, primarily targeting
dense workloads. As a result, there still lacks a systematic view
on the execution of diverse sparse DNN workloads in CIM
systems, leaving several key questions unaddressed, some of
which we list below. The aim of our CIMinus framework is
to provide a tool that facilitates easy navigation through this
complex design space, filling the gap in the existing body of
research.
• What types of sparse workload are best suited for CIM?
• How to efficiently map a sparse workload to a CIM archi-

tecture to avoid under-utilization?

III. SPARSITY IN CIM ARCHITECTURES

Sparsity exploitation is a crucial technique for improving
efficiency of DNN acceleration on CIM architectures. How-
ever, the structural characteristics of CIM arrays impose unique
challenges and constraints on sparsity exploitation. In this sec-
tion, we explore these challenges in detail, examining both the
structural limitations of CIM arrays and the hardware support
required for sparsity in model inputs and weights. We then
introduce the FlexBlock sparsity abstraction as a solution to

Fig. 2. Structural constraints of CIM architectures on sparsity exploitation.

effectively represent the diverse sparsity patterns in CIM-based
DNN accelerators.

A. Structural Limitations of CIM Arrays

In order to maximize in-memory computation benefits,
DNN weights are typically reshaped from their original multi-
dimensional structures into two-dimensional matrices and
stored stationarily within the memory arrays. The computations
are executed in a bit-serial manner, where input values are
decomposed into individual bits and fed sequentially to the
array. As shown in Fig. 2, during computation, corresponding
rows within each sub-array are activated simultaneously ac-
cording to wordline signals, enabling row-wise parallelism. The
partial sums resulting from these row-wise operations are then
accumulated along the bitline direction. Although the cross-
bar structure in CIM architectures enables efficient parallel
computing, it also imposes rigid requirements. The row-level
activation mechanism demands inputs to be broadcast across all
elements in each row, constraining the row-wise data indices to
be identical. Similarly, the accumulation process requires the
alignment of the output data indices across rows to ensure cor-
rect functionality. Beyond these structural constraints, SRAM
arrays typically can store only a fraction of DNN layer weights,
often requiring designers to employ multi-macro architectures
or develop complex dataflow mappings.

B. Sparsity Support in CIM

To reduce both computation and storage requirements in
DNN acceleration, many modern CIM architectures leverage
the sparsity present in neural network computations. This in-
cludes utilizing input sparsity by skipping the zero bits in
activations during bit-serial processing, and exploiting weight
sparsity by compressing weight matrices after model prun-
ing. However, the irregular nature of sparsity often leads to
a mismatch between the flexible zero distributions and the
rigid crossbar structure, resulting in under-utilization of the
available parallelism and computational resources. For input
sparsity, computations can only be skipped when identical bit
positions are zero across all inputs processed by the activated
rows in a CIM array. For weight sparsity, common patterns such
as unstructured or fine-grained sparsity inherently violate the
row-wise and column-wise constraints imposed by CIM archi-
tectures, which largely negates the computational and storage
benefits that sparsity provides to address the SRAM array ca-
pacity constraint.
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These challenges require a co-design approach where CIM
architectures include dedicated logic for sparsity support, and
sparsity patterns are structured to match the rigid hardware
constraints. To support input sparsity, CIM architectures must
identify when bit positions are zero across inputs during the
bit-serial conversion and dynamically skip these ineffectual
computations. To effectively utilize weight sparsity, the sparsity
patterns must ensure that compression can preserve the align-
ment between matrix indices and the corresponding CIM array
coordinates. This requires the weights to be pruned in a block-
wise fashion, which can be realized through two approaches:
pruning entire blocks that conform to the hardware dimensions,
or consistently pruning within each block to obtain a uniform
compressed shape. After model pruning and compression, these
structured weights can be stored densely within CIM arrays, as
long as the architecture maintains the offline-generated index-
ing information needed to route inputs to the appropriate array
rows.

C. FlexBlock Sparsity Abstraction

While sparsity in CIM must adhere to structural constraints,
practical implementations employ diverse sparsity patterns with
a wide range of granularities. To effectively represent struc-
turally constrained sparsity patterns for two-dimensional weight
matrices, we introduce FlexBlock, a flexible and unified spar-
sity abstraction that serves as the foundation for the CIMinus
modeling framework. The FlexBlock abstraction is designed to
accommodate diverse sparsity patterns by representing them as
a composition of multiple block-based sparsity patterns, which
can be defined as follows.

Definition III.1 (FlexBlock Sparsity). Given a matrix W ∈
R

M×N , FlexBlock sparsity is defined as a set of block-
based sparsity patterns B = {B1, B2, . . . , Bk}, where Bi

represents the i-th sparsity pattern applied to W . Each Bi

can be either a FullBlock or IntraBlock sparsity pattern with
block size si = (mi, ni), where 0<mi ≤M , 0< ni ≤N ,
mi × ni > 1, and sparsity ratio ri ∈ (0, 1).

The FlexBlock abstraction leverages two primary types of
block-based sparsity patterns: FullBlock sparsity and Intra-
Block sparsity. FullBlock sparsity refers to the case where all
elements within a block are pruned, resulting in a block of zeros.
This type of sparsity pattern is commonly observed in coarser-
grained pruning strategies, where entire blocks or submatrices
are removed.

Definition III.2 (FullBlock Sparsity). FullBlock sparsity
BF is a type of sparsity pattern where all elements
within designated blocks of size m× n in matrix W are
zero. The sparsity ratio r ∈ (0, 1) defines the proportion
of zero blocks within the matrix, such that the number
of non-zero blocks is given by Φ= �(1− r) · M

m · N
n �.

Let IB = {(i1, j1), (i2, j2), . . . , (iΦ, jΦ)} be the set of
indices of the non-zero blocks in W , where each (il, jl)
represents the top-left corner of the l-th non-zero block.
For matrix W to exhibit FullBlock sparsity, each block

Fig. 3. Examples of sparsity pattern representation in reshaped two-
dimensional weight matrices using the FlexBlock abstraction.

Wi:i+m,j:j+n in W must satisfy the following condition:

Wi:i+m,j:j+n =

{
0m×n, if (i, j) /∈ IB

WO
i:i+m,j:j+n, if (i, j) ∈ IB

,

where WO denotes the original matrix before sparsification.

In contrast, IntraBlock sparsity allows for more fine-grained
pruning within each block, where elements are pruned accord-
ing to a preset ratio and a series of predefined patterns. This
enables the representation of more complex and irregular spar-
sity patterns within each block.

Definition III.3 (IntraBlock Sparsity). IntraBlock sparsity is
a type of sparsity pattern where the arrangement of non-
zero elements within each m× n block of matrix W is
determined by a sparsity ratio r ∈ (0, 1) and a pattern set
P . The sparsity ratio r defines the proportion of zero ele-
ments within each block, such that the number of non-zero
elements is given by φ= �(1− r) ·m · n�. The pattern set
P = {P1, P2, . . . , Pk} is composed of binary masks, each
of size m× n, that specify the locations of the φ non-zero
elements within a block.

For matrix W to exhibit IntraBlock sparsity, each block
Wi:i+m,j:j+n in W must satisfy the following condition:

∃P ∈ P, s.t. Wi:i+m,j:j+n � P =Wi:i+m,j:j+n,

where � denotes element-wise multiplication.

By composing FullBlock and IntraBlock sparsity patterns in
a specified order, FlexBlock provides an expressive abstraction
for weight sparsity that enables the modeling and exploration
of diverse sparsity configurations on CIM architectures.

D. Sparsity Description With FlexBlock

As illustrated in Fig. 3, the original three-dimensional weight
filters must be reshaped into two-dimensional matrices before
mapping onto CIM arrays. FlexBlock can represent the diverse
sparsity patterns found in recent CIM designs operating on
these reshaped matrices. For instance, the channel-block spar-
sity pattern utilized in [17], where weights along the channel
direction are pruned according to a fixed block size, can be rep-
resented with FullBlock sparsity on the weight matrix flattened
in a channel-major order. Similarly, the pattern-based sparsity
employed in SegPrune [14], which follows a predefined set of
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block-wise sparsity patterns, can be captured using IntraBlock
sparsity with the corresponding pattern set. FlexBlock can also
easily depict the hybrids and variants of commonly exploited
sparsity patterns, such as the combination of block-ratio sparsity
and row-wise sparsity in SDP [20].

However, while the FlexBlock abstraction can theoretically
represent any given sparsity pattern in two-dimensional ma-
trices, the patterns must satisfy several constraints to ensure
efficient CIM mapping in practice. The block sizes of FullBlock
patterns should be integral multiples of the hardware dimen-
sions to avoid misalignment, while IntraBlock patterns must
be column-wise one-dimensional blocks to maintain uniform
compressed shapes and ensure correct accumulation along the
bitline direction. The efficient accommodation of these pat-
terns also requires CIM architectures to employ specialized
hardware support. For workloads with FullBlock sparsity, the
computations within each CIM array remain identical to dense
implementations. The accelerator only needs to store block-
level indices that direct inputs to the corresponding array rows
and coordinate the accumulation of partial sums. In contrast, In-
traBlock sparsity requires finer-grained support. Since column-
wise compression maps weight elements from multiple rows
into a single array row, the accelerator must broadcast multiple
inputs to each row and maintain element-level indices to select
the correct input for each weight.

Furthermore, the composition of sparsity patterns also needs
to adhere to certain constraints. To prevent excessive fragmen-
tation in the final matrix, the block size of the coarser-grained
pattern must be an integral multiple of its finer-grained coun-
terpart. In addition, we choose to limit pattern composition to a
maximum of two in CIMinus based on the following considera-
tions. On the one hand, with adjustable block sizes and sparsity
ratios, the two types of sparsity patterns and their combination
can already capture the mainstream sparsity patterns in existing
CIM designs. On the other hand, adding patterns beyond two
can only provide diminishing returns. Stacking multiple Intra-
Block patterns would significantly expand the range of rows
that are mapped to an array row, increasing the routing com-
plexity and indexing overhead. Meanwhile, composing multiple
FullBlock patterns can only produce pruning results that are
the mathematical subset of its finest-grained pattern, due to
the integral multiple constraint. Therefore, the two-pattern limit
represents a practical balance between expressiveness and com-
plexity. These practical constraints ensure FlexBlock patterns
can be efficiently mapped to CIM arrays while maintaining
the flexibility to represent both existing and emerging sparsity
configurations.

IV. CIMINUS FRAMEWORK

In this section, we first discuss the design rationale behind
CIMinus, highlighting its key objectives and intended use cases.
We then provide an overview of the framework’s main compo-
nents and their interactions. Finally, we detail the programming
interface of CIMinus, showcasing its flexibility and ease of use
through illustrative examples.

A. Design Rationale of CIMinus

CIMinus is designed to enable informed decision-making for
sparsity exploitation in the early stages of CIM development,
when the design space is most flexible but the cost of explor-
ing different configurations through circuit-level simulation or
manual analysis is prohibitive. Compared to existing dense-
focused evaluation tools for CIM [29], [30], [31], [32], CIMinus
provides a unified environment spanning from DNN model
pruning to system-level cost modeling, where changes to spar-
sity patterns, mapping strategies, or hardware configurations
can be evaluated as a whole. This tool is intended for use
once preliminary component designs have been developed, as
CIMinus requires their performance characteristics to provide
accurate system-level estimations. For instance, CIMinus can
help designers to evaluate the efficacy of utilizing their CIM
architecture for a given sparse workload, or identify the most
effective mapping strategy to optimize system performance and
reduce overall overhead. However, it is important to understand
that CIMinus is not a synthesis tool for generating energy
profiles of individual accelerator components, nor is it a specific
CIM accelerator implementation. Instead, CIMinus is designed
to complement tools like High-Level Synthesis (HLS), which
can be used to create accelerator designs for system-level eval-
uation and exploration.

B. Framework Overview

The fundamental approach for evaluating energy consump-
tion is to aggregate the product of the access count of each
hardware unit with its respective per-access energy consump-
tion. Similarly, determining the critical path among hardware
components is essential for overall latency estimation. There-
fore, the primary objective of CIMinus is to develop a modeling
methodology for these metrics, complemented by a pruning
workflow that leverages the FlexBlock abstraction and a user-
friendly programming interface tailored to minimize user ef-
fort. A comprehensive illustration of the CIMinus framework is
shown in Fig. 4. Here we provide a brief overview of the pro-
gramming interface, pruning workflow, and modeling method-
ology. Detailed discussions of these components can be found
in Sec. IV-C, Sec. IV-D, and Sec. V, respectively.

Interface. In CIMinus, the hardware components of CIM
architectures are abstracted as a collection of basic compute
and memory units, while the DNN workloads are depicted
through a directed acyclic graph (DAG). The sparsity patterns
within these workloads are encapsulated with a description cor-
responding to the proposed FlexBlock abstraction. Moreover,
the mapping method can be described by a versatile mapping
template, allowing for both the spatial and temporal mapping
of loopnest-based dataflows. By decoupling the description of
DNN workloads, CIM architectures, and the corresponding
mapping strategy, this interface substantially streamlines the
iterative process of system exploration.

Pruning Workflow. CIMinus incorporates a pruning work-
flow that leverages the FlexBlock abstraction to generate diverse
sparsity patterns tailored for CIM architectures. This workflow
allows users to define and apply pruning strategies at both
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Fig. 4. Overview of the CIMinus framework.

Fig. 5. Describing sparse DNN workloads on an example CIM architecture
design with the programming interface in CIMinus.

coarse- and fine-grained levels. The pruning process involves
calculating the importance of each block or each element within
a block based on user-specified criteria, and generating pruning

masks to zero out the selected elements. Seamlessly integrated
with the CIMinus framework, the pruning workflow enables
users to explore and evaluate the impact of sparsity patterns on
the performance and energy efficiency of CIM systems.

Modeling Methodology. To accurately model the energy
consumption of CIM systems for a specific workload, CIMi-
nus requires users to provide the per-access energy or per-
cycle energy for their compute and memory units. Such energy
statistics are generally obtainable through ASIC synthesis flows
or with the aid of memory modeling tools like PCACTI [33].
Prior to simulation, CIMinus conducts pre-simulation analysis
that includes functional verification and input sparsity profiling.
First, the verification ensures the validity and consistency of
hardware, workload, and mapping specifications. Additionally,
for configurations with input sparsity, CIMinus performs model
inference on dataset samples to extract the activations and es-
timate the ratio of skippable computations, since the sparsity
in activations is processed dynamically during execution and
varies with each input. Based on these analyses, CIMinus either
reports verification failures or proceeds to deliver comprehen-
sive results including overall system latency and detailed energy
breakdown.

C. Programming Interface

The programming interface of CIMinus includes the declar-
ative descriptions for three domains: DNN workload, hardware
unit, and mapping method.

Workload Description. As illustrated in Fig. 5(a), CIMi-
nus represents a sparse DNN workload as a DAG, where the
nodes represent data and operations, and the edges indicate the
input/output relationship among them. For DAG construction,
CIMinus offers the flexibility of directly importing information
from DNN models stored in the ONNX format. The import
process automatically extracts the dimensions of each operation
and its corresponding weight and feature data, connecting them
based on their dependencies. Alternatively, users can also opt to
utilize the workload description interface, manually specifying

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 01,2026 at 05:25:56 UTC from IEEE Xplore.  Restrictions apply. 



386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 75, NO. 1, JANUARY 2026

the dimension information of each node and linking each node
to its respective input nodes. This flexibility allows users to tai-
lor the workload description to their specific evaluation needs,
from preliminary exploration to comprehensive analysis.

CIMinus additionally provides users with a comprehen-
sive set of description interfaces aligned with our proposed
FlexBlock sparsity abstraction. Users are required to input the
block size, sparsity ratio, and specify the pattern set for In-
traBlock patterns if necessary. When the pattern set is not
specified, it will default to all available patterns based on the
provided block size and sparsity ratio. This sparsity description
is then forwarded to the pruning workflow to obtain the sparse
data masks used in CIMinus simulation. For user-defined DNN
workloads, CIMinus will auto-generate a randomized sparsity
mask in accordance with the provided pattern description.

Hardware Description. In CIMinus, hardware descriptions
are categorized into compute units and memory units. Fig. 5(b)
presents a high-level example of a CIM accelerator architecture,
along with a sample description of CIM arrays within this
architecture. A CIM architecture typically comprises a series
of CIM macros, global and local buffers, alongside other units
responsible for pre-/post-processing and sparsity support.

① Compute Units. The core of any CIM hardware lies in the
design of CIM macros, which are composed of several types of
compute units. As shown in Fig. 5(b), the CIM array in each
macro consists of multiple sub-arrays that perform bit-serial
MAC operations. These arrays are supported by additional com-
pute units, such as adder units, shift-adders, and accumulators,
which collectively enable the efficient execution of matrix-
vector multiplications (MVM). In addition, pre-processing units
convert input features into a bit-serial format suitable for CIM
macros, while post-processing units handle computations such
as activation, pooling, and residual connections. These units
work in tandem with the CIM macros to efficiently execute the
complete sparse DNN workload.

② Memory Units. The CIM accelerator architecture com-
prises several types of memory units, including global buffers,
local buffers and index memories. Specifically, global buffers
are primarily used to store weights and input/output feature data
for the CIM macros. On the other hand, local buffers directly
connected to CIM macros provide intermediate storage dur-
ing computations. CIMinus also offers flexibility in modeling
different memory configurations and designs. Depending on
the design specifications, weights and features can be stored
either together in a single global buffer or in separate ded-
icated buffers. Additionally, CIMinus supports the modeling
of advanced memory structures, such as ping-pong buffers, to
accommodate diverse design requirements.

③ Sparsity Support Units. In CIMinus, the hardware units for
sparsity support are described with the existing compute and
memory unit interfaces. For FlexBlock-based weight sparsity,
index memories are required to store the block and element
indices, with capacity requirements automatically determined
based on the sparsity configuration. When pruning with Full-
Block patterns causes column-wise misalignment, additional
accumulator units are required to handle the irregular partial
sum aggregation. For IntraBlock patterns, multiplexer-based

indexing units are placed between preprocessing units and CIM
macros, responsible for selecting the appropriate input for each
weight element from multiple broadcasted inputs. When input
sparsity is enabled, the pre-processing units include non-zero
bit position detection logic based on OR-gates that generates
the bit-mask for each bit position, and leading one detection
logic for skipping zero computations.

CIMinus provides a comprehensive parameterized descrip-
tion of the digital CIM paradigm, enabling users to specify the
key characteristics of various hardware units. From the user
perspective, describing a hardware unit involves specifying its
energy information, dimension, the connection between units,
as well as the organization of CIM macros and the associated
units. Users are required to input both the dimension and energy
information for each unit, including dynamic energy per access
and static energy per cycle. CIMinus automatically infers the
number of units required based on the CIM array size, unit size,
and the organization parameter, simplifying the hardware de-
scription process. In CIMinus, the organization parameter
plays a crucial role in describing the layout of hardware units.
By providing a variable-length list that specifies the dimensions
of the unit organization, CIMinus enables users to customize
the hardware layout according to specific design requirements.
This flexibility enables CIMinus to adapt to different archi-
tectural styles and provide support for reconfigurable designs.
Furthermore, CIMinus also allows users to specify the location
of each unit, whether inside or outside the CIM macro, in order
to ensure an accurate depiction of the overall architecture.

Mapping Description. The mapping of sparse DNN work-
loads onto CIM architectures involves reshaping the sparse
weight data and determining the mapping destination of each
operation. Fig. 5(c) showcases an example of the mapping
description for the weights of an operation to the CIM arrays
illustrated in Fig. 5(b).

① Data Reshaping. CIMinus provides a comprehensive map-
ping description that outlines the process of compressing and
rearranging the sparse weights before mapping them onto the
CIM arrays. The three-dimensional weight filters are first flat-
tened into two-dimensional matrices according to the flattening
sequence, which specifies the order in which dimensions are
collapsed. Users can then define the compression orientation as
either row-wise or column-wise, tailoring the reshaping process
to the specific sparsity pattern and CIM array structure. After
compression, CIMinus adjusts the compressed dimensions to
align with the tile size, adding padding when necessary to
ensure a seamless fit. The tile size, assigned by user, repre-
sents the granularity of data partitioning and processing in the
CIM architecture. In cases where compression leads to ragged
shapes, CIMinus also offers rearrangement methods to enhance
the spatial utilization of CIM macros. These methods include
equalizing the compressed matrix dimensions through padding
or slicing. CIMinus supports rearranging the compressed matrix
according to the user-defined slice size along the row or column
direction.

② Operation Mapping. For mapping the operations in the
user-defined workload, users are required to specify the desti-
nation of each type of operation and data in mapping_dict.
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Operations involving MVM, such as convolutional (Conv) and
fully connected (FC) layers, are mapped onto the CIM macros,
while other operations are mapped onto the post-processing
unit. For MVM-based operations, CIMinus employs a multi-
level loopnest format to effectively represent the computation
process. Each loop in the loopnest corresponds to a specific
dimension in the reshaped weight matrix, input feature matrix,
or tiled sub-matrices, establishing a direct correlation between
the loop structure and the data organization.

CIMinus supports both temporal and spatial mapping of
loops, where temporally mapped loops are executed sequen-
tially, and spatially mapped loops are executed in parallel. For
spatial mapping, each loop is assigned to a particular dimension
within the CIM arrays or their organizational layout, enabling
efficient utilization of the parallel computing resources. The
mapping process either unrolls the weight matrix for weight
loops, loading different weights into the CIM arrays at each
iteration, or duplicates it for feature loops, allowing data reuse
and reducing memory accesses. The flexibility in mapping de-
scription allows for fine-grained control over the distribution of
computations and data movement across the CIM architecture.

D. Pruning Workflow

To explore the diverse sparsity patterns in CIM architec-
tures, CIMinus incorporates a pruning workflow based on
the FlexBlock sparsity abstraction introduced in Sec. III. This
workflow enables users to define and apply block-based prun-
ing strategies at both coarse-grained and fine-grained levels,
aligning with the FullBlock and IntraBlock sparsity types in
FlexBlock sparsity abstraction.

The pruning workflow consists of two primary components:
block representation and pruning strategies. The block repre-
sentation component allows users to specify the properties of
each sparse block, such as shape, sparsity ratio, and block type,
along with an optional pattern set for IntraBlock sparsity. It then
generates a corresponding sparse mask based on the provided
configuration. The pruning strategies component determines
which blocks or elements to prune based on calculated loss
values using a specified pruning criterion, such as the magnitude
of weights (L1 norm) or the Euclidean norm of weights (L2
norm).

For coarse-grained pruning, the loss value LFB of each block
is computed by aggregating the pruning criterion over all ele-
ments within the block, which can be formulated as:

LFB(W, i, j) =

i+m−1∑
x=i

j+n−1∑
y=j

ρ(W [x, y]), (1)

where W is the weight matrix, (i, j) represents the top-left
corner of the block, (m,n) denotes the block size, and ρ(·) is
the pruning criterion. For fine-grained pruning, the workflow
prunes each block according to a predefined sparse pattern set
P . The loss value LIB for each candidate pattern Pk ∈ P is cal-
culated by aggregating the pruning criterion over the elements
to be pruned according to the pattern:

LIB(W, i, j, Pk) =
∑

(x,y)∈Ωk

ρ(W [i+ x, j + y]), (2)

where Ωk = {(x, y)|Pk[x, y] = 0} represents the set of indices
corresponding to the pruned elements in pattern Pk. The blocks
and patterns with the lowest loss values are then selected for
pruning.

The pruning workflow iterates over the DNN layers and gen-
erates pruning masks for each layer based on user-defined block
configurations and pruning strategies. The generated masks are
then applied to the weight matrix to zero out the pruned ele-
ments, resulting in a sparse model that aligns with the structural
constraints of the target CIM architecture. By integrating the
FlexBlock abstraction with a configurable pruning workflow,
CIMinus enables users to explore a wide range of sparsity pat-
terns and pruning strategies for CIM-based DNN acceleration.

V. MODELING METHODOLOGY

Accurate modeling of latency and energy consumption is
crucial for evaluating the performance of CIM architectures. In
this section, we present a comprehensive methodology for esti-
mating these key metrics, and discuss the overhead associated
with sparsity support in CIM systems.

A. Latency and Energy Modeling

As outlined in Sec. IV-B, the latency of a CIM system is
determined by the critical path among its hardware components,
while the energy consumption can be estimated by the sum of
per-access and per-cycle energy of each hardware unit. Here we
describe the modeling methodology for these metrics in detail.

Latency. The estimation of latency entails calculating the
number of cycles required by a unit for a given workload, taking
into account the overlap in execution times with other units.
To determine overall latency, the calculation must account for
the longest execution period among units operating in parallel,
and the durations of operations that do not overlap. Specifically,
the execution of DNN workloads on CIM architectures involves
loading the weight and feature data, performing computations
for each operation, and writing back the operation results. Con-
temporary CIM designs often employ a pipelined approach to
these stages for maximal parallelism. Therefore, the overall
latency Ltotal can be estimated by:

Ltotal = Lload
1 +

n∑
i=2

Pi(L
load
i , Lcomp

i−1 , L
wb
i−1) + Lcomp

n + Lwb
n ,

(3)

where n denotes the total steps required in the pipeline for the
DNN workload, Lload

i , Lcomp
i , Lwb

i represent the latencies for
data loading, computation, and write-back during the i-th step.
The function Pi(·) calculates the latency of each intermedi-
ate step within the pipeline, accounting for potential overlaps
among these stages enabled by the architectural design and
buffer capacities. Therefore, the result of Pi(·) might be Lload

or Lcomp if loading or computation respectively constitutes the
bottleneck, or Lcomp + Lwb if the buffer constraints prevent the
parallel execution of these stages.

Energy Consumption. The overall energy consumption
Etotal is the sum of computation energy of each compute unit
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Ecomp, the read/write energy of each memory structure Emem,
and the static energy of all units Estat:

Etotal =
∑
i

Ecomp[i] +
∑
j

Emem[j] +
∑
k

Estat[k]. (4)

The computation energy of each compute unit is the product
of the energy per access Eacc and the number of access Nacc:

Ecomp[i] = Eacc[i] ×N comp[i]
acc , (5)

while the read/write energy of each memory unit is the product
of the energy per read (Eread) or write (Ewrite) with the total
number of memory reads (Nread) and writes (Nwrite):

Emem[j] = Eread[j] ×N
mem[j]
read + Ewrite[j] ×N

mem[j]
write . (6)

The static energy of each unit can be derived from the product
of the overall latency Ltotal and the static power P stat:

Estat[k] = P stat[k] × Ltotal. (7)

CIMinus relies on users to input the relevant parameters from
Eacc, Eread, Ewrite, and P stat for each type of unit, which are
generally derived from synthesis flows and memory simula-
tion tools. In contrast, the access counts and overall system
latency are determined internally by CIMinus through cycle-
level simulation. By automatically inferring the number of units
required according to the CIM array size, unit size, and the
organization parameter, CIMinus simplifies the hardware de-
scription process for users while ensuring that the overall access
count is accurately reflected during simulation. Alternatively,
CIMinus also provides a preset of energy parameters obtained
from PTPX and PCACTI [33], which serves as examples for
basic CIM architecture configurations. These parameters can be
useful for users who wish to conduct preliminary software-level
explorations on generic CIM architectures without the need for
detailed hardware specifications.

B. Overhead for Sparsity Support

Managing compressed weight matrices with FlexBlock spar-
sity in CIM architectures requires storing indices for weight
blocks in the finest-grained sparsity pattern, whether FullBlock
or IntraBlock, while indices for non-zero elements are only
needed for blocks with IntraBlock sparsity. Therefore, the ad-
ditional index storage overhead Sidx for weight matrix W can
be formulated as:

Sidx
W =NW

nz × Sidx
B +

Nnz∑
i=1

NBi
nz × Sidx

elem, (8)

where NW
nz denotes the number of non-zero blocks in W ,

Sidx
B represents index storage requirement for a single non-zero

block, NBi
nz is the number of non-zero elements within the i-

th block, and Sidx
elem is the index storage requirement for each

non-zero element within a block.
In CIMinus, the operational costs associated with sparsity

support include memory accesses for index retrieval, multi-
plexer operations in indexing units for input selection, addi-
tional accumulation for misaligned partial results, and the zero

TABLE I
SUMMARY OF CIM DESIGNS FOR VALIDATION

Parameters
CIM Design

MARS [19] SDP [20]

Macro Size 1024× 64 32× 64

Sub-array Size 64× 64 1× 64

Macro Org. 8 macros (2× 4) 512 macros (16× 32)
Global Buf. 128KB (Ping-pong) 256KB (In), 128KB (Out)

Sparsity Full (1, 16) Intra (2, 1) + Full (2, 8)
Eval. Scope Only Conv layers Entire NN

detection and skipping for input sparsity in pre-processing units.
Similar to the modeling of other hardware units, the framework
automatically determines the required hardware resources, such
as the number of multiplexers or accumulators, according to
the array dimensions, organization and sparsity specifications.
During simulation, CIMinus tracks these sparsity-related oper-
ations through the aforementioned energy and latency modeling
and incorporate them into the final report, enabling designers to
assess the overhead and make more informed design decisions.

VI. FRAMEWORK EVALUATION

In this section, we first validate CIMinus against recent CIM
designs, and then perform runtime analysis to demonstrate its
capability in supporting rapid design iteration.

A. CIMinus Validation

We validate CIMinus against results reported in recent digital
SRAM-based CIM designs, namely MARS [19] and SDP [20].
As detailed in Table I, these accelerators feature varying macro
designs and organizational layout, and utilize distinct sparsity
patterns in DNN weights. During simulation, we use the config-
urations reported in these works, whenever possible. The power
model of the CIM array is adopted from [24], and the per-access
/ per-cycle energy of buffers is obtained through PCACTI [33].
The remaining digital modules are implemented with Verilog
HDL and synthesized by Design Compiler, while the power
consumption is obtained by PTPX. We evaluate the effective-
ness of CIMinus in estimating key metrics for sparse DNN
workloads on CIM architectures, including inference speedup,
energy saving, and model accuracy. To maintain consistency
with the reported results, our validation process utilizes DNN
models such as VGG16, ResNet18, and ResNet50, employing
the same datasets as those used in the respective designs (CI-
FAR100 for MARS and ImageNet for SDP).

As illustrated in Fig. 6, CIMinus accurately estimates both
system latency and component-level energy, closely aligning
with the results reported in the literature. The correlation plot
in Fig. 6(a) shows a strong agreement between the reported
and estimated values for both speedups and energy savings,
with all data points falling within a 5.27% error margin. This
indicates that CIMinus can reliably model the performance of
CIM accelerators across different DNN models and sparsity
patterns. Fig. 6(b) and 6(c) provide a more detailed compar-
ison between the reported and estimated values, showing a
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Fig. 6. Validation results against MARS and SDP.

close consistency across speedups, energy savings, and detailed
power breakdowns. These results highlight the adaptability and
precision of CIMinus in modeling various aspects of digital
CIM architectures, from system-level metrics to fine-grained
component-level details. Moreover, as shown in Fig. 6(d), the
DNN model accuracies obtained from the pruning workflow in
CIMinus are also consistent with the reported values, demon-
strating its effectiveness in acquiring sparse models based on
the FlexBlock abstraction.

While CIMinus provides accurate overall estimations of
speedups, energy savings, and system-level power consump-
tion, minor discrepancies between the reported and estimated
results can be attributed to two main factors. First, some spe-
cific design parameters, such as buffer bandwidth, are not al-
ways disclosed in the existing literature, leading to potential
differences in the modeling assumptions. Second, as a system-
level tool focused on rapid design exploration, CIMinus oper-
ates at a higher abstraction level than circuit-level simulations,
potentially missing optimizations that differentiate designs at
the implementation level. Despite these challenges, CIMinus
still maintains a high level of accuracy, demonstrating its relia-
bility and effectiveness in modeling sparse workloads on CIM
architectures. Future work could extend CIMinus with more
detailed interface and modeling capabilities, allowing users to
configure circuit-level optimizations and architectural details
for more accurate performance estimation when needed.

B. Runtime Analysis

We evaluate the runtime efficiency of CIMinus to demon-
strate that designers can rapidly evaluate multiple design config-
urations within practical time constraints. We analyze runtime
using a 4-macro configuration with 80% sparsity and input spar-
sity enabled, across models ranging from 3.4M (MobileNetV2)
to 138M (VGG16) parameters with hybrid 1:2 and row-block
sparsity, and across various sparsity patterns on ResNet50. As
shown in Fig. 7, the runtime remains consistently under 100 sec-
onds over these configurations, which is generally dominated by
operator mapping and cycle-level simulation. The initialization
overhead also increases noticeably for fine-grained IntraBlock
patterns due to the complexity of element-level index extrac-
tion. Similarly, the input sparsity analysis overhead increases
with deeper networks, as the input activation extraction is re-
quired for every layer.

We further examine framework scalability by varying spar-
sity ratios from 0.5 to 0.9 and macro counts from 4 to 64, using

Fig. 7. Framework runtime and scalability analysis across different models,
sparsity patterns, sparsity ratios and macro counts. Here RW and RB denote
row-wise and row-block sparsity pattern, respectively.

ResNet50 with the same hybrid sparsity pattern. The results
in Fig. 7 show that the runtime scales primarily with work-
load complexity rather than hardware scale, as mapping and
simulation must process each operation regardless of available
parallel resources. This scaling behavior aligns well with sparse
workload evaluation, as sparsity reduces the number of opera-
tions to process, enabling efficient exploration across diverse
hardware configurations.

VII. EXPLORATION WITH CIMINUS

In this section, we demonstrate the practical utility of CIMi-
nus through two illustrative use cases in exploring and evalu-
ating diverse design choices. Specifically, we use CIMinus to
investigate the impact of sparsity exploitation on DNN model
accuracy and system efficiency, and discuss the performance
implications of various mapping strategies.

A. Experimental Setup

We use CIMinus to conduct two in-depth exploration studies
examining sparsity exploitation and mapping strategies. Both
studies employ a common CIM architecture configuration with
8-bit precision for both weights and features. Each macro con-
tains an array of 1024× 32with sub-arrays of 32× 32, utilizing
a weight stationary mapping where weight matrix rows are
unrolled along the array row dimension. For sparsity exploita-
tion analysis, we configure a 4-macro architecture where all
macros share broadcasted inputs from a single input buffer. We
evaluate the trade-off between model accuracy and efficiency
by comparing sparse workloads with weight and input sparsity
against a dense baseline, which executes dense workloads using
the same architecture configuration without specialized hard-
ware support for sparsity. For mapping strategy exploration,
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TABLE II
SUMMARY OF SPARSITY PATTERNS AND THEIR CORRESPONDING

FLEXBLOCK REPRESENTATIONS

Sparsity Pattern FlexBlock Representation
Row-wise FullBlock (1, N )
Row-block FullBlock (1, 16)

Column (Filter)-wise FullBlock (M , 1)
Channel-wise FullBlock (Cin, 1)
Column-block FullBlock (16, 1)

1:2 + Row-block IntraBlock (2, 1) + FullBlock (2, 16)
1:2 + Row-wise IntraBlock (2, 1) + FullBlock (2, N )
1:4 + Row-block IntraBlock (4, 1) + FullBlock (4, 16)

we extend the architecture to 16 macros while maintaining the
same per-macro specifications. This enables the exploration of
diverse macro organizations, such as 8× 2, 4× 4, and 2× 8,
where the organization dimensions offer flexibility for either
spatial mapping of weight matrix rows or weight duplication
strategies. The mapping exploration examines how different
mapping approaches impact overall latency, energy consump-
tion, and array utilization.

To investigate the impact of weight sparsity patterns on model
accuracy and system efficiency, we use CIMinus to evaluate
representative sparsity patterns across ResNet50, VGG16, and
MobileNetV2, as summarized in Table II. These patterns span
various granularities, including row-wise, column-wise, and
more fine-grained FullBlock sparsity patterns, as well as hybrid
patterns that combine IntraBlock and FullBlock sparsity. Here,
M , N , and Cin denote the number of rows and columns in the
weight matrices and the size of the input channel, respectively.
The sparsity ratio of these patterns ranges from 0.5 to 0.9, allow-
ing us to observe the efficiency-accuracy trade-off at different
sparsity levels. For hybrid patterns, the IntraBlock sparsity ratio
is fixed such that only one element within each block remains
non-zero, while the FullBlock sparsity ratio is adjusted accord-
ingly to maintain the overall sparsity ratio. Additionally, we
evaluate the benefits of input sparsity across these three models,
examining both its impact on dense models and its interaction
with different weight sparsity patterns and ratios on ResNet50.

B. Sparsity Exploitation Analysis

Fig. 8 presents the speedup, energy saving, and model ac-
curacy results compared against dense baseline implementa-
tion for the ResNet50 model with the CIFAR-100 dataset. As
the results indicate, coarser-grained sparsity patterns, such as
FullBlock patterns that apply pruning by entire dimensions,
tend to bring higher efficiency improvement at the cost of
considerable accuracy degradation. In contrast, patterns with
smaller block sizes typically achieve better accuracy due to their
fine-grained and flexible nature, which is especially evident for
hybrid patterns. However, these fine-grained patterns are less
likely to fully align with the CIM array structure, leading to
lower efficiency gains. Moreover, the routing logic required
for supporting IntraBlock sparsity introduces additional energy

Fig. 8. Speedup, energy saving and model accuracy comparison on
ResNet50 with CIFAR-100. Here, F is short for FullBlock and I is short
for IntraBlock.

consumption overhead, which partially negates the energy ben-
efits from sparsity exploitation. This overhead also becomes
more noticeable with increasing block sizes.

To conduct a more detailed analysis, we examine the impact
of block dimensions and neural network architectures with the
sparsity ratio maintained at 80%. Fig. 9(a) illustrates the in-
fluence of block sizes on accuracy and system efficiency. Our
analysis focuses on three representative sparsity patterns: row-
block, column-block, and hybrid sparsity. For a comprehen-
sive comparison, the block sizes are selected to either align
with or differ from the dimensions of optimal parallelism: 16
for broadcasting input across the row dimension, and 32 for
accumulation along the column dimension. Although patterns
with larger block sizes generally achieve higher accuracy and
lower efficiency, when block sizes are not integral multiples of
these optimal dimensions, misalignment can lead to fragmen-
tation during weight mapping. These results also corroborate
the constraints of CIM architectures discussed in Sec. III-A.
Fig. 9(b) depicts the results across ResNet50, VGG16, and
MobileNetV2. Despite consistent overall trends across these
models, the latter two show less pronounced improvements
compared to their dense baselines. This is due to the signif-
icant accuracy drop associated with pruning the FC layers in
VGG16 and the depthwise Conv layers in MobileNetV2. As a
result, pruning was restricted to standard Conv layers, leading
to reduced efficiency gains.
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Fig. 9. Evaluation across block sizes and neural network architectures with
sparsity ratio maintained at 80%.

Fig. 10. Evaluation of input sparsity exploitation across different models,
weight sparsity patterns and weight sparsity ratios. I and W denote with and
without input sparsity support enabled, respectively.

Beyond weight sparsity, we also use CIMinus to evaluate
the benefits of input sparsity exploitation by skipping inef-
fectual bit-serial computations. We analyze both the ratio of
skippable computations determined through workload profiling,
and how well they translate to speedups and energy savings
with input sparsity support enabled. As shown in Fig. 10, in-
put sparsity provides consistent improvements across all evalu-
ated dense workloads, achieving speedups and energy savings
ranging from 1.2× to 1.4×. To examine the combined bene-
fits of input and weight sparsity, we evaluate their interaction
across different weight sparsity patterns at 80% sparsity, and
across various sparsity ratios using the row-wise pattern. The
results show that the skippable ratio varies significantly with
weight sparsity configurations. Coarse-grained patterns such
as column-wise or channel-wise patterns achieve high skip-
pable ratios, while IntraBlock patterns are less likely to skip
computations due to multiple inputs being processed simul-
taneously per CIM row. Moreover, the speedups and energy
savings brought by input sparsity also increase with sparser
models, potentially due to shifts in activation distributions
that lead to increased zero activations in the bit-serial repre-
sentation. These results demonstrate that input sparsity fur-
ther amplifies the efficiency advantages of coarse-grained pat-
terns, reinforcing the trade-off observed with weight sparsity
alone.

Fig. 11. Energy, latency, and array utilization of different mapping strategies
for ResNet50 and VGG16 across various macro organizations.
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Fig. 12. Normalized energy breakdown, along with energy, latency, and
utilization comparison with (denoted by R) and without weight data rear-
rangement. Here SP and DP denote spatial mapping and weight duplication.

Finding 1: In CIM systems, the high efficiency gains from
coarser-grained sparsity patterns come with a significant
accuracy trade-off. Finer-grained patterns, especially when
aligned with the hardware architecture, can achieve a more
optimal balance between efficiency and accuracy.

C. Mapping Strategies Exploration

Fig. 11 illustrates the performance of spatial mapping and
weight duplication for ResNet50 and VGG16 across macro
organizations. In general, highly compressed sparse weight ma-
trices in Conv layers often fail to fully occupy CIM arrays,
leading to under-utilization. This inefficiency is particularly
pronounced when the designated dimension is 8. For models
dominated by Conv layers, such as ResNet50, weight duplica-
tion can significantly improve array utilization, achieving up
to a 7.7× increase. Notably, the evenly distributed dimensions
in the 4× 4 organization appear to facilitate more balanced
parallelism for both weights and features, resulting in optimal
energy efficiency and latency when combined with duplication.
In contrast, models with a large proportion of FC layer param-
eters, such as VGG16, experience decreased performance and
utilization with weight duplication. This may be attributed to
the nature of FC layers, which typically exhibit less weight data
reuse, thus limiting the applicability of duplication strategies.
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To evaluate the effect of weight data rearrangement, we com-
pare the energy, latency, and array utilization with and without
the equalization of ragged compressed sparse weight matrices.
This evaluation employs a hybrid pattern combining IntraBlock
(2, 1) and FullBlock (2, 16), while utilizing a 4× 4 macro
organization. As illustrated in Fig. 12, weight rearrangement
substantially improves array utilization through a more bal-
anced workload distribution. However, this does not guarantee
an overall performance improvement. The energy efficiency
gained in CIM macros is counterbalanced by increased buffer
access overhead, revealing that structural constraints can limit
the benefits of higher utilization.

Finding 2: Duplicating compressed weights and balancing
the workload among macros can significantly enhance
parallelism and utilization. However, while higher array
utilization generally improves efficiency, it does not always
guarantee better efficiency due to structural constraints.

VIII. RELATED WORKS

In recent years, SRAM-based CIM architectures have ex-
plored various sparsity patterns to reduce computation and stor-
age requirements of DNN workloads [16], [17], [18], [19], [20],
[28]. Early analog CIM designs prune weights along the kernel
or channel direction and adopt block-wise zero skipping to
improve energy efficiency [17], [18]. As the field shifts toward
digital CIM implementations, their full-array activation im-
poses stricter structural constraints on sparsity patterns. MARS
[19] addresses this through group-wise structured pruning and
index-aware optimizations that align with the array dimen-
sions. SDP [20] employs double-broadcast hierarchical pruning
that combines 1:2 sparsity with row-wise patterns, supported
by dedicated routing and index storage. While these designs
demonstrate effective sparsity exploitation in CIM, the vast
design space still remains largely unexplored.

To enable rapid design space exploration of CIM-based
accelerators, researchers have developed several evaluation
frameworks for modeling the hardware behavior and perfor-
mance at various design levels. DNN+NeuroSim [29] is an end-
to-end benchmarking framework that integrates circuit-level
hardware models with PyTorch and TensorFlow, focusing on
trade-offs brought by device non-idealities. MNSIM 2.0 [30]
is a behavior-level modeling tool that features a unified array
model for both analog and digital CIM, supported by a special-
ized model training and quantization flow. ZigZag-IMC [31]
integrates an analytical CIM performance model into a system-
level exploration framework to quantitatively benchmark and
compare analog and digital CIMs with various DNN work-
loads. CiMLoop [32] performs efficient system-level modeling
of CIM co-designs through the combination of a flexible hard-
ware specification and a fast statistical energy model. Although
existing frameworks have significantly accelerated CIM de-
sign and evaluation compared to circuit-level simulations, these
frameworks exclusively target dense workloads, lacking the

abstractions and modeling capabilities needed for sparsity ex-
ploitation. Without support for diverse sparsity patterns, irreg-
ular tensor compression, or the associated indexing and routing
logic, these tools cannot effectively explore the growing design
space of sparse CIM architectures. CIMinus bridges this gap in
existing evaluation frameworks by introducing the FlexBlock
abstraction for effectively representing structurally constrained
sparsity patterns, and providing an integrated workflow from
model-pruning to system-level evaluation validated against real
sparse CIM designs.

IX. CONCLUSION

In this paper, we present CIMinus, a framework designed
for modeling sparse DNN workloads on SRAM-based CIM
architectures. CIMinus accepts high-level descriptions of sparse
DNN workloads, hardware designs, and mapping methods, and
provides precise estimations of latency and energy based on
these inputs. We validate CIMinus against results from recent
SRAM-based CIM designs, and showcase its utility in facilitat-
ing the exploration of trade-offs in sparsity pattern and mapping
strategy selections through two illustrative use-cases. We envi-
sion that CIMinus will serve as a valuable tool for designers,
aiding in the development of efficient CIM systems for a wide
range of applications.
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