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Abstract—Digital Compute-in-Memory (CIM) architectures
have shown great promise in Deep Neural Network (DNN)
acceleration by effectively addressing the “memory wall” bottle-
neck. However, the development and optimization of digital CIM
accelerators are hindered by the lack of comprehensive tools that
encompass both software and hardware design spaces. Moreover,
existing design and evaluation frameworks often lack support for
the capacity constraints inherent in digital CIM architectures. In
this paper, we present CIMFlow, an integrated framework that
provides an out-of-the-box workflow for implementing and eval-
uating DNN workloads on digital CIM architectures. CIMFlow
bridges the compilation and simulation infrastructures with a
flexible instruction set architecture (ISA) design, and addresses
the constraints of digital CIM through advanced partitioning
and parallelism strategies in the compilation flow. Our evaluation
demonstrates that CIMFlow enables systematic prototyping and
optimization of digital CIM architectures across diverse config-
urations, providing researchers and designers with an accessible
platform for extensive design space exploration.

Index Terms—Digital Compute-in-Memory, Integrated Frame-
work, Instruction Set Architecture, Compilation

I. INTRODUCTION

Recent advances in Deep Neural Networks (DNNs) have
led to unprecedented achievements across various domains,
significantly increasing the demand for efficient processing of
deep learning workloads. However, traditional von Neumann
architectures [1], [2] are hitting the “memory wall” due to
frequent data transmission between separate computing and
memory units [3]. As Al technologies continue to transform
computing, Compute-in-Memory (CIM) architectures [4]—[6]
have emerged as a promising solution for next-generation DNN
accelerators, aiming to eliminate this bottleneck by integrating
computation logic within memory arrays.

Mainstream CIM designs can be broadly categorized into
analog [7]-[9] and digital [10]-[12] approaches. While analog
CIM relies on current/voltage summation for computations,
digital CIM embeds digital logic units directly into SRAM
arrays. By avoiding analog-to-digital (ADC) and digital-to-
analog (DAC) conversion overhead and non-ideality issues in-
herent in analog computations, digital CIM demonstrates both
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Fig. 1. Comparing CIMFlow with recent design and evaluation frameworks
for CIM architectures.

robust computation and enhanced parallelism, thus exhibiting
great potential in DNN acceleration.

However, fully realizing the benefits of digital CIM across
various DNN workloads is fraught with challenges. Current
CIM architectures, like many domain-specific accelerators, are
typically optimized for specific applications, limiting their
adaptability to emerging workloads. As the field of Al con-
tinues to evolve, designers face a constantly expanding design
space, comprising diverse DNN structures, dataflow mapping
strategies, and various design choices in CIM accelerators.
Navigating this complex landscape requires versatile tools
capable of accommodating a wide range of software and
hardware configurations.

While various software tools have been developed to facili-
tate CIM designs, existing approaches have notable limitations.
On the one hand, many tools tend to focus predominantly on
specific aspects of the design flow, such as hardware simula-
tion [13]-[16] or dataflow compilation [17]-[19], lacking the
holistic view necessary for effective design space exploration.
On the other hand, most of these tools are primarily designed
for analog CIM, and are only later adapted to support digital
implementations, often overlooking crucial characteristics of
digital CIM architectures.

In particular, SRAM-based digital CIM faces inherent capac-
ity constraints due to its lower integration density compared
to DRAM or emerging NVM solutions [20]. In practical
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implementations, these density limitations often result in insuf-
ficient on-chip memory capacity for modern DNN models. This
constraint could potentially negate the benefits of in-memory
computing, as it necessitates frequent data movement and re-
stricts opportunities for inter-layer pipeline optimization. Con-
sequently, there is a pressing need for an integrated framework
specifically tailored to the nuances of digital CIM, enabling
comprehensive evaluation and rapid prototyping across diverse
configurations.

To address these challenges, we introduce CIMFlow, an
integrated framework for systematic design and evaluation of
digital CIM architectures. As shown in Fig. 1, our frame-
work integrates a highly extensible Instruction Set Architec-
ture (ISA), a digital CIM-oriented compiler, and an efficient
cycle-accurate simulator, enabling comprehensive and flexible
exploration of diverse software and hardware configurations.
The main contributions can be summarized as follows:

« We propose CIMFlow, an integrated framework that pro-
vides an out-of-the-box workflow for implementing and
evaluating DNN workloads on digital CIM architectures.
The framework enables systematic design space explo-
ration through seamless integration of compilation and
simulation infrastructures.

o We develop a CIM-specific ISA design that employs a hi-
erarchical hardware abstraction, bridging compilation and
simulation while providing flexible support for various
architectural configurations.

o We implement an advanced compilation flow built on the
MLIR infrastructure, addressing the capacity limitations in
digital CIM architectures through innovative partitioning
and parallelism strategies.

II. BACKGROUND AND MOTIVATION
A. Digital CIM Preliminaries

CIM architectures represent a paradigm shift from traditional
von Neumann computing by enabling computation directly
within memory arrays. In essence, CIM architectures perform
matrix-vector multiplication (MVM) through parallelized in-
situ Multiply-Accumulate (MAC) operations within memory
arrays, significantly reducing the data movement bottleneck
that plagues conventional architectures. These MAC operations
are typically carried out in a bit-serial fashion, where multipli-
cations are decomposed into a series of bit-wise computations,
followed by shift and accumulation operations.

A digital CIM macro comprises two key components: (1) a
modified SRAM array that stores weight data and enables in-
situ computations, and (2) peripheral circuits that orchestrate
row-wise Boolean operations and accumulation [21]. Unlike
analog CIM approaches, which face significant limitations due
to area and power overhead from ADC and DAC converters,
digital CIM enables simultaneous activation of the entire
memory array. This enhanced parallelism, combined with the
inherent robustness of digital computation, makes digital CIM
particularly well-suited for accelerating deep learning work-
loads that exhibit high computational intensity and parallel
structure. While researchers have proposed various digital CIM
accelerators to harness these benefits [22], [23], scaling these

solutions to meet the diverse computational demands of modern
Al models remains a significant challenge.

B. Related Works and Our Motivation

The growing complexity of deep learning workloads and
CIM architectures has created a critical need for tools and
frameworks to bridge the gap between hardware and soft-
ware. Existing frameworks broadly fall into two categories:
modeling/simulation frameworks that evaluate architectural
decisions through detailed performance analysis [13]-[16],
and compilation frameworks that enable efficient mapping of
DNN workloads to CIM hardware [17]-[19]. While modeling
frameworks help hardware designers optimize latency, power,
and area trade-offs, compilation frameworks provide support
for managing the hardware-software interface and generating
optimized dataflows for CIM architectures.

However, most existing frameworks have focused primarily
on analog CIM architectures, given their prominence in current
research. As illustrated in Fig. 1, recent simulation frameworks
have begun extending support towards digital CIM implemen-
tations. NeuroSim V1.4 [15] extends its system-level simula-
tion capabilities to support advanced digital CIM technology
nodes, while MNSIM 2.0 [16] proposes a unified memory array
model for both analog and digital CIM architectures. Although
these tools provide valuable insights into architectural trade-
offs, they often employ tightly-coupled co-design with fixed
assumptions about DNN structures and datapath organizations,
limiting their flexibility and applicability for comprehensive
digital CIM exploration. On the compilation front, while tradi-
tional deep learning compilation infrastructures offer general-
purpose solutions [24], frameworks such as CIM-MLC [19]
introduce optimization strategies specifically designed for ana-
log CIM. However, there remains a notable lack of dedicated
compilation support for digital CIM architectures.

The above observations highlight three key challenges in
digital CIM development. @ Integration Gap: The lack of
comprehensive integration between different design stages ne-
cessitates an integrated framework that combines ISA def-
inition, compilation, and simulation. @ Limited Flexibility:
Fixed architectural assumptions in current tools might constrain
design space exploration, calling for extensibility in CIM
design and evaluation frameworks. ® Resource Constraints:
The limited SRAM array capacity in digital CIM requires
sophisticated dataflow management and parallelism strategies
that existing works do not adequately address. To tackle these
challenges, we propose CIMFlow, an integrated framework
that enables flexible design space exploration through ex-
tensible ISA support and advanced compilation optimization
techniques. By providing comprehensive support across the
design stack, CIMFlow facilitates structured development and
evaluation of digital CIM architectures while maintaining the
flexibility to accommodate future innovations.

1II. CIMFLOW FRAMEWORK
A. Framework Overview

The design of CIMFlow is guided by two core principles:
integration for seamless exploration, and extensibility through
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Fig. 2. Overview of the CIMFlow framework.
hierarchical abstractions. CIMFlow unifies the entire workflow Core

from high-level DNN model description to detailed perfor-
mance analysis, providing researchers with a comprehensive
view of DNN workload execution on digital CIM architectures.
Built with a modular design, CIMFlow readily adapts to emerg-
ing advances in CIM technology while abstracting implemen-
tation complexities through its streamlined interface, enabling
designers and researchers to perform systematic evaluation and
exploration.

As illustrated in Fig. 2, CIMFlow offers a cohesive workflow
through three main components: a flexible ISA with hierar-
chical hardware abstraction (Sec. III-B), a compiler featuring
multilevel optimization techniques (Sec. III-C), and a cycle-
accurate simulator delivering detailed performance insights
(Sec. III-D). The workflow begins with a DNN model de-
scription in ONNX format, complemented by an architecture
configuration file that specifies the target CIM hardware pa-
rameters. The compiler first performs computational graph
(CG) level optimizations for workload distribution and data
management, followed by operator (OP) level optimizations
to further maximize hardware efficiency. These optimizations
are guided by the hardware specifications defined through the
hierarchical hardware abstraction interface in ISA, spanning
from chip-level interconnection to unit-level execution details.
The generated code is validated by the compiler and then fed
into the cycle-accurate simulator, which models the execution
across multiple cores while tracking resource utilization and
performance metrics. This process produces a detailed report
covering energy consumption, latency, and hardware utiliza-
tion, enabling comprehensive evaluation of different architec-
ture designs.

B. ISA Design

As depicted in Fig. 3, the CIMFlow ISA implements a three-
level hardware abstraction hierarchy complemented by a flexi-
ble instruction set design. Each abstraction level interfaces with
the corresponding stages in the compilation and simulation
infrastructure, providing architectural specifications that guide
both compilation optimization and simulation execution.
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Fig. 3. Hardware abstraction and instruction design in the CIMFlow ISA.

Hardware Abstraction. At chip level, the architecture
consists of multiple cores interconnected through a Network-
on-Chip (NoC) structure, facilitating synchronous inter-core
communication and global memory access. This organization
enables scalable workload distribution and flexible inter-core
pipelining, with each core functioning as a basic unit of
program execution with its own instruction control flow.

The core-level abstraction defines the organization of hard-
ware resources, encompassing instruction memory, various
compute units, register files (RFs), and local memory. To facili-
tate efficient memory management and architectural extensibil-
ity, CIMFlow implements a unified address space across both
global and local memories. In addition, the local memory is
divided into segments to efficiently handle the input and output
of DNN layers. The register file consists of general-purpose
registers (G_Reg) for instruction-level access and special-
purpose registers (S_Reg) for operation-specific functions.

At unit level, the CIM compute unit incorporates multiple
macro groups (MGs) that support weight duplication and
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Fig. 4. Compilation flow and mapping optimization strategies in CIMFlow.

flexible spatial mapping strategies. Within each MG, weights
are typically organized along the output channel, enabling
efficient input data broadcast across macros for parallel in-
memory MVM operations. The vector compute unit handles
auxiliary DNN operations such as activation, pooling, and
quantization. The scalar compute unit executes control flow
operations through scalar arithmetic computations.

Instruction Design. To support efficient execution across
the hardware hierarchy, CIMFlow implements a unified 32-
bit instruction format with specialized variations for different
operation types. Instructions are categorized into compute,
communication, and control flow instructions, with compute
instructions further specialized for CIM, vector, and scalar
compute units. Each instruction contains a 6-bit operation
specifier (opcode) and multiple 5-bit operand fields. Certain
instruction types may also include supplementary fields, such
as a 6-bit functionality specifier, execution flags, or immediate
values of 10 or 16 bits. The instruction format supports up to
four operands depending on the operation type, providing flex-
ibility for complex operations while maintaining encoding effi-
ciency. The instruction set is designed for extensibility through
incorporating a customized instruction description template,
which enables seamless integration of new operations into the
framework when provided with their associated performance
parameters.

C. Compilation Flow

The CIMFlow compiler bridges the semantic gap between
high-level DNN models and low-level CIM operations through
a two-level optimization strategy, as illustrated in Fig. 4.
Starting with an ONNX model, the compiler first performs CG-
level optimizations to partition and schedule workloads across
multiple cores, effectively addressing the limited capacity
issue. This is followed by OP-level optimizations built upon
the MLIR infrastructure [24], which translates DNN operations

Algorithm 1: DP-based partitioning and mapping

Input: Preprocessed computation graph G = (V, E),
Hardware resources R
Output: Optimal partitioning and mapping solution .S
1 D < GetDependencyMasks(G) // Find all dependency
closures in GG and encode them as bitmasks
2 dp <« [00]!Pl, prev « [—1]IP!, map « [0]'P!
3 for i <~ 0 to |D|—1 do

4 | if D[i] =0 then

5 dpli] + 0

6 continue

7 for <~ 0toi—1do

8 if D[i]&D[j] = D[j] then

9 stage < D[i] — D[j] /I Extract the set
difference of dependencies as a partition

10 (cost, mp) < OptimalMapping(stage, R)

1 if dp[j] + cost < dpli] then

12 dp[i] < dp[j] + cost

13 prevli] + j

14 mapli] < maplj] Ump

15 S < ReconstructSolution(dp, prev, map)

16 return S

into efficient CIM instruction sequences while taking into
account the underlying hardware constraints.

CG-level Optimization. The optimization at this level be-
gins with preprocessing the computation graph through analyz-
ing the operator dependencies within the directed acyclic graph
(DAG). During preprocessing, the compiler first identifies and
extracts MVM-based operators, then groups adjacent operators
with them to create a condensed CG. This analysis produces a
dependency-preserving linear sequence of operators that forms
the foundation for subsequent optimization stages.

To address the capacity limitation inherent in digital CIM
architectures, CIMFlow implements a systematic partitioning
strategy to divide the model into multiple execution stages.
As detailed in Alg. 1, the model partitioning phase employs
a dynamic programming (DP) based approach that optimizes
workload distribution across available cores. The algorithm
incorporates a state compression optimization that encodes all
the dependency closures in the DAG as bitmasks, significantly
reducing both space complexity and computational overhead.
Each dependency closure represents a self-contained set of
operators whose dependencies are fully enclosed within the
set, serving as basic building blocks for candidate partitions.

The compiler derives candidate partitions through set op-
erations on these dependency closures, and performs core
mapping optimization for each partition. This process involves
strategically duplicating operator weights across clusters of
cores when deemed beneficial by the cost estimation model.
To balance parallel execution benefits against communication
costs, the estimation model accounts for both computation
costs and data transfer overheads across inter- and intra-cluster
communications. These cost assessments and their correspond-
ing optimal mapping configurations are then used to guide the



DP-based partition selection.

The final phase of CG-level optimization focuses on inter-
core scheduling and intermediate representation (IR) genera-
tion. The scheduler orchestrates data movement through the
NoC interconnection, facilitating the inter-operator pipelines
across different clusters. For each core, the compiler gen-
erates an optimized operation sequence incorporating both
partitioning decisions and mapping destinations, establishing
the foundation for OP-level optimizations.

OP-level Optimization. Following CG-level workload dis-
tribution, the compiler performs fine-grained operator transfor-
mations to maximize hardware efficiency. This process involves
a structured approach that first establishes an ideal mapping in
a constraint-free virtual space, and then adapts this mapping to
actual hardware resource constraints.

The virtual mapping phase begins by analyzing the di-
mensional structure of each operator, transforming complex
nested loops into a simplified version that aligns with the
CIM array structure. This transformation process maps the
software-level weight dimensions onto a two-dimensional ar-
ray representation. By temporarily abstracting away physical
constraints, the compiler explores the optimal weight data
layout strategies, including the image-to-column (im2col)
transformation commonly employed in DNN acceleration.

The physical mapping phase then adapts the idealized
representation to actual hardware constraints through a se-
ries of optimization passes implemented within the MLIR
infrastructure. The compiler first applies loop tiling based
on resource capacity constraints, then systematically extracts
MVM operations from the tiled loops for translation into
CIM operations. Through automated analysis, it determines the
optimal tile sizes and loop ordering to maximize computational
efficiency while respecting resource limitations at each memory
hierarchy. Memory access operations are then strategically
annotated at appropriate loop levels to minimize data transfer
overhead.

In the final code generation phase, the optimized IR under-
goes conventional compilation techniques, including constant
propagation, dead code elimination, and register allocation. The
generated instructions adhere to the CIMFlow ISA specification
while realizing the optimized resource mapping decisions,
ensuring efficient utilization of the CIM hardware resources.

D. Simulator Design

The CIMFlow simulator provides cycle-accurate perfor-
mance analysis through detailed modeling of the digital CIM
architecture across multiple abstraction levels, from individual
core execution to chip-level coordination. Implemented in
SystemC [25], the simulator features a detailed pipeline model
to track execution flow and resource utilization within each
processing unit, while managing parallel execution across cores
connected via NoC. The simulator supports diverse architec-
tural configurations through a user-defined configuration file
that adheres to the ISA specifications, while its modular design
and standardized interfaces allow straightforward integration of
custom architectural components.

TABLE I
ARCHITECTURE PARAMETERS OF THE DEFAULT ARCHITECTURE.
Chip Level Core Level Unit Level
Core num. 64 CIM comp. unit 16 # MG Macro 512x64
NoC flit size 8 Byte | Macro group 8 # macro | Element 32x8
Global mem. 16 MB | Local mem. 512 KB

At core level, instruction execution follows a three-stage
pipeline comprising instruction fetch (IF), decode (DE), and
execute (EX). The EX stage implements detailed execution
models for different compute units, each with fine-grained
pipelining to enable instruction-level parallelism. Instruction
conflicts and resource utilization are efficiently tracked through
a bitmap-based scoring board within the instruction scheduler,
ensuring accurate modeling of both computation and data
movement patterns. Through this detailed modeling of both
computation and data movement patterns, the simulator pro-
vides a comprehensive performance analysis across different
architectural levels, tracking metrics such as energy consump-
tion, execution latency, and hardware utilization for each unit.
These detailed insights enable both quantitative evaluation
of different CIM design choices and validation of compiler
optimizations.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

To demonstrate how CIMFlow facilitates digital CIM archi-
tecture design, we conduct detailed analyses of compilation
optimization strategies and present case studies exploring the
impact of various architectural and software design choices.
The default architecture parameters are carefully selected to
efficiently support typical DNN workload characteristics while
maintaining practical hardware constraints, as detailed in Tab. I.
The performance statistics are acquired from multiple industry-
standard tools to ensure accurate modeling of all components
within the architecture. The CIM macro specifications are
derived from post-layout analysis based on the design pre-
sented in [11], while other on-chip memory components are
evaluated using memory compilers. The remaining digital logic
modules are implemented in Verilog HDL and synthesized
using Design Compiler, with power analysis conducted through
PrimeTime PX. The NoC interconnection costs are modeled
using Noxim [26].

We select representative DNN models that span different
architectural characteristics and computational demands as
our evaluation benchmark. The suite encompasses compute-
intensive architectures including ResNet18 and VGG19, along-
side compact models featuring depth-wise separable convo-
lutions such as MobileNetV2 and EfficientNetB0O. To align
with digital CIM implementation constraints, the weights and
activations of all models are quantized to INTS.

B. Compilation Optimization Evaluation

We evaluate our proposed compilation optimization strate-
gies against two baseline approaches: (1) a generic mapping
scheme that implements inter-layer pipeline without operator
duplication, and (2) the CG-level partition and opportunistic
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operator duplication technique from CIM-MLC [19], which
first partitions CG to fit the limited capacity then attempts
to utilize vacant resources through weight duplication. All
evaluations use the default architecture configuration described
in Tab. I to isolate the impact of compilation strategies.

As illustrated in Fig. 5, our DP-based partitioning and
optimization method demonstrates significant performance im-
provements, achieving up to 2.8 speedup and 61.7% energy
reduction compared to the baseline approaches. The benefits
are particularly pronounced for compact models like Mo-
bileNetV2 and EfficientNetBO, where the conventional parti-
tion method proves less effective due to their smaller weight
footprints, which leaves fewer unoccupied cores within such
partitioned execution stages for duplication opportunities. This
highlights the effectiveness of our DP-based approach in find-
ing optimal partitioning and mapping schemes that maximize
performance while respecting SRAM capacity constraints.

C. Architectural Configuration Exploration

The efficiency of digital CIM architectures hinges on the
careful balance between computational and data movement ca-
pabilities. We explore this trade-off through two critical design
parameters: MG size scaling and NoC link bandwidth (flit size
per cycle) configuration. Fig. 6 presents the energy breakdown
and throughput analysis across architectural configurations for
both compute-intensive and compact models compiled with the
generic mapping strategy.

For ResNetl8, increasing MG size consistently improves
throughput at the cost of moderately higher energy consump-
tion, with compute unit energy remaining its dominant com-
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ponent. Doubling the communication bandwidth also boosts
inter-layer pipeline throughput by up to 39.6%. In contrast,
EfficientNetBO shows different scaling characteristics. Its lower
resource requirements mean that increasing the number of
macros per group yields only modest throughput gains, while
higher NoC bandwidth introduces substantial data transfer
overhead without commensurate performance benefits, con-
suming up to 55.4% of total energy consumption when MG
size is 4. These distinct scaling behaviors across models high-
light the importance of early-stage architectural exploration,
demonstrating the value of CIMFlow as a systematic design
and evaluation framework.

To provide insights into the interaction between software
and hardware design choices, we further compare different
compilation strategies across these hardware configurations. As
shown in Fig. 7, while hardware configurations significantly
impact the achievable performance envelope, the performance
differences between hardware configurations can be signifi-
cantly reduced or even reversed through careful compilation
optimizations. These observations highlight why an integrated
hardware-software co-design approach is essential for digital
CIM architectures, as isolated exploration of either space would
overlook crucial optimization opportunities.

V. CONCLUSION AND FUTURE WORK

This paper presents CIMFlow, an integrated framework
that enables systematic design and evaluation of digital CIM
architectures. Through a flexible multi-level ISA design and ad-
vanced compilation strategies, CIMFlow effectively addresses
key challenges in digital CIM implementation, particularly the
SRAM capacity limitations. Our experimental results demon-
strate the capabilities of our proposed compilation optimiza-
tions, achieving up to 2.8x speedup and 61.7% energy re-
duction. The highly customizable and extensible nature of
CIMFlow enables systematic design space exploration, pro-
viding crucial insights for the software and hardware design
of digital CIM. In the future, we will keep on expanding the
framework to support emerging DNN operators and developing
automated design space exploration techniques. We believe
CIMFlow represents a significant step toward making digital
CIM a practical solution for next-generation Al accelerators.
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