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Abstract

Pairing-based cryptography (PBC) is crucial in modern crypto-
graphic applications. With the rapid advancement of adversarial
research and the growing diversity of application requirements,
PBC accelerators need regular updates in algorithms, parameter
configurations, and hardware design. However, traditional design
methodologies face significant challenges, including prolonged de-
sign cycles, difficulties in balancing performance and flexibility, and
insufficient support for potential architectural exploration.

To address these challenges, we introduce Finesse, an agile
design framework based on co-design methodology. Finesse lever-
ages a co-optimization cycle driven by a specialized compiler and
a multi-granularity hardware simulator, enabling both optimized
performance metrics and effective design space exploration. Fur-
thermore, Finesse adopts a modular design flow to significantly
shorten design cycles, while its versatile abstraction ensures flexi-
bility across various curve families and hardware architectures.

Finesse offers flexibility, efficiency, and rapid prototyping, com-
paring with previous frameworks. With compilation times reduced
to minutes, Finesse enables faster iteration cycles and stream-
lined hardware-software co-design. Experiments on popular curves
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demonstrate its effectiveness, achieving 34X improvement in through-
put and 6.2X increase in area efficiency compared to previous flexi-
ble frameworks, while outperforming state-of-the-art non-flexible
ASIC designs with a 3x gain in throughput and 3.2X improvement
in area efficiency.
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1 Introduction

Bilinear pairing, since its formulation in modern cryptography, has
been a crucial primitive for building advanced cryptographic pro-
tocols and systems. Pairings enable efficient schemes for identity-
based encryption [1], attribute-based encryption [2], short signa-
ture [3], SNARKSs such as KZG [4] and Groth16 [5]. As data security
and privacy gain increasing attention, pairing-based cryptogra-
phy plays a significant role in this context, safeguarding user data
and underpinning the trust and reliability of modern digital in-
frastructures. Despite its benefits, pairing comes with a significant
computational cost. While traditional signature schemes offer a
latency of around 20 ps on desktop CPUs, pairing computations are
typically 2 orders of magnitude longer [6]. Application needs for
pairing have motivated researchers to embark on the exploration
of efficient pairing acceleration techniques, targeting platforms
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Figure 1: The challenges of PBC accelerator design.

ranging from CPUs [6, 7], GPUs [8], to server-side FPGAs [9] and
ASIC [10]. Among these, FPGAs and ASICs excel primarily due to
their support for domain-specific designs [11], enabling customized
datapaths and logic units that achieve low latency and high resource
efficiency in terms of area and power for pairing accelerators.

However, research in this area faces several critical challenges, as
illustrated in Figure 1. The security level of pairings is not static; it
diminishes as attack methods improve and as computational power
advances [12-15]. The growing diversity of application require-
ments in pairing-based cryptography (PBC) necessitates iterative
updates to maintain security and performance standards. This on-
going need for adaptation gives rise to challenge @: the PBC
hardware re-engineering costs.

Existing works with high performance efficiency are designed
with specific pairing parameters in mind. While these designs
achieve good results, they also lead to high re-engineering costs.
On the other hand, works with higher flexibility suffer from low
performance due to a lack of parallelism in their architecture, and
their flexibility is constrained by the specific hardware implemen-
tation (e.g. difficulty supporting curves with larger bit widths),
which also results in unavoidable re-engineering costs. In summary,
adapting existing works to meet the increasing security demands
while maintaining high performance requires considerable repeti-
tive architectural design work. In fact, this constitutes challenge @:
the absence of an efficient abstraction system that provides
unified support for arbitrary pairing curves. Introducing such
an abstraction can decouple the design process, thus enhancing
both the design flexibility and performance potential. However, it
also brings challenge ®: hierarchical operator variants and
architecture co-design complexity. The interdependence among
software algorithms, field operator choices (arithmetic method se-
lections), and hardware configurations creates a complex design
space. Optimized operator variants shows different speed compar-
ision results on different hardware architectures. Existing frame-
works often overlook this complexity, resulting in lost opportunities
for optimization and adaptability[9, 10, 16—18]. Addressing these
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challenges requires a comprehensive understanding of the design
space to enable effective design and improvement of PBC systems.

In this paper, we introduce Finesse, an agile design framework
for PBC. Central to its methodology is the utilization of an ab-
straction system. This abstraction framework bridges high-level
algorithms and hardware designs through clear representations
and optimized mappings, providing unified support for arbitrary
pairing curves in response to increasing security demands.

Through the expressive abstraction system, Finesse’s design
flow has integrated a parameterized hardware architecture, an ad-
vanced compiler and a simulator to form an effective co-design
cycle, enabling simple design space exploration within the complex
design space.

The results from the Finesse framework are significant. Compre-
hensive evaluations show substantial performance improvements,
achieving 34x throughput and 6.2 slice efficiency compared to
previous flexible frameworks, and 3x throughput and 3.2x area
efficiency over state-of-the-art ASIC accelerators. Finesse com-
piles code in minutes, accelerating the development cycle while
ensuring that the resulting accelerators are robust and optimized
for the evolving demands of modern cryptography.

To summarize, this paper makes the following key contributions:

e We propose the Finesse design framework for pairing-based
cryptography, enhancing agility in accelerator design by
automating significant portions of the lengthy algorithm-to-
hardware flow.

e We developed an abstraction system that includes IR, ISA
and hardware models to support the framework.

o To the best of our knowledge, we are the first to incorporate
co-design mechanism into such a framework, allowing for
the effective exploration of the complex relationship within
the design space.

e We presented a comprehensive evaluation of Finesse on a
prototype implementation, focusing on five key aspects of
the framework: accelerator efficiency, framework scalability,
compilation, co-design, and agility.

2 Background and Motivation

2.1 Pairing Calculation Panorama

Pairing is a bivariate function satisfying linearity in each of its
arguments independently. Optimal Ate pairing [19] over elliptic
curve is the de facto standard of pairing construction technique
in the cryptography community, surpassing Weil pairing and Tate
pairing [20] due to its computational efficiency. The optimal Ate
pairing e(P, Q) : G; X G — Gr for curve E has a complex general
form, which is essentially a rational function characterized by curve-
determined parameters, constructed with evaluations of the line
function ¢ at point P with respect to multiples of point Q. Key
parameters and notations are briefly listed in Table 1.

Pairings are defined over pairing-friendly curves to ensure com-
putational practicality. Among these, BN [21] and BLS [3] are the
most widely utilized curve families. Examples of pairing-friendly
curves are characterized in Table 2.

Pairing Calculation. The optimal Ate pairing algorithm for BN
and BLS curves is introduced in Algorithm 1. An overview of group



Finesse: An Agile Design Framework for Pairing-based Cryptography via Software/Hardware Co-Design

Table 1: Symbols and notations in pairing calculation.

Notation Description

p size of base field

k embedding degree of curve

r pairing group order

Fp base prime field of size p

F ok extension field of size pk , k-th extension of F,
E[F] curve group, point coordinates in field F

Gy pairing 1st source group (E[F;])

G2 pairing 2nd source group (E[]Fpk] or E’ []Fpk/a])
Gr pairing target group (F,x)

£0,,0,(P)  (tangent) line function

e(P,Q) pairing function, G; X Gy — Gr

M,S,A,B  multiplication, squaring, addition, adjunction
PA,PD point addition, point doubling

Table 2: Examples of pairing-friendly curves.

Curve Param. (bit) Secu'rity
log|t|] logp logr klogp (bit)
BN254 62 254 254 3039 100
BN462 114 462 462 5535 130
BN638 158 638 638 7647 153
BLS12-381 64 381 255 4569 123
BLS12-446 75 446 299 5352 130
BLS12-638 109 638 427 7656 148
BLS24-509 51 509 408 12202 192

computation costs and their optimized alternatives summarized
from [22, 23] is presented in Table 3. The algorithm consists of two
main components: the Miller loop and final exponentiation, which
account for approximately 40% and 60% of the overall computation
cost, respectively.

The Miller loop involves iterative calculation of values of the
Miller function through point doublings and additions, as well as
evaluations of line and tangent functions. Common optimization
strategies for the Miller loop include the use of non-adjacent forms
and the integration of point operations with line operations.

The final exponentiation transforms Miller function values into
canonical form, ensuring consistency by resolving coset equiva-
lence relation. Key optimizations include Frobenius-based tech-
niques for the easy part and decomposition and reuse strategies
for the hard part, as demonstrated by [24] and [25]. Additionally,
operations within the cyclotomic subfield are optimized to further
improve efficiency.

The security of a given pairing diminishes as cryptographic at-
tack algorithms evolve, while computational power continues to
increase. To maintain a suitable security level (128/192/... bits), ap-
plications are adopting curves with progressively wider bit-widths.
Additionally, to preserve the balance between the hardness of the
FFDLP/ECDLP while keeping bit-width in a reasonable range, the
embedding degree must also increase [20]. Although different curve
families share commonalities in terms of extension fields, twist
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Table 3: Costs in pairing calculation.

Group Storage Operation Costs

Fp (logp) bit My, S; € O(log!*® p)  A1,B1 € O(logp)

szd Zde Mog = 4Mg 2A45 1Bz or 3M; 5A; 1B or ...
Fpsd 3de Msq = 9M; 6A4 2B or 5SM; 33A; 2B or ...

PAg = 11M; 5S4 13A4 or 12Mz 25A  or . ..

E[F 3F
[Fpa] »? PDy = 2My 5S4 11A4 or 5My 6S4 11A4 or ...

Algorithm 1: Optimal Ate Pairing (BN/BLS)
Input: P € G1,Q € Gy
Output: e(P,Q) € Gr

1 if curve family is BN then

2 L U 6t+2

3 else if curve family is BLS then

4 L Ut

s (T.f) < (Q1)

6 fori « |logu| downto 0 do

7| (L) « ([21T. f% - &0 (P))

8 if u[i] = 1 then

o | | (T.f) = (T+Q.ftro(P)

10 if curve family is BN then

11 Q1 « frob(Q)

12 Q2 « —frob(Q1)

13 | (T,f) < (T+01f tro, (P))
u | (T,f) < (T+Q2,f - 1,0, (P))
15 f&f(Pk—l)/r
16 return f

/* Miller Loop */

/* Final Exponentiation */

curves, and the fundamental algorithmic framework, their compu-
tational details vary significantly.

Insights. Pairing has applications in various cryptographic fields.
In the Groth16 [5] zero-knowledge proof system, pairing is used to
verify the correctness of a proof by checking whether an equation
involving a bilinear relation holds. Pairing significantly reduces the
proof size, making verification more efficient.

The key aspects of pairing computation lie in bit-width, exten-
sion field arithmetic and reduction costs dominated by embedding
degree and twist degree, as well as the optimization methods applied
to the final exponentiation. As these requirements evolve, pairing
computations tend to introduce wider multiplication widths, more
complex control flow, greater pressure on memory access patterns.

2.2 Motivations

@ Mitigate Re-engineering Costs to Keep Pace with Grow-
ing Cryptographic Demands. Designing accelerators for bilinear
pairings has long been a complex and resource-intensive endeavor.
The inherently multi-layered nature of pairing computations of-
ten makes structural approaches a natural choice, as it encourages
designers to map algorithmic hierarchies directly into circuit hi-
erarchies [16, 26]. Alternatively, some works resort to manually
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Figure 2: Comparison of operator-level optimization combi-
nations. Curve: BLS24-509, Algo: O-Ate.

transcribing algorithms into microcodes [9], handling each oper-
ator at a fine-grained level. While both approaches can achieve
functional correctness, they commonly require extensive human
intervention in tasks such as operator decomposition, control signal
generation and operation scheduling, resulting in substantial design
costs and extended development cycles. In summary, expanding the
scope of these works to support a broader range of pairing curves
or updating them would present significant challenges.
Furthermore, the structural differences across pairing families
and curve types highlight the need for greater agility in the design
process. Agility enables designers to adapt quickly to diverse re-
quirements, reducing the overhead of manual re-engineering, and
accelerating the design cycle. By fostering faster prototyping and
iterative feedback, an agile framework addresses the inefficien-
cies of traditional methods and empowers pairing accelerator
designs to keep pace with evolving cryptographic demands.

® Propose an Efficient Abstraction to Bring Performance
and Flexibility. In light of growing needs, recent works have
stumbled around the threshold of flexibility. FlexiPair [17] is a flex-
ible pairing framework that aims to provide flexibility for edge
devices at the expense of performance potential, revealing signif-
icant limitations in its approach. Its framework employs a fixed
hardware architecture, which lacks hardware abstraction and co-
design capabilities, resulting in limited extensibility. Performance
improvements are constrained primarily by bottlenecks in mem-
ory and ALU operations. Furthermore, the optimization strategies
employed are insufficient, neglecting the potential for software
compilation optimizations and software-hardware co-optimization.

On the other side, traditional accelerator designs have completely
ruled out the option for flexibility. The current SOTA accelerator
on ASIC [10] serves as a prime example of this limitation. Its cus-
tomized computational layers, particularly the ALU specialized
for F,z, are not adaptable to non-F: curves, thereby limiting its
versatility. Additionally, their optimization methodology for cus-
tomized pipeline structure focuses solely on a narrow scheduling
window, mapping F ;12 to F,2, which ignored the potential of global
optimization.

To achieve the coexistence of high performance and flexibility,
an effective abstraction system is needed to fully cover the design
process. Such an abstraction should embrace both algorithmic and
architectural possibilities, supporting various curves, operators, and
hardware components in a compatible and extensible manner. To

68

Tianwei Pan, Tianao Dai, Jianlei Yang, Hongbin Jing, Yang Su, Zeyu Hao, Xiaotao Jia, Chunming Hu, and Weisheng Zhao

summarize, a compatible and extensible abstraction is the com-
mon soil for achieving both flexibility and high-performance
in overall architecture.

® Exploring the Complex Design Space for Optimization.
We begin by examining a small experiment related to Karatsuba op-
timization over finite fields. Karatsuba is an optimization technique
aimed at reducing the number of multiplications, at the cost of in-
creasing the number of linear operations. While this method proves
effective on platforms like CPUs, its benefits may not translate as
clearly to hardware accelerators.

This discrepancy arises because accelerators typically access
memory with a width that directly matches the base field bitwidth.
Both linear and multiplication operations exert the same memory
bandwidth pressure, but linear operations perform less computa-
tion per memory access. Consequently, linear operations result in
lower computational throughput per memory load. Furthermore,
on single-issue architectures, when both types of operations occupy
one full cycle in the pipeline, the increased number of linear opera-
tions exacerbates this imbalance in the instruction issue queue.

However, for higher-degree fields (i.e. Fji2 or Fj), the advan-
tage of Karatsuba method cannot be ignored. High-level multipli-
cations are decomposed into more Fj, instructions (k2 or k!1-585
while linear operations only break down into k F, instructions. As
shown in Figure 2, we conducted a validation experiment on a basic
single-issue architecture. By disabling Karatsuba-like optimizations
in the F,
cycle count, compared to using optimization on all levels.

The impact of algorithmic optimizations varies significantly de-
pending on the underlying hardware design, demonstrating that
effective DSE (design space exploration) is crucial for uncovering
configurations that maximize performance while efficiently utiliz-
ing hardware resources.

The design space for pairing accelerators is shaped by factors like
operator variants, IP availability and hardware data path structures,
requiring careful coordination between components and architec-
ture. Diverse and often conflicting goals—such as optimizing area,
throughput, or area/delay trade-offs—add complexity to the ex-
ploration. In this context, DSE and co-design frameworks are
crucial, enabling systematic evaluation of design options and
hardware-software co-optimization to unleash the potentials
of pairing accelerators.

2 or 4 operators, we observed a reduction in the overall

3 Finesse Framework

3.1 Framework Overview

As sketched in Figure 3, Finesse is an agile full-process design
framework for pairing-based cryptography, offering a comprehen-
sive and extensible system that spans from high-level algorithm
description to low-level hardware models, providing direct valida-
tion and deployment across various cryptographic curves. Finesse
comes with a fully functional implementation, providing out-of-
the-box support for popular curves.

Methodology. Pairing accelerator design is inherently a multi-
layered problem, spanning from high-level finite field operators (e.g.
M24) and point operators (e.g. PA4) down to low-level circuit design.
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Figure 3: Overview of Finesse design framework.

This hierarchical structure introduces significant challenges in map-
ping algorithms efficiently to hardware. To address this, Finesse
adopts a co-design methodology that strategically partitions soft-
ware and hardware layers while providing abstractions tailored to
each level of the computation.

The boundary between software and hardware is defined by
an instruction set architecture (ISA) abstraction. This abstraction
standardizes interactions between algorithmic logic and hardware,
serving as a modular interface. Above the ISA, high-level computa-
tions are represented through an intermediate representation (IR).
The IR enables software optimizations, such as instruction sched-
uling and dependency analysis, while maintaining flexibility for
different hardware backends. Below the ISA, hardware implemen-
tations rely on pipeline models to describe its behavior, including
latency, memory and instruction issue parameters. These mod-
els guide the hardware realization process, ensuring alignment
with upstream abstractions while permitting design variations. By
integrating these abstractions, Finesse establishes a systematic
framework for software/hardware co-design, supporting pairing
computations across diverse configurations.

Design Flow. The design flow of Finesse is organized into a set
of modular components, each addressing specific aspects of pairing
accelerator development. The hardware and simulator part uses
abstraction to define and implement pipeline behavior, enabling
rapid exploration of configurations. The compiler and optimiza-
tion part maps high-level operators into IR, supporting co-design
between software and hardware. It applies scheduling and data
flow optimizations while enabling basic DSE, which systematically
evaluates performance and resource trade-offs. The validation part
verifies correctness and performance on simulators and prototype
platforms (ASIC and FPGA), generating feedback for iterative de-
sign refinement. Finesse also offers a basic operator kit for quickly
porting new curves or pairing algorithms into the framework. These
components work together to streamline the development process
and support a wide range of pairing accelerator configurations.

3.2 Abstraction

Abstraction in the Finesse framework defines clear interfaces be-
tween software and hardware layers, enabling efficient mapping of
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Table 4: IR operations and their supported argument data
type. fp-like = fp or fpd, ep-like = ep or epd. Adjoined el-
ement refers to the element adjoined to the base field for
defining the extension field.

IR Op. Description Supp. Arg. Type
add/sub field addition/subtraction (fp-like, fp-like)
muli field scalar multiplication (int, fp-like)
mul  field multiplication (fp-like, fp-like)
sqr field squaring fp-like
exp field exponentiation (fp-like, int)
adj multiply by adjoined el. fpd
conj conjugate to adjoined el. fpd
frob Frobenius endomorphism  (fp-like, int)
padd curve point addition ep-like
pmul curve scalar multiplication (int, ep-like)

high-level algorithms to hardware. It utilizes intermediate represen-
tations (IR), instruction set architectures (ISA), and hardware mod-
els to optimize and flexibly represent both software and hardware
components. This structured approach ensures interoperability,
scalability, and streamlined co-design, supporting diverse pairing
accelerator configurations.

Challenges. Main consideration in abstraction design is focused
on compatibility and extensibility. On the algorithm side, abstrac-
tion needs to support the family/curve/operator triplet by cap-
turing commonalities and covering diverse PBC primitives. We
opted to keep it as simple as possible to preserve extensibility
towards broader fields in cryptography. On the hardware side,
Finesse needs to be compatible with a series of architectural can-
didates, a wide portfolio of ALUs and memory units ranging from
open-source free designs, self-made designs and available propri-
etary IP cores. Also Finesse should be able to evolve and sup-
port novel datapaths that provides better parallelism in the future.
This can be achieved through ISA-level extensions and improve-
ments on instruction selection strategies. Facing these challenges,
Finesse has chosen to define abstractions carefully and move com-
plexities to above ISA level rather than sub-ISA level, solving the
problem mainly at compile time.

Abstraction Design. Finesse IR is mainly focused on express-
ing calculation on algebraic objects. Custom data types include: fp
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(c) Cross-layer IR mapping with variant specification

Figure 4: Example of Finesse’s operator mapping through
IR abstraction.

— Fp, fpd = Fpa, ep — E[Fp], epd — E[]de], where d denotes
the dimension of the extension field relative to base field Fp,. Nec-
essary parameters (refer to Table 1 for a list) determining the field
structures and curve structures is incorporated as attributes to the
IR. Table 4 gives a list of defined operations on these objects. As
a simplification, operations between fp-1like objects or ep-like
objects requires divisibility on their dimension parameters d (or else
an efficient homomorphism would be required, which is possible,
but over-complicates the abstraction system).

Figure 4 illustrates an example of Finesse’s abstraction system,
showcasing the transformation of a high-level Fj,1> multiplication
operation into a lower-level F ¢ representation through IR. The
upper part of the figure depicts the IF s operation expressed using
abstract operators, while the lower part demonstrates the detailed
decomposition into F s operators, using the Karatsuba variant. Fol-
lowing this approach the framework bridges high-level algorithmic
constructs with hardware-aware granular operations, ensuring effi-
cient and modular design.

Finesse defines a simple RISC-flavor Fj-level ISA with VLIW
extension. Machine operations include: linear operations (NEG, DBL,
TPL, ADD, SUB), multiplicative operations (SQR, MUL), inverse opera-
tion (INV), miscellaneous (NOP, CVT, ICV). Finesse performs com-
putation in its dedicated on-chip/on-fabric register banks, thus all
operands are registers. CVT and ICV operations are designed for
post/pre I/O data format conversions. In VLIW extension, multiple
operations can be packed into a single “wide instruction”, or “issue
slot”, to enable explicit ILP.
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Figure 5: Hardware architecture of Finesse framework.

Finesse’s hardware model describes hardware resource infor-
mation and instruction itineraries. These include: number of linear
ALUs, number of register banks and register quota per bank, simul-
taneous read/write capacity for each bank, presence of write back
ring buffers for register banks, maximum operations allowed in a
single VLIW instruction (similar to that of issue width in multi-
issue architecture), delay info and resource consumption for each
operation (itineraries). Currently Finesse asserts a few reasonable
constraints on the model: at most 1 mmul ALU per core, at least
many register banks as VLIW width, at least 2 reads + 1 writes
per bank per cycle, existence of write back ring buffers on VLIW
architectures (width > 2).

Abstraction Overhead. In Finesse, abstraction above ISA layer
does not involve complex programming paradigm, and is essentially
zero-cost, i.e. no additional control information stored at runtime.
When decomposed onto Fj, level operations, higher-level constuct
info can be dropped, and constants needed in lowering mapping can
fit in a small table to be fetched at runtime. Assertions in and below
ISA inevitably hide some possible optimization opportunity, but
this tradeoff is worthy in a systematic approach for agile co-design.

3.3 Hardware Architecture

With abstraction decoupling the software and hardware, the hard-
ware only needs to focus on implementing the pipeline model archi-
tecture, which is designed to support operations over F;,. Figure 5
provides an overview of the basic hardware architecture supported
by our Finesse framework. As shown in Figure 5(a), the archi-
tecture is built on a pipeline structure, consisting of instruction
memory/fetch units, and one or more processing cores, each of
which includes data memory/fetch units and an ALU. The ALU
features four modular arithmetic units designed for Fj, operations,
including modular multiplication, modular addition, modular dou-
bling (in the mlin unit), and modular inversion, among others.

We employed the Jacobian coordinate system to implement the
pairing algorithm, which requires modular inversion (performed
in the minv unit) only once. Consequently, the relatively complex
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minv unit is designed using an iterative structure, while all other
computation units adopt a fully pipelined structure. In our pro-
totype, modular multiplication is treated as a Long pipeline unit,
whereas other linear units are considered Short pipeline units.

Parameterization. Through parameterized design, the archi-
tecture can be adapted to diverse application requirements and
platform constraints, while providing a foundation for performance
optimization. The primary parameters include curve constants, data
width, memory configuration, the number of parallel cores, base
unit mapping to various IP portfolios, and the pipeline depth of
computation units. Key benefits of parameterization include:

e Adaptability to different curve scenarios via parameteriza-
tion of curve constants, data width, and memory size.

o Flexibility in adapting to varying throughput requirements
through adjustment of the parallel core count.

¢ Platform independence enabled by the mapping of base
units to different deployment platforms (e.g. ASIC, FPGA).

e ALU family co-design optimization is supported by parametriz-
ing the pipeline depth of key computational units.

Multi-core. As shown in Figure 6, instruction memory occupies
50% of the area in a single-core design. Analysis reveals that, for
pairing computations on the same curve, the operations are identi-
cal. This consistency allows us to replicate multiple data memory
and ALU while utilizing a shared instruction memory. Figure 6(b)
presents the area breakdown of an 8-core design, where instruction
memory accounts for only 11% of the total area. This reduction
highlights better area utilization, as the total area increases by 4.5
times while achieving an 8-fold improvement in overall throughput,
resulting in a 77% gain in area efficiency. In fact, in our architectural
design, the number of parallel cores and area efficiency aligns with
Amdahl’s law.

Indeed, this parallel approach aligns with the SIMT architecture,
which meets the demands of high-throughput applications and
further enhances area efficiency.

Optimizations. It is important to note that the area and timing
are directly influenced by parameterization. Firstly, the design must
ensure that the storage and computation units support different
data width, and the computation units support pipeline depth pa-
rameterization. Secondly, from a co-design perspective, the pipeline
depth of the ALU itself affects the overall timing performance (refer
to Figure 11 in the below). To enhance the efficiency of pairing oper-
ations, timing and area optimizations were applied to parameterized
storage and computation units.

For storage units, the design enables arbitrary bitwidth and depth
by automatically combining small basic memory units into larger
configurations. As depicted in Figure 5(b), to reduce path delay
caused by combining smaller memory units into larger ones, regis-
ters are placed before and after the memory, creating a three-stage
pipeline for read/write operations. The attributes of the basic mem-
ory block are fixed by IP vendors. So the storage area (i.e., the
number of basic memory block used) is more dependent on the
binary size the compiler generates (for IMem) and the maximum
number of active registers (for DMem). Meanwhile, the basic mem-
ory units can be mapped to specific platform primitives.
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Figure 6: Hardware area breakdown. Hardware model: Long
= 38cy, Short = 8cy, 2R1W/cy. Curve: BN254N, Algo: O-Ate.

As illustrated in Figure 6(b), Modular multiplication (mmul) unit
is the core of the ALU, which accounts for 89% of the ALU’s area.
Our primary objective is to optimize mmul while achieving param-
eterization of bitwidth and depth. In terms of timing, we adopt a
deeply pipelined design, decomposing modular multiplication into
multiple stages to achieve high throughput. Regarding area, we
reduce the number of multiplications by leveraging the Karatsuba
algorithm. To facilitate optimization within a parameterized frame-
work, we design a hierarchical modular multiplication module, as
illustrated in Figure 5(c). At the basic unit layer, the multiplica-
tion width W determines the critical delay path, as it is directly
mapped to FPGA DSP blocks or ASIC multiplier IPs. To enable effi-
cient module partitioning, we encapsulated 2W to 5W bit multiplier
modules using the Wallace tree algorithm based on the basic unit.
Further optimized by recursively applying the integer Karatsuba
multiplication algorithm n times, the structure covers a range from
2W x 2" to 5W x 2", which effectively reduces the multiplier’s
area. For instance, with W = 16 and n = 3, the proposed approach
achieves an approximate 40% reduction in area compared to naive
multiplication.

3.4 Simulator

The simulator empowers both software and hardware validation
flows. On the algorithmic side, to enable validation of post-compile
code execution trace, we have implemented a single-cycle func-
tional simulator capable of executing SSA instructions. The cor-
rectness verification is accomplished through cross-validation of
computational results against established cryptographic libraries
such as MCL [27], MIRACL [28], and RELIC [6].

At the hardware level, we have implemented a cycle-accurate
simulator consistent with the RTL behavior based on the pipeline
model to simulate instruction delay and data dependence. Within
our framework, this simulation platform serves as a experimental
infrastructure, providing data references for works like compiler
affinity optimization and design space exploration.

3.5 Compilation Techniques

Compilation Pipeline. In contrast to modern general-purpose
compilers, Finesse uses a shorter compilation pipeline, following
the execution order:

e CodeGen: Simplified leveraging algorithmic characteristics.
In the optimal Ate pairing algorithm, both the Miller loop and
final exponentiation have fixed loop parameters based on the
underlying curve, allowing convenient loop unrolling and
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Figure 7: Illustrated example of instruction issue slot affinity
optimization. Long = mcy, Short = ncy. L1 and Sy’ are (m—n)cy
apart, causing latter to stall until Sy. Setting issue slot affinity
helps compiler to avoid this issue.

restructuring into a single basic block. The code generation
task is completed by mapping the algorithm into IR, with
respect to operator variants.

e IROpt: Standard SSA-based data flow optimizations, with
additional assumptions from finite field arithmetic. Specifi-
cally, constant propagation with Frobenius constant tables,
strength reduction, dead code elimination and global value
numbering using commutativity on finite fields.

e BankAlloc: Assigns values to register banks. A simple resid-
ual assignment strategy serves as an effective baseline.

e PackSched: Schedules and packs operations into issue slots.
Supports both single issue architectures and VLIW architec-
tures.

o RegAlloc: Sequential register allocation within banks, based
on liveness analysis.

e ASM: Translates IR into hardware-defined instruction en-
coding.

e Link: Consolidates various basic blocks into a single binary
and resolves entry address offsets.

Scheduling Strategies. Finesse supports scheduling strategies
for both single-issue and VLIW architectures. Scheduling is per-
formed in a single pass immediately after BankAlloc, where values
are assigned to register banks without being mapped to specific
registers yet. Finesse uses a top-down scheduling algorithm with
affinity-based selection order and constraint solving for register
bank read/write constraints.

The core innovation of Finesse scheduling strategy lies in its
issue slot affinity optimization. Figure 7 provides a conceptual exam-
ple of this approach. From a hardware abstraction perspective, R‘'W
operations in memory blocks are constrained by certain limitations,
and conflicts can arise when a Long instruction is issued followed by
a Short instruction after a certain delay. To address this, Finesse
partitions the issue slots into periodic intervals based on the differ-
ence in cycle counts between Long and Short instructions. Within
each interval, specific positions are assigned Long instruction affin-
ity, while the rest are assigned Short instruction affinity. Following
notation of Figure 7, we can formulate the affinity for issue slot at
cycle T as

T mod (m — n) < #LongInstr +p
#Instr ’

where f is a tunable parameter, and Affinity(T) = True implies
Long affinity, Short affinity otherwise.

Affinity(T) =

m-—n
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Algorithm 2: Operation Packing and Scheduling

Input: IR code P, in SSA form

Output: A valid schedule S, satisfying HW constraints
1S« []
2 deps «— { }
3 trigger «— { }

4 queue — [ ]

5 Function SOLVEMAXVALIDINSTRPACK(now)
// state: (maxInst, candInst)

s | fe{o:(0[D}

7 bestState «— { }

8 issueQueue «— collect readied instr from queue at now
9 for instr in sortByAffinity (issueQueue) do

10 state; < compress itinerary of instr to DP state
11 for statey € f do

12 if state; does not contradicts state; then

13 new «— statey U statey

14 update f[new] if f[states] + instr is better
15 update bestState by f[new]

16 return f[bestState].candInst

17 for instr in P do

18 deps|instr] « countDependency/(instr)
19 if isConstOp(instr) then

20 L S.append(instr)

21 else
22 L trigger|instr.operand].append(instr)

issueTime <« 0
n « len(P) — #ConstOp
25 while n > 0 do

N
@

)
S

26 instrs « solveMaxValidInstrPack(issueTime)
27 S « S +instrs

28 for instr in instrs do

29 for inst in trigger|[instr] do

30 deps|inst] « deps|inst] — 1

31 if deps[inst] = 0 then

32 L queue «— queue + [instr]

33 queue «— delete(queue, instr)

34 n <« n — len(instrs)

35 issueTime « issueTime + 1

36 return S

Finesse employs a constraint solving process combining data
dependency, issue slot affinity and instruction itineraries to produce
a correct and efficient schedule for the IR code. Algorithm 2 gives
a detailed formulation of this algorithm. It starts by scanning top-
down on DAG structure, and on each cycle T, a table of candidate
instructions are drawn from those that are ready to be issued at
current cycle, following the order determined by Affinity(T). We
use dynamic programming to check for maximum combination
of operations into a single issue slot without violation of R/W
constraints.
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Table 5: Examples of operator variants for key extension
fields in curve BLS24-509.

Group Op. Variants
F Me Karatsuba, Schoolbook
6
P S6 CH-SQR{1,2,3} [29], Complex, Schoolbook
F oo M12 Karatsuba, Schoolbook
! S12 Complex, Schoolbook
Go PA4,PD4  Jacobian, Projective

3.6 Design Space Exploration

As a first step towards comprehensive DSE, Finesse concentrates
on solving the problem in a pivotal subspace of the general design
space. The design space in our framework is characterized by two
key elements: operator variants combination and hardware model,
both of which significantly influence the performance and resource
efficiency of the accelerator.

Operator variants combination (examples in Table 5) defines the
mapping rule of higher-level operators into lower-level operators.
As analyzed in Section 2.2, its influence should be considered jointly
with the hardware model. In Finesse, the ALU configuration de-
termines the computational capacity for executing instructions in
parallel. Additionally, instruction issue width and instruction sched-
uling are critical components shaping the architecture’s throughput
and latency characteristics.

Our framework accommodates a variety of design directives,
offering flexibility in the optimization process. The framework can
adjust accordingly, whether the focus is on a single objective, such
as maximizing throughput or minimizing area, or balancing multi-
ple objectives in a trade-off. This capability ensures that the design
process remains versatile, allowing users to define and prioritize
their own performance metrics without being restricted to pre-
defined directives. As a result, the exploration process can target
performance, efficiency, device resources, or a combination of fac-
tors.

The exploration process in our framework is driven by a co-
design feedback loop that iteratively refines the hardware-software
configuration. This process gathers cycle info from the simulator
and hardware metrics provided by EDA tools, enabling continu-
ous optimization of both architectural and algorithmic decisions.
Finesse incorporates basic exploration strategies, using exhaus-
tive search for operator variants combinations. Finesse sets the
foundation for efficiently navigating the design space, adapting to
specific platform-specific constraints and optimization objectives.

4 Evaluation

Framework Implementation. We implemented the Finesse
framework in synergy of multiple ecosystems. The compiler and
simulator are written in Python, supporting flexible configuration
through YAML configuration files and modular invocation with
command-line parameters. The parameterized hardware is imple-
mented by SystemVerilog, with its settings automatically read from
headers generated by the compilation stack. We also developed a
basic operator kit containing elliptic curve operators in both Jaco-
bian and projective coordinates, together with finite field operators
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from F, to F 24 along the finite division lattice of 24. On top of that
we implemented 7 curves in 3 curve families as listed in Table 2, and
validated correct functionality for all of the resulting accelerators.

Hardware Validation Setup. The experiments were conducted
on both ASIC and FPGA platforms.

e ASIC: 40nm LP process, using a 1.1V and a 25 °C typical-
typical (TT) library.

e FPGA: Xilinx Virtex-7 FPGA, with 108,300 slices, 3,600 DSP
blocks, and 1,470 BRAM blocks.

Performance Measurement & Scaling. We use standard EDA
toolchain to obtain clock cycles and latency, from which throughput
is calculated. The results are precise and time-deterministic, demon-
strating that our design is resistant to timing attacks. Experimental
results for the FPGA platform are obtained from Vivado tools, in-
cluding performance and utilization. For the ASIC implementation,
performance and area metrics are derived from synthesis using
commercial EDA tools. Since different ASIC technology nodes sig-
nificantly impact performance, area, etc., we refer to [30] and apply
equivalent scaling adjustments for these metrics between different
technology nodes for ensuring a fair comparison of pairing metrics
across various ASIC implementations.

Key Aspects in Evaluation. We evaluate the methods and con-
tributions of Finesse as a framework for designing pairing-based
cryptography accelerator by addressing five key aspects:

(1) Design efficiency: how efficient is the Finesse design frame-
work?

(2) Scalability: is Finesse scalable as security level rises?

(3) Compilation optimization: how does Finesse’s compile strate-
gies improve pipeline efficiency?

(4) Co-design: to what extent can Finesse’s co-design mecha-
nism tackle the complexity of design space?

(5) Agility: how agile and practical is the Finesse design frame-
work?

4.1 How efficient is the Finesse design
framework?

To assess the efficiency of Finesse, we compare our approach with
two representative works: [17] and [10], with the details presented
in Table 6. The work in [17] utilizes the BN256 curve, while [10]
employs the BN254 curve, with both offering an equivalent security
level. For consistency, we select the BN254 curve as our test case.
Flexipair [17] stands out for its lightweight, programmable na-
ture, providing high flexibility. However, its limited abstraction
constrains extensibility. The lack of abstraction leads to an inability
to achieve effective performance exploration. By contrast, Finesse
demonstrates a 34X performance improvement, utilizing 5.6X the
resources relative to [17] and significantly improving area (slice)
efficiency to 6.2X. On the ASIC platform, [10] delivers SOTA per-
formance due to a highly customized ALU design, but sacrifices
flexibility. By contrast, Finesse achieves a 3x throughput increase
and 3.2X area efficiency improvement in an 8-core configuration.
This comparison shows that the Finesse Framework excels in
both performance and area/resource efficiency. Specifically, it not
only delivers significant performance gains but also demonstrates
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Table 6: Evaluation comparison on the BN254/BN256 curves. Hardware model: Long = 38cy, Short = 8cy, 2R1W/cy. Algo: O-Ate.

Work Platform Frequency #Cycle Latency Util./Area Throughput Throughput/Area

[17] FPGA Virtex-7 188.5MHz 2552k 14.14ms 2506 Slices 70.7 ops 0.028 ops/Slice
Ours (1-core)  FPGA Virtex-7 153.8 MHz 63607 0.413ms 13928 Slices 2421 ops 0.174 ops/Slice

[10] ASIC 65nm FDSOI 250 MHz 8487  56.2pus@1.1V 12.8 mm? 17.8 kops 1.39 kops/mm?
Ours (1-core)  ASIC 40nm LP 769 MHz 63607  82.7us@1.1V 1.77 mm? 12.1 kops 6.83 kops/mm?
Ours (8-core)  ASIC 40nm LP 769 MHz 63607  82.7us@1.1V 8.00 mm? 96.7 kops 12.09 kops/mm?
Ours (8-core)!  ASIC 65nm (equiv.) 423 MHz 63607 150.2us@1.1V 12.0 mm? 53.3 kops 4.44 kops/mm?

! Row has been normalized to be equivalent to 65nm technology from 40nm LP technology [30].
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(b) Security level scalability

Figure 8: Scalability evaluation of Finesse framework. Re-
spectively, log p, SecLvl. and k refer to the base field bit-width,
security level and embedding degree.

superior resource utilization. In conclusion, the Finesse design
framework is highly efficient for pairing accelerator design, offering
a high performance and resource-efficient solution.

4.2 Is Finesse scalable as security level rises?

Recent progress in number field sieve (NFS) has shaken the security
of pairing-based cryptography [31]. To maintain adequate secu-
rity, cryptography systems must adopt larger bit-width curves and
increase the embedding degree, which strains hardware resources.

Finesse design framework offers scalability to address these
challenges posed by increasing the curve security level. Figure 8
illustrate the performance and scalability of the framework across
different curve configurations.

In Figure 8(a), we present the relationship between area, de-
lay, and k log p for two curve families. The pairing delay exhibits
approximately linear growth as the klogp increases. The ratios
of area to k log p and k? log? p are plotted, indicating that despite
the increase in computational complexity, the framework controls
the area growth to slightly above linear, significantly below the
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Table 7: Evaluation of Finesse’s compilation strategies. Com-
pile time ranges from 8.0s/BN254N to 53.1s/BLS24-509. Hard-
ware model: Long = 38cy, Short = 8cy, 2R1W/cy. Algo: O-Ate.

Instr. Reduction IPC Improvement

Curve Init. — Opt. Init. — Opt. (HW 1/2)!
BN254N 627k — 553k (-11.7%)  0.19 — 0.87 / 0.92
BN462 115k — 101k (-12.0%) 0.20 — 0.88 / 0.92
BN638 155k — 137k (-12.0%) 0.20 — 0.88 / 0.92
BLS12-381 81.1k — 74.1k (-8.73%)  0.19 — 0.87 / 0.92
BLS12-446 94.8k — 865k (-8.73%)  0.19 — 0.87 / 0.92
BLS12-638 125k — 114k (-8.47%) 0.19 — 0.87 / 0.92
BLS24-509 324k — 271k (-16.4%) 0.22 — 0.88 / 0.97

1 HW 1/2 refers to the hardware model without/with FIFO buffer, which is an
architectural feature alleviating write-back conflicts.

quadratic growth rate anticipated by the complexity of finite field
multiplication.

In Figure 8(b), we use the method proposed by Barbulescu and
Duquesne [32] to evaluate curve security under the SexTNFS [33]
attack. The evaluation results are presented in the gray bar plot,
indicating an increase in security level as the k log p expands. Mean-
while, the line chart indicates that as the security level increases,
the ratio of pairing delay to security level remains relatively stable,
while the area growth is kept within a reasonable range.

The results suggest that the Finesse framework is scalable as
security levels increase and can effectively maintain a balance be-
tween performance and resource consumption.

4.3 How does Finesse’s compile strategies
improve pipeline efficiency?

Finesse’s compile strategy directly addresses pipeline efficiency

through a combination of data flow and architecture-specific sched-

uling optimizations.

Finding a suitable compilation baseline for emerging work-
loads on a novel customized target accelerator is a non-trivial task.
The architectural diversity among accelerators presents a signifi-
cant challenge for establishing a common compilation baseline. For
example, [17] is CISC-like with sub-F), ALUs, whereas [10] is FSM-
like with F2 ALUs. There exists no widely accepted methodology
for precisely and fairly comparing instruction count or cycle count
across different accelerator architectures. Macro-level comparison
of compilation effect is not possible without a common target or
established equivalance relation between targets.
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(b) Issue queue after scheduling and optimization

Figure 9: Scheduling and issue slot affinity optimization on
issue queue. Each instruction occupies a single slot in issue
queue. The snapshot is taken starting from the 10,000th cycle
during the simulated execution of SSA IR. Hardware model:
Long = 38cy, Short = 8cy, 2R1W/cy. Curve: BN254N, Algo: O-Ate.

Our baseline (referred to as “Init” in Table 7, “before” in Figure 9,
“Manual” in Figure 10) pairing implementation is built directly from
cryptographic literature, i.e. exactly as reported, without alterations
that might introduce a favorable bias towards our compiler.

Through data flow optimizations, Finesse automates transfor-
mations that were previously handled manually in research, such as
Fok dense X sparse multiplication. Table 7 quantifies their impact in
terms of instruction reduction across multiple curves. Rather than
claiming credit for the optimization itself, Finesse contributes to
agility by performs these optimizations transparently, freeing users
from manually handling sparsity.

In terms of scheduling optimization, Finesse employs novel
scheduling strategies, which include standard code motion based
on instruction latencies, together with instruction issue slot affinity
optimization. Figure 9 gives a clear visualization in the form of a
waterfall chart, illustrating the improved pipeline utilization, show-
ing how pipeline bubbles are minimized. Table 7 contains detailed
IPC statistics.

These results have demonstrated that Finesse’s optimization
strategies significantly improve pipeline efficiency, resulting in
notable performance gains in pairing accelerators through reducing
execution time and enhancing resource utilization. Collectively,
these optimizations provide a solid building block for Finesse’s
co-design mechanism.

4.4 To what extent can Finesse’s co-design
mechanism tackle the complexity of design
space?

Finesse’s co-design mechanism is an initial step towards full-

fledged design space exploration. Our work serves as a stepping

stone from 0 to 1, paving the way for a more comprehensive ap-
proach to optimizing performance across a vast design space.
Finesse provides a fully functional implementation capable of
performing exhaustive design space exploration. Figure 10 presents
results from Finesse’s analysis of operator variant combinations
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Figure 10: Finesse’s design space search on operator vari-
ant combinations and representative pipeline configurations.
“Manual” refers to combinations of variants we selected man-
ually; “All sch” and “All karat” refer to the combinations
entirely using the Schoolbook and Karatsuba variants, respec-
tively; “Optimal” refers to the best combinations obtained
from exploration. “L” and “S” denote the cycles for long and
short instructions, and “#Lin. Unit” indicates the number of
linear units, which also equals the number of register banks.
Hardware model: Long = Lcy, Short = Scy, 2R1W/bank/cy. Curve:
BLS24-509, Algo: O-Ate.

and representative pipeline configurations. Unlike the conventional
approach of applying Karatsuba optimization at all levels, we ex-
plored a variety of operator variants for the BLS24-509 curve, com-
bined with hardware models ranging from a basic single-issue
pipeline to a multi-issue pipeline featuring up to 6 linear modu-
lar arithmetic units. In addition to typical baseline approaches, we
included a manually selected variant combination, guided by heuris-
tics optimized for a single-issue pipeline. With limited parallelism
in linear operations this manually tweaked version outperforms
typical approach and is near optimal, but with more linear units,
all-Karatsuba is still a viable choice.

Finesse can also perform co-design with feedbacks from EDA
toolchain. Figure 11 reflects the impact of choices regarding the
ALU family (ALU family refers to the fully pipelined mmul units
with different pipeline depths, which are equivalent to the Long in-
struction cycles described in the paper), with ALU design variations
being the primary parameter for optimization. The ALU critical path
information is gathered from synthesis results of ASIC toolchain
over target technology node, while compile-time estimates of IPC
and throughput metrics are obtained from the simulator. These met-
rics are derived from Finesse’s optimization pass, which utilizes
hardware abstractions passed in by the co-design mechanism as
essential directives in IR scheduling.

The results in Figure 11 indicate a drop in IPC with deeper ALU
pipelines, due to the limited inherent parallelizability of the O-Ate
pairing algorithm. Additionally, as determined by the constraints
of the target technology node, critical paths cease to decrease with
deeper pipelines. Finesse effectively analyzes this real-world non-
linear relationship, identifying the optimal pipeline depth of 38
cycles on single issue architectures for our experiment setup.
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Figure 11: Finesse’s co-design mechanism with respect to
choices in ALU family. Hardware model: Long = xcy, Short =
8cy, 2R1W/cy. Curve: BN254N, Algo: O-Ate.

4.5 How agile and practical is the Finesse design
framework?

The Finesse design framework offers both agility and practicality.
By automating a large part of the design cycle and supporting a wide
range of configurations, Finesse allows users to swiftly adapt to
diverse application needs. Finesse’s effectiveness is best illustrated
through various use case scenarios and security considerations.

For Pairing Researchers. Finesse’s basic operator kit enables
rapid porting of pairing algorithms, allowing users to quickly ex-
periment with new approaches to pairing constructions or novel
families of curves, receiving architectural feedback in just minutes.
This capability significantly shortens the design cycle, enabling the
swift creation of well-optimized hardware accelerators tailored to
innovative ideas in pairing-based cryptography.

For Hardware Accelerator Designers. Finesse provides ready-
for-use implementations of hardware accelerators in SystemVerilog
out of the box, supports generating information aiding RTL-level
behavioral simulation. Designers are free to extend and experiment
with more advanced ALUs and storage blocks using Finesse, given
that it can be incorporated into the hardware abstraction system of
Finesse. Finesse’s default implementation utilizes standard tech-
nology cells, supported by a broad range of EDA toolchains and
platforms. Finesse-generated designs are compatible with standard
EDA flows, including synthesis, layout, and validation. Figure 12
gives an experimental ASIC layout of quad-core accelerator de-
signed by Finesse, showcasing the practicality and effectiveness
of the final product. The framework allows for rapid adjustments
to the hardware architecture, further enhancing design agility.

Security Considerations. Finesse provides support at the level
of IP cores, meaning it is typically integrated with other user-
defined peripheral IPs to form a complete IC die or be deployed on
an FPGA board. The physical security of the chip, whether ASIC or
FPGA, largely depends on its specific deployment setup. A rigorous
and comprehensive evaluation of this aspect is beyond the scope of
this paper, which focuses on architecture and design automation.
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Figure 12: Quad-core Finesse chip layout. Note that timing
result is slightly better than synthesis results.

Nevertheless, at the current level of support, we can qualita-
tively assess its resilience against classic attacks, such as basic
side-channel and fault-injection attacks. By design, Finesse is in-
herently resistant to timing attacks, as pairing computations are
designed to complete in a fixed number of cycles. Additionally,
its instr/data fetch patterns are independent of sensitive inputs,
providing a solid basis against attacks that exploit data access pat-
terns. Regarding fault-injection attacks, a bit-flip in the program
counter could potentially leak low-rank information about sen-
sitive data. However, this risk can be mitigated by introducing
redundancy and/or error correction mechanisms in key memory
modules within Finesse.

In conclusion, these use case scenarios and security considera-
tions collectively demonstrate how the Finesse design framework
combines agility with practicality, streamlining the design process
from algorithm development to final layout and ensuring respon-
siveness to the evolving demands of pairing-based cryptography.

5 Future Works

Next steps for design space exploration. Our abstraction sys-
tem supports different memory organization schemes (such as bank
configurations) under VLIW. Once hardware support for VLIW is
implemented (which is essentially an engineering task), its perfor-
mance data can be incorporated into the DSE cycle. The choice of
memory bank partitioning schemes impacts the memory area at the
hardware level, while the number of memory banks affects bank
conflict rates during software compilation. This addition introduces
a new dimension to the design space, which drives us to pursue
more efficient searching strategies. In fact, our parameter space
exhibits well-defined adjacency (e.g. adjacent nodes on hypercube),
which is suitable for advanced strategies (e.g. simulated annealing).

Constructing a GEM5 model to enhance framework effi-
ciency. In the future work, we intend to develop a equivalent model
utilizing GEM5 to improve the efficiency of the Finesse framework.
As an open-source system emulator, GEM5 provides a comprehen-
sive simulation of hardware behavior and performance evalua-
tion, enabling us to accurately evaluate hardware performance and
power consumption during the design phase. Meanwhile, our open
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sourced Finesse framework will be upgraded to be compatible
with the equivalent GEM5 model.

Supporting wider range of cryptographic algorithms. The
hierarchical abstraction of the Finesse enables us to agilely extend
the framework to support broader range of classical cryptographic
algorithms. For instance, to implement a block cipher algorithm
such as AES, it is sufficient to integrate fixed-length octet-stream
data operation instructions and type conversion instructions be-
tween the Fj, and octet-stream into the ISA.

6 Conclusion

Finesse is an agile design framework for pairing-based cryptog-
raphy accelerators, providing a novel abstraction that supports
automated exploration across multiple layers, spanning algorithms,
operators, programs, and hardware, as well as facilitating cross-
layer co-design. Through effective co-design, Finesse’s accelerator
significantly outperforms state-of-the-art solutions in both perfor-
mance and area efficiency. The agility of Finesse is reflected in
its flexible configuration, automated support for both process and
optimization, streamlined multi-disciplinary collaboration, and effi-
cient facilitation of the design process for pairing accelerators. By
allowing researchers from the algorithm, compiler, and hardware
domains to focus on their specific expertise without needing to
understand the complete system, Finesse significantly reduces
learning and development barriers, making it an effective approach
for cryptographic accelerator design.
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