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Abstract—Computing-in-Memory (CIM) architectures have
emerged as a promising solution for accelerating Deep Neural
Networks (DNNs) by mitigating data movement bottlenecks. How-
ever, realizing the potential of CIM requires specialized dataflow
optimizations, which are challenged by an expansive design
space and strict architectural constraints. Existing optimization
approaches often fail to fully exploit CIM accelerators, leading
to noticeable gaps between theoretical and actual system-level
efficiency. To address these limitations, we propose the MIREDO
framework, which formulates dataflow optimization as a Mixed-
Integer Programming (MIP) problem. MIREDO introduces a
hierarchical hardware abstraction coupled with an analytical
latency model designed to accurately reflect the complex data
transfer behaviors within CIM systems. By jointly modeling
workload characteristics, dataflow strategies, and CIM-specific
constraints, MIREDO systematically navigates the vast design
space to determine the optimal dataflow configurations. Evalu-
ation results demonstrate that MIREDO significantly enhances
performance, achieving up to 3.2× improvement across various
DNN models and hardware setups.

Index Terms—Computing-in-Memory, Dataflow Optimization,
Mixed-Integer Programming, DNN Accelerator.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-
art (SOTA) performance across various domains, establishing
themselves as the cornerstone of modern intelligent systems
[1], [2]. However, the deployment of DNNs in resource-
constrained edge devices faces significant challenges due to
substantial computational and memory requirements. To reduce
the memory bottlenecks and data transfer overhead inherent in
traditional von Neumann architectures, computing-in-memory
(CIM) has emerged as a promising paradigm [3]. By performing
matrix-vector multiplications (MVMs) directly in-situ within
memory arrays, CIM can significantly reduce costly data move-
ment. Prior works [4], [5] have demonstrated the effectiveness
of this paradigm, greatly advancing the field of specialized
accelerators for DNN inference.

However, the efficient design of CIM accelerators faces
unique challenges in dataflow optimization, which involves
strategies for data partitioning and scheduling to optimize
performance and energy efficiency. In contrast to traditional
accelerators, dataflow optimization for CIM accelerators must
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consider additional factors: inherent row- and column-level
parallelism constraints within CIM arrays, the bit-serial exe-
cution model, and the stalling introduced by weight reloading
procedures [6]. Empirically tuned or manually crafted mapping
strategies often fail to fully exploit the potential of CIM
architectures, resulting in substantial performance degradation.
Moreover, a single layer can have up to 13 million feasi-
ble dataflow options with drastically different performance
characteristics [7], making exhaustive search computationally
infeasible.

These optimization issues often lead to a commonly observed
gap between the theoretical performance of CIM macros and
actual system-level performance, which primarily stems from
mismatches between dataflow strategies and hardware architec-
ture. The challenge becomes more complex when considering
the diversity of DNN workloads, each with distinct computa-
tional patterns and memory access requirements. Furthermore,
the memory hierarchy external to the CIM macro introduces
system-level bottlenecks that are heightened by limited on-
chip resources [8]. Therefore, optimizing the entire processing
system, rather than individual macro-level design, is essen-
tial for realizing the full potential of CIM accelerators [9],
[10]. However, existing research offers limited insight into
maximizing the system-level performance of CIM, particularly
within resource-constrained accelerators. To bridge this gap,
we introduce MIREDO, a dataflow optimization framework
for SRAM-based CIM accelerators. MIREDO employs Mixed-
Integer Programming (MIP) for optimization, with a focus on
data transfer efficiency.

The main contributions of this work are summarized as
follows:
● We present a hierarchical abstraction of CIM architectures

and a corresponding data transfer analysis that reveals
system-level performance bottlenecks.

● We formulate the dataflow optimization as an MIP prob-
lem, which leverages a novel analytical latency model to
guide the search for high-efficiency solutions.

● We demonstrate that MIREDO achieves up to 3.2×
Energy-Delay Product (EDP) reduction across diverse
workloads and hardware configurations.

II. BACKGROUND AND MOTIVATIONS

This section provides an overview of CIM architecture and
reviews the landscape of related work in dataflow design and
optimization.
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TABLE I: Comparison of works on different criteria.

Work System
Optimization

CIM
Modeling

CIM-aware
Optimization

NeuroSpector [7] / CoSA [11] ✓ – –
SPCIM [12] – ✓ ✓

ZigZag-IMC [13]/CiMLoop [14] ✓ ✓ –
MIREDO ✓ ✓ ✓

A. CIM Architecture

CIM architectures represent a paradigm shift from conven-
tional accelerator designs by performing computation directly
within memory arrays, which mitigates the data-transfer bottle-
neck, thus significantly enhancing inference efficiency. Previous
studies [15]–[17] have shown that various technologies, such
as RRAM, SRAM, and MRAM, are viable candidates for CIM
accelerators. Among these technologies, SRAM is particularly
attractive due to its lower latency, higher endurance, and
compatibility with advanced CMOS logic processes [18]–[20].
While SRAM-based CIM architectures promise substantial
performance gains for DNN inference, the inherent 6T cross-
coupled structure of SRAM results in much lower integration
density and capacity than other technologies. As the scale of
DNN models increases dramatically, multi-core CIM architec-
tures have been widely explored to reduce the data transfer
overhead and increase computation parallelism. Although this
approach improves execution efficiency, it introduces a series
of system-level design complexities in memory mapping, data
scheduling, and inter-core communication. Therefore, develop-
ing a dataflow optimization strategy tailored for these multi-
core systems has become critical to unleash their full potential.

B. Dataflow Strategies

Most existing CIM architectures leverage a weight-stationary
(WS) dataflow, as it aligns well with in-situ computation
principles [21]. However, relying on such a static dataflow can
lead to poor performance due to the aforementioned challenges.
This highlights the need for adaptive optimization methods
capable of generating dataflows tailored to diverse hardware
configurations and the heterogeneity across different DNN
layers. A summary of several recent works addressing this
problem is presented in Table I.

While many dataflow optimization methods exist for tra-
ditional Processing Element (PE) accelerators, they fall short
of leveraging the efficiency benefits of CIM. For instance,
NeuroSpector [7] is an analysis framework that highlights the
impact of data movement on performance by modeling the
memory hierarchy. CoSA [11] employs MIP to model and
optimize factors such as buffer utilization and communication
traffic, a technique also employed in this paper. The fundamen-
tal architectural differences between PE and CIM accelerators
limit the effective application of these existing methods to CIM-
based systems.

Among CIM-focused approaches, SPCIM [12] proposes a
novel approach by introducing a reconfigurable cluster topol-
ogy within CIM macro structures, which enables harnessing
input parallelism or weight parallelism adaptively. However,
the effectiveness of these optimizations is tightly coupled to
a specific hardware topology, making it challenging to adapt
efficiently to novel workloads and different hardware platforms.
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Fig. 1: Hierarchical abstraction of the oriented CIM accelerator.

ZigZag-IMC [13] and CiMLoop [14] provide comprehensive
modeling and evaluation frameworks, effectively integrated into
existing system-level infrastructures. These frameworks utilize
random or heuristic search methods to find optimized dataflow
configurations.

Although the aforementioned studies contribute valuable
insights to specific aspects of CIM optimization, they exhibit
the following limitations:

❶ Oversimplified Performance Modeling: Most existing
works rely on simplistic performance models that assume data
transfer latencies can be perfectly hidden through double-
buffering [22], [23]. These idealistic assumptions fail to capture
the complex interactions within CIM architectures, leading to
temporal underutilization of hardware resources and suboptimal
system-level performance [24].

❷ Inefficient Design Space Exploration: Manual and
heuristic methods depend heavily on predefined rules or expert
knowledge, which lack scalability and cannot guarantee optimal
solutions. Meanwhile, brute-force search becomes computation-
ally prohibitive and is typically restricted to narrow, predefined
search spaces.

To address these limitations, this work introduces MIREDO,
an optimization framework that formulates dataflow optimiza-
tion as an MIP problem. Based on a comprehensive analysis
of CIM architectural characteristics and data transfer behav-
iors, our model incorporates resource constraints to accurately
predict inference latency. This approach enables the systematic
generation of high-performance dataflows for complex, multi-
core CIM accelerators.

III. ARCHITECTURE ABSTRACTION

To support the proposed MIREDO framework, we introduce
a multi-core CIM architecture abstraction, characterizing its
inherent structural parallelism and unique dataflow behaviors.

A. Hardware Abstraction

We illustrate the top-level accelerator architecture in
Fig. 1(a), comprising a global buffer, a distribution network,
multiple CIM cores, and a Single-Instruction Multiple-Data
(SIMD) unit. The distribution network efficiently multicasts
weights and features to the CIM cores for MVM operations.
The SIMD unit is then responsible for post-processing, such as
executing activation and pooling functions, and accumulating
partial sums generated by individual cores.

The CIM core architecture shown in Fig. 1(b) features a
configurable memory hierarchy of buffers and register files,
which offers bypassable access to reduce latency and a double-
buffered mode to overlap computation with communication.
However, this mode comes at the cost of halving the effective
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Fig. 2: Representative data-transfer timelines illustrating (a) mode-
switch stalls of the CIM macro, (b) pipeline stall due to throughput
mismatch, and (c) operand-synchronization stalls.

storage capacity compared to a single-buffered configuration.
In addition, the core datapath involves several non-bypassable
processing stages, including a preprocessing unit for bit-serial
input and an accumulator for partial sum aggregation.

As depicted in Figure 1(c), the CIM macro stores weight
data within its memory array. Input vectors are broadcast to
the SRAM array, typically along the wordlines or bitlines, to
perform MVM operations with weight data in either the analog
or digital domain. CIM macros generally operate in two distinct
modes: a standard Memory Mode for read/write or weight
update and a Compute Mode for MVM execution. However,
a critical limitation arises because both modes share peripheral
circuits. This structural dependency prevents a conventional
CIM array from performing computation and weight updates
concurrently. Consequently, the resulting pipeline stalls create
a severe performance bottleneck, an issue particularly acute
for workloads that necessitate frequent weight reloading, as
shown in Fig. 2(a). While custom macro designs can circumvent
this limitation, they often sacrifice versatility and introduce
significant overhead in area, power, and design complexity.

B. Data Transfer Analysis

Previous analytical models for latency often oversimplify
data transfer by assuming that latency equals the maximum
access time across all memory hierarchy levels. However, this
approach overlooks the complex interactions between oper-
ations executing within the accelerator. Even with double-
buffering techniques, throughput mismatches between memory
hierarchy levels can create pipeline stalls. As illustrated in
Fig. 2(b), the data transfer from the global buffer (GBuf) to
the input buffer (IBuf) may be faster than the downstream
processing at the input registers (IReg). Consequently, once
IBuf2 is also filled, the data transfer from the GBuf to the IBuf
is forced into an idle state, awaiting IBuf1 to become free.
This resulting pipeline stall significantly reduces the effective
bandwidth of the datapath.

While the weight-stationary dataflow adopted by most CIM
accelerators focuses on reducing weight data movement over-
head, the transfer overhead of feature maps remains a significant
factor in overall system performance. As shown in Fig. 2(c),
partial sum (Psum) write-back operations cannot overlap with
computation when the output register (OReg) employs single
buffering, thereby lengthening the critical path. Furthermore,
strict operand synchronization requirements create additional
bottlenecks, where the delayed arrival of any operand stalls
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Fig. 3: Overview of the proposed MIREDO framework.

the entire pipeline, resulting in temporal underutilization of
hardware resources.

IV. MIREDO FRAMEWORK

This section introduces MIREDO, an MIP-based framework
designed for dataflow optimization in CIM accelerators, build-
ing on the architecture abstraction outlined in Section III.

A. Framework Overview

Dataflow optimization for DNN accelerators involves deriv-
ing optimal tiling factors and loop permutations for a given
DNN workload, which can be represented via a loop nest for-
mat. To automate this complex process, we introduce MIREDO,
a systematic framework that provides an adaptive approach to
navigate the vast mapping space. The framework, shown in
Fig. 3, accepts a DNN model in ONNX format and a detailed
architecture description as its primary inputs, producing a
complete dataflow that explicitly defines the optimal temporal
and spatial mapping.

The core of MIREDO is the mathematical formulation of
the above optimization problem. The framework encodes the
workload and hardware parameters as a set of constants Sc,
while the dataflow mapping space is treated as a set of decision
variables Sv . A body of constraints links these constants and
variables, restricting the search space by enforcing hardware
limits and dataflow mapping specifications. This structured rep-
resentation constitutes an MIP problem in which the objective
is to minimize a cost function objcost, encompassing not only
overall latency but also memory access overhead. Table II
summarizes the notations used in our model. To enable an
accurate cost evaluation, we further propose a novel analytical
latency model that accurately accounts for pipeline stalls in
Section IV-D. By solving the MIP problem formulated below:

min
Sv

objcost(Sc, Sv), (1)

MIREDO produces a systematically optimized and highly effi-
cient dataflow for the target CIM accelerator.

B. Constant Definitions

The constants in our model are derived from the hardware
architecture and the workload. A memory mapping matrix CM

indicates whether each memory unit is dedicated to a single
operand or shared among several operands. Furthermore, a
key architectural characteristic for dataflow optimization is the
available parallelism, which greatly influences computational
efficiency and is implemented through spatial unrolling. This



TABLE II: MIREDO notation declarations.

Index Description

d Index for DNN tensor dimension.
f Index for loop tiling factor.
i Index for temporal loop nest level.
m Index for memory hierarchy level.
u Index for spatial unrolling axis.
λ Index for operand type (input / weight / output)

Constant Description

F Sets of tiling factors for each dimension.
C Sets of constants defining the mapping specifications.
H,Y Pre-enumerated sets for data sizes and loop bounds.
µ Weighting parameters for functions.

Variable Description

X Binary matrices representing spatial-temporal mapping.
V One-hot encoded vectors for linear selection.
ψ Binary indicators for operational states.
T Transfer latency of the operands.
P Processing latency of the operands.
L Critical path latency at a loop level.

is captured by a binary matrix CX specifying which tensor
dimensions can be unrolled onto these axes. For instance, due
to inherent hardware constraints, the CIM macro’s wordline
axis might only permit spatial unrolling at the output channel.
These formulations and other constants, such as memory bus
width (BW) and capacity (CA), collectively define the rigid
hardware resource constraints upon which dataflow optimiza-
tion is performed.

DNN operators are typically modeled as loop nests, with
bounds defined by dimensional parameters of the weights and
feature maps. While prior work often decomposes these bounds
into prime factors for allocation, this approach can lead to a
combinatorial explosion in the search space due to the large
number of factors F . To mitigate this complexity, we propose
Flexible Factorization: an algorithm that employs a greedy
strategy to reduce the number of factors, as detailed in Alg. 1.

The algorithm starts with a complete set of prime factors and
iteratively merges pairs of factors. This process is controlled
by two user-definable parameters: a minimum factor count
(kmin) and a relative loss threshold (α). At each step, the
algorithm chooses to merge the factor pair that incurs the
minimum loss to the flexibility score, which is calculated
by FlexScore in Alg. 1. The FlexScore is a heuristic metric
designed to quantify the mapping versatility of the factor set.
Specifically, it enumerates all unique partitions of F into k
disjoint subsets, where k ∈ {1,2,3}. The score is computed as
a weighted sum of the number of unique partitions, utilizing
decreasing positive weights (µP ) to prioritize factor sets that
offer greater partitioning flexibility. Merging factors diminishes
this flexibility, consequently resulting in a lower score. The
merging process stops when the factor count reaches kmin, or
when the relative loss from the best available merge exceeds
the threshold α. This algorithm effectively reduces the search
space complexity, providing a high-quality set of factors for the
subsequent MIP optimization.

C. Variables and Constraints

The formulation of the dataflow mapping space can be rep-
resented by a set of binary decision variables. The fundamental
mapping decision for each factor Fd,f is its placement in

Algorithm 1: Flexible Factorization
Input: An integer N > 1, a minimum factor count kmin, a relative

loss threshold α ∈ [0,1] ;
Output: A factor list F where ∏F = N .

1 Function FlexibleFactorization(N,α, kmin):
2 F ← PrimeFactors(N);
3 if length(F ) ≤ kmin then
4 return F ;

5 Scorefull ← FlexScore(F );
6 while length(F ) > kmin do
7 Scorebase ← FlexScore(F );
8 (∆best, Fbest) ← (∞, null);
9 for each pair (fi, fj) in F do

10 Fmerged ← (F ∖ {fi, fj}) ∪ {fi ⋅ fj};
11 Scoremerged ← FlexScore(Fmerged);
12 ∆← (Scorebase − Scoremerged)/Scorefull;
13 if ∆ <∆best then
14 ∆best ←∆, Fbest ← Fmerged;

15 if ∆best > α then
16 break
17 F ← Fbest;

18 return F ;

19 Function FlexScore(Finput):
20 P1, P2, P3 ← ∅,∅,∅;
21 Pall ← All partitions of Finput into k ∈ {1,2,3} subsets;
22 for each partition π in Pall do
23 k ← ∣π∣;
24 prods← sorted tuple of products from subsets of π;
25 Add prods to Pk;

26 return µP
1 ⋅ ∣P1∣ + µ

P
2 ⋅ ∣P2∣ + µ

P
3 ⋅ ∣P3∣;

either the temporal loop nest or a spatial unrolling dimension.
This binary choice is captured by variables XL

d,f,i and XU
d,f,u,

respectively, governed by a uniqueness constraint:

∑
i

XL
d,f,i +∑

u

XU
d,f,u = 1 ∀d, f, (2)

that ensures each factor is mapped exactly once.
To support flexible mapping strategies such as uneven map-

ping [25], we introduce a granular variable XM
d,f,λ,m that

enables independent definition of loop blocks for each operand
type (λ) at each memory level (m). Loop blocks represent
groups of loops assigned to the same memory level. These
variables are subject to the following constraints:

XM
d,f,λ,m ≤ C

M
m,λ, X

U
d,f,u ≤ C

X
u,d,

XZ
i,λ,m ≥X

M
d,f,λ,m ∧X

L
d,f,i

∀d, f, λ, u,m, i. (3)

The variable XZ indicates whether memory level m is
mapped to loop i. For the formulation of loop permutation,
the number of available temporal loop slots is set equal to the
total number of loop factors, with the indicator ψL

i identifying
which of these slots are active. Similarly, the indicator ψU

m,λ

specifies whether a memory level is utilized or bypassed for a
particular operand.

ψL
i = ∑

d,f

XL
d,f,i, ψ

U
m,λ = ⋁

d,f

XM
d,f,λ,m ∀i, λ,m. (4)

To formally define the data transfer path, we introduce XN as
a binary variable indicating a direct transfer for operand λ from
m to m′. The following constraints are introduced to link XN

with the utilization status ψU , ensuring path uniqueness and
preventing illegal bypasses:

∑
m′≥m+1

XN
m,m′,λ = ψ

U
m,λ, 1−ψ

U
m1,λ+X

N
m,m1,λ ≥X

N
m,m2,λ. (5)



Here, m, m1, and m2 are memory level indices satisfying m <
m1 < m2, where a larger index value m denotes a memory
level closer to the CIM macros.

To enforce hardware capacity constraints, the data size of
each operand at every memory level must be precisely formu-
lated. The dimensional bound at a specific level is determined
by multiplying all loop factors mapped to the current level
and all levels below. Since this multiplicative calculation is
inherently non-linear, it is unsuitable for the MIP formulation.
The loop bound for each dimension (BS

m,λ,d) is therefore
calculated as a linear sum in the logarithmic domain:

BS
m,λ,d = ∑

f

log(Fd,f) ⋅ ( ∑
m′=m

XM
d,f,λ,m′ +∑

u

XU
d,f,u), (6)

where the summation over u is performed for all indices
satisfying the condition Cu ≥ m. Inspired by prior work [23],
we circumvent the non-linear product by enumerating all valid
data sizes and using a one-hot encoded vector (V S

m,λ) to select
a single candidate from the set Hm,λ. Let P denote the operand
precision, the data size is given by

Sizem,λ =Hm,λ ⋅ V
S
m,λ ⋅ ψ

U
m,λ ⋅ Pm,λ ∀m,λ. (7)

A pre-calculated dimension vector Ym,λ,d holds the correspond-
ing bound for each enumerated data size. The constraint (6)
ensures that the loop bound derived from the mapping variables
is consistent with the specific entry selected by the one-hot
vector:

log(Ym,λ,d) ⋅ V
S
m,λ = B

S
m,λ,d ∀m,λ, d . (8)

The bit-serial and highly parallel nature of the CIM paradigm
imposes unique demands on data transfer, necessitating flexible
buffering strategies. Each memory level can operate in a stan-
dard single-buffered mode, which maximizes storage capacity
but risks pipeline stalls due to mutually exclusive access.
Alternatively, double-buffering can be employed to overlap
data transfer with computation, at the expense of halving the
effective storage capacity. To allow the dataflow optimizer to
navigate this trade-off, the binary variable ψDM is introduced
to select the optimal mode, enabling the capacity constraint to
be formally expressed as follows:

∑
λ

(1 + ψDM
m,λ ) ⋅ Sizem,λ ≤ CAm ∀m. (9)

The size of the data tile transferred into a memory level is
distinct from the data stored within it, due to data reuse and
multicast opportunities. We introduce a new dimensional bound
(BT ) by modifying the formulation (6) to exclude temporal
loop factors mapped at the current memory level:

BT
m,λ,d = ∑

f

log(Fd,f) ⋅ ( ∑
m′≥m+1

XM
d,f,λ,m′ +∑

u

XU
d,f,u). (10)

A corresponding one-hot vector V T
m,λ links this new bound to

the same constant Ym,λ,d via an analogous constraint.

D. Performance Modeling

The total execution latency of a workload is determined by
our loop-based analytical model, which recursively calculates
the operand processing latency (Pi,λ) at each temporal loop
level i. Using the previously defined symbols, the cycle count

TABLE III: Classification of operand-processing latency for different
buffering strategies and operand types (I: Input Feature, W: Weight,
O: Output Feature).

Buf. Strategy Operand Latency expression (Pi,λ)

Single I / W Li ⋅ (Ni − 2) + 2 ∗ Ti,λ + Pi+1,λ

Single O Li ⋅ (Ni − 1) + 2 ∗ Ti,λ + Pi+1,λ

Double I / W max{Li ⋅ (Ni − 3) + 2 ∗ Ti,λ +max{Ti,λ, Pi+1,λ}, Ti,λ ⋅Ni}
Double O Li ⋅ (Ni − 2) + Ti,λ +max (Ti,λ, Li) +max (Ti,λ, Pi+1,λ)
(No Transfer) (Any) Li ⋅ (Ni − 1) + Pi+1,λ

for a transfer operation (Ti,λ) is defined by the following
constraint:
XZ

i,λ,m = 1→ Ti,λ ⋅ BWm =Hm,λ ⋅ V
T
m,λ ⋅ ψ

U
m,λ ⋅ Pm,λ. (11)

The detailed formulations under all possible scenarios are listed
in Table III.

The critical path latency Li is formulated as the maximum
of two primary components: 1) the cumulative latency of its
nested inner loop, calculated as the product of its critical path
Li+1 and the loop count Ni+1; and 2) the combined latency
of transfer and processing from operands at the current loop.
Since the product term is non-linear, MIREDO employs a one-
hot vector V F to select a pre-enumerated bound, ensuring
MIP compatibility. This combination depends on the buffering
strategy, captured by the binary indicator ψDL

i,λ :

ψDL
i,λ = ⋁

m,m′≥m+1

(XZ
i,λ,m ∧X

N
m,m′,λ ∧ ψ

DM
m,λ ). (12)

This allows the model to select either a sequential summation
(Ti,λ+Pi+1,λ) or an overlapped calculation (max (Ti,λ, Pi+1,λ))
when double-buffering is enabled (ψDL

i,λ = 1).
Operand-transfer latency is accounted for only in the inner-

most loop block of each memory level where the actual data
transfer occurs. The model also incorporates the data-stationary
scenario, which applies when an operand is reused at loop level
i and thus incurs no transfer latency.

For the innermost MVM operation within a nested loop,
the latency is a constant (LMVM) determined by the operand
precision and the CIM macro design. The recursion boundary
condition is therefore expressed as Limax+1 = Pimax+1,λ =

LMVM. To maintain model consistency, inactive temporal slots
propagate latency from their inner loop, as expressed by the
relation:

ψL
i = 0→ (Li, Pi,λ) = (Li+1, Pi+1,λ) ∀i, λ. (13)

Based on the recursive components, the final optimization
objective is formulated as:

objcost = µ
C
1 ⋅max

λ
(P0,λ) − µ

C
2 ⋅ ∑

m,λ

m ∗ Sizem,λ. (14)

This cost function balances two competing goals via weighting
parameters µC : minimizing total latency and maximizing data
locality. The latter goal incentivizes storing data at lower
memory hierarchy levels closer to the CIM macros to reduce
data movement overhead. Minimizing this objective function
yields a dataflow optimized for both execution performance and
resource efficiency.

V. EVALUATION RESULTS

A. Experiment Setup
To ensure a fair and accurate evaluation of MIREDO, we

developed a custom simulator based on the architecture from



TABLE IV: Hardware component configurations.

Component Configuration
CIM Macro Array 128 × 32
Local Buffer Capacity 256 KB

Bus Width 128 bit
Core Number 8

Global Buffer Capacity 8 KB
Bus Width 256 bit

Off-chip Memory Bus Width 64 bit
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Fig. 4: MIREDO performance evaluation. (a) Analytical model accu-
racy validation. (b) Utilization and EDP comparison. (c) Per-layer and
overall speedup comparison.

Section III. Latency and power of memory are modeled using
PCACTI [26], and the statistics of other logic components
are derived from prior works [13]. The detailed configurations
of these hardware components are summarized in Table IV.
We employ Gurobi [27], a general-purpose optimizer for MIP
and other constrained programming, as the solver. By au-
tomatically identifying convolutional layers from the DNN
model, MIREDO defines the constants, variables, constraints,
and objective functions before invoking the solver. We equip a
2GHz Intel Xeon Gold 6330 CPU, with the time for solving a
single layer capped at 5 minutes.

To evaluate MIREDO, we benchmark its performance against
two representative dataflow schemes: 1) A heuristic search
inspired by the ZigZag framework [13] for its support of
uneven mappings; 2) A conventional Weight-Stationary (WS)
dataflow derived by imposing additional constraints within
our own MIP formulation. This setup provides a comparison
against both an empirical strategy and a heuristic optimization
approach. Our baseline workload utilizes ResNet-18 inference
on ImageNet [28], with weight and activation quantized to INT8
format. Subsequently, we extended our analysis to encompass
various networks and architectures.

B. Performance Evaluation

Accuracy. The accuracy of our analytical model was vali-
dated by comparing its latency predictions against results from
a detailed hardware simulation. As illustrated in Fig. 4(a),
the model achieves an average accuracy of 95.5% across all
evaluated model layers.

Latency. We further compare the latency of different
dataflow strategies per layer, as depicted in Fig. 4(c). The
heuristic scheme from ZigZag and the constrained weight-
stationary dataflow exhibit comparable overall latency, yet

0

1

2

3

Im
pr

ov
em

en
t i

n 
ED

P

0

1

2

3

64_16 64_32 128_32

ZigZag MIREDO

0

1

2

3

2 4 8

(c) (d)(b)(a)
Macro Config. Num. of Cores Buf. Cap.(KB)

0

1

2

3

4 8 16

Fig. 5: Performance comparison across various DNN models and
hardware configurations.

their effectiveness varies across different layers. In contrast,
MIREDO achieves a consistent speedup across most layers.

Efficiency. Fig. 4(b) illustrates the trade-off between macro
utilization and overall system efficiency in dataflow optimiza-
tion for a representative layer. Compared to a baseline with
limited optimization, the weight-stationary method maximizes
spatial utilization to improve weight reuse, but restricts the
search space and leads to a suboptimal solution. By jointly
optimizing latency and resource allocation, MIREDO explores
a considerably larger mapping space and consequently improves
system-level performance.

C. Adaptability and Robustness

We conduct extensive evaluations to validate the adaptability
and robustness of MIREDO across diverse workloads and hard-
ware configurations. Our evaluation first assesses MIREDO’s
adaptability against the ZigZag-based heuristic across repre-
sentative DNN models. As shown in Fig. 5(a), our approach
consistently achieves significant EDP reductions, ranging from
1.6× to 3.2× over the baseline. These results demonstrate
MIREDO’s ability to generate optimized dataflows tailored to
different workloads.

To assess robustness, we analyze performance across various
hardware configurations, including different macro configu-
rations, core counts, and buffer capacities. As illustrated in
figures 5(b)-(d), MIREDO achieves significant improvements
in EDP reduction compared to the baseline across various
hardware configurations. This highlights the value of systematic
optimization in memory-constrained environments, where con-
ventional approaches struggle to balance efficiency with severe
memory limits.

VI. CONCLUSIONS

In this work, we introduce MIREDO, a novel framework
utilizing MIP to optimize dataflows for executing DNN work-
loads on CIM accelerators. Through a hierarchical hardware
abstraction, MIREDO systematically models the complex map-
ping processes and hardware constraints, allowing accurate
estimation of execution latency. This structured approach en-
ables MIREDO to efficiently determine the optimal dataflow
configuration in a single iteration, significantly improving CIM
accelerator efficiency. Experimental results show that MIREDO
effectively reduces the EDP by up to 3.2×, highlighting its
adaptability to diverse workloads and hardware constraints.
Moreover, the flexible MIP formulation ensures that MIREDO
is highly scalable and easily extendable to various DNN work-
loads and CIM architectures.
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