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Abstract
Long-context inference for Large Language Models (LLMs)
is heavily limited by high computational demands. While sev-
eral existing methods optimize attention computation, they
still process the full set of hidden states at each layer, lim-
iting overall efficiency. In this work, we propose SlimIn-
fer, an innovative framework that aims to accelerate infer-
ence by directly pruning less critical prompt tokens during
the forward pass. Our key insight is an information diffusion
phenomenon: As information from critical tokens propagates
through layers, it becomes distributed across the entire se-
quence. This diffusion process suggests that LLMs can main-
tain their semantic integrity when excessive tokens, even in-
cluding these critical ones, are pruned in hidden states. Mo-
tivated by this, SlimInfer introduces a dynamic fine-grained
pruning mechanism that accurately removes redundant tokens
of hidden state at intermediate layers. This layer-wise pruning
naturally enables an asynchronous KV cache manager that
prefetches required token blocks without complex predictors,
reducing both memory usage and I/O costs. Extensive exper-
iments show that SlimInfer can achieve up to 2.53× time-
to-first-token (TTFT) speedup and 1.88× end-to-end latency
reduction for LLaMA3.1-8B-Instruct on a single RTX 4090,
without sacrificing performance on LongBench. Our code
will be released upon acceptance.

1 Introduction
Large Language Models (LLMs) have shown strong perfor-
mance in long-context tasks such as summarization (Zhang
et al. 2020; Kryściński et al. 2022), multi-document question
answering (Yang et al. 2018), and retrieval from extended in-
puts (Bai et al. 2024). Scaling to longer sequences not only
enables more complex reasoning, but also introduces sub-
stantial computational and memory overhead as the context
length increases (Fu 2024).

During the prefill stage, the self-attention mecha-
nism (Vaswani et al. 2017) incurs quadratic time complex-
ity with respect to the sequence length, making it a major
source of latency in long-context scenarios. At the same
time, the Key-Value (KV) cache grows linearly with input
length, leading to substantial GPU memory consumption.
To mitigate these issues, numerous token pruning methods
have been proposed. However, existing token pruning meth-
ods face several critical limitations. Some works (Zhang
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Figure 1: Accuracy vs. inference efficiency across different
acceleration approaches on LongBench (Bai et al. 2024) for
LLaMA-3.1-8B-Instruct (Grattafiori et al. 2024).

et al. 2023; Xiao et al. 2024b; Li et al. 2024; Yang et al.
2024; Wang et al. 2025; Cai et al. 2025; Hao et al. 2025;
Nguyen et al. 2025) focus primarily on optimizing the de-
coding phase, offering minimal improvements to the crit-
ical Time-To-First-Token (TTFT). In addition, their token
eviction strategies often lead to accuracy degradation due
to the removal of contextually important information. Other
approaches (Lai et al. 2025; Jiang et al. 2024) extend sup-
port to both prefill and decoding phases by sparsifying the
attention pattern (Deng et al. 2025). Nevertheless, they pro-
cess the full sequence of hidden states at every layer, leav-
ing non-attention components like Feed-Forward Networks
(FFNs) unoptimized and limiting overall acceleration. Mem-
ory efficiency presents an additional challenge. Dynamic
token pruning methods (Fu et al. 2024) retain the entire
KV cache in the GPU, leading to excessive memory con-
sumption and limited scalability for longer sequences. To
alleviate this, some systems offload the KV cache to the
CPU (Tang et al. 2024), which reduces GPU pressure (Gong
et al. 2024; Huang et al. 2024) but introduces significant I/O
latency. More recent designs attempt to prefetch KV seg-
ments to overlap data transfer and computation (Lee et al.
2024; Yang et al. 2025). However, these approaches often
rely on predictor-based mechanisms, introducing additional
overhead and complexity. Therefore, existing token pruning
methods still struggle to simultaneously optimize inference
speed (Jiang et al. 2024; Huang et al. 2025c), memory us-
age (Xiao et al. 2024b; Huang et al. 2025a), and model per-
formance (Huang et al. 2025b; Wnag et al. 2024).
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In this paper, we propose SlimInfer, a framework de-
signed to accelerate inference by dynamically pruning less
critical prompt tokens during the forward pass. Our method
builds on a key insight we term the information diffusion
phenomenon: As information from critical tokens propa-
gates through the layers of an LLM, it becomes progres-
sively distributed across other token representations. This
diffusion process suggests that LLMs can maintain their se-
mantic integrity even when excessive tokens are pruned in
hidden states, including those essential initially. Motivated
by this insight, SlimInfer introduces a dynamic layer-wise
pruning to the hidden states across intermediate layers, pro-
gressively reducing computational workload. To preserve
essential semantic information while maximising efficiency,
we further introduce a fine-grained, block-wise importance
evaluation that retains only the contextually relevant tokens.
This pruning mechanism works in tandem with an asyn-
chronous KV cache manager, which exploits the determin-
ism of pruning decisions to enable predictor-free prefetching
and efficient GPU memory management.

We conduct extensive experiments on LLaMA-3.1-
8B-Instruct (Grattafiori et al. 2024) and Qwen2.5-7B-
Instruct (Qwen et al. 2025). As shown in Figure 1, Slim-
Infer can achieve up to 2.53× time-to-first-token (TTFT)
speedup and a 1.88× end-to-end latency reduction on a sin-
gle NVIDIA RTX 4090 GPU. It also maintains near-lossless
accuracy drops on the LongBench (Bai et al. 2024).

2 Related Works
2.1 Token Pruning
Token pruning methods aim to reduce inference overhead by
selectively removing less critical tokens from computation
or memory. Many approaches target GPU memory reduction
by maintaining a fixed-size KV cache. StreamingLLM (Xiao
et al. 2024b) retains initial tokens (attention sinks) and a
sliding window of recent tokens, but discards intermediate
ones. H2O (Zhang et al. 2023) proposes a heavy-hitter ora-
cle that evicts tokens with low cumulative attention scores.
Similarly, SnapKV (Li et al. 2024) uses the local context
of a prompt to predict and retain important tokens for fu-
ture generation steps. LazyLLM (Fu et al. 2024) introduces
dynamic pruning based on token importance, but still re-
tains most KV entries in GPU memory, limiting its scal-
ability to longer contexts. A primary limitation of these
methods is their irreversible token eviction, which perma-
nently removes KV entries from GPU memory. This per-
manent removal can lead to significant accuracy degrada-
tion, particularly in complex tasks that rely on long-range
dependencies scattered throughout the context. Unlike prior
methods that irreversibly discard evicted tokens, SlimIn-
fer offloads currently irrelevant tokens (i.e., pruned tokens)
to CPU memory instead of discarding them, significantly
improving performance and reducing GPU memory usage.
Other methods focus on accelerating computation by induc-
ing sparsity in the attention map. FlexPrefill (Lai et al. 2025),
SpargeAttn (Zhang et al. 2025b) adopt block-level heuristics
by constructing representative vectors for token chunks, en-
abling coarse-grained attention skipping. In contrast, MIn-

ference (Jiang et al. 2024) predicts structured sparse pat-
terns based on partial attention observations. However, they
still compute over the full sequence of hidden states at every
layer. As a result, non-attention components like the Feed-
Forward Networks (FFN) remain unoptimized, leaving sig-
nificant room for further acceleration, which limits the over-
all speedup, especially during the prefill stage. SlimInfer
directly addresses this by pruning the hidden states them-
selves, reducing the workload for all subsequent layers.

2.2 KV Cache Offloading
This line of work addresses the memory overhead of long-
context inference by offloading the KV cache from GPU
to CPU memory. Quest (Tang et al. 2024) adopts a naive
on-demand strategy, which fetches KV entries only when
needed. More advanced systems attempt to prefetch KV
cache blocks to overlap data transfer with computation. In-
finiGen (Lee et al. 2024) performs a lightweight rehearsal
using partial model weights and previous-layer inputs, aided
by offline Singular Value Decomposition (SVD). Attention-
Predictor (Yang et al. 2025) trains a separate CNN to fore-
cast attention scores. However, these approaches introduce
considerable computational and engineering overhead. In
contrast, SlimInfer sidesteps these limitations by leverag-
ing its layer-wise pruning design to enable a predictor-free
prefetching strategy, allowing efficient KV cache transfers
without speculative estimation.

3 Motivation
The design of SlimInfer is inspired by the following core
insights: (1) Information diffusion phenomenon, which con-
firms the feasibility of aggressive pruning hidden states; (2)
This pruning strategy naturally offers an opportunity for KV
cache prefetching to further improve inference efficiency.

3.1 Information Diffusion
Conventional token pruning approaches (Lai et al. 2025;
Jiang et al. 2024) to accelerating attention computation typ-
ically retain the full set of hidden states while optimizing
the underlying operations. In contrast, we investigate a more
radical direction: The feasibility of pruning hidden states di-
rectly during the forward pass. To this end, we conducted a
probing experiment on LLaMA3.1-8B-Instruct (Grattafiori
et al. 2024). As shown in Figure 2 (left), we selectively re-
move the hidden state corresponding to a critical prompt
token “278” in different layers. The model successfully re-
calls the correct answer when pruning is applied at a later
layer, but fails when pruning occurs earlier. To further un-
derstand the underlying mechanism, we visualize the atten-
tion weights from the decoding token to the prompt tokens
across all transformer layers in Figure 2 (right). In a stan-
dard decoding step, a bright vertical activation band emerges
around Layer 13, which signifies a sustained focus of the
decoding token towards the critical prompt token (“278” in
the response→ “278” in the prompt). When pruning is ap-
plied in a later layer (i.e., Layer 25), the activation band is
abruptly truncated at the pruning point. Despite this trunca-
tion, the model produces the correct output, suggesting that



Factual Statement: The price is $278.

Output: $288 Output: $278Output: $278
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Figure 2: (Left) Illustration of a probing experiment on LLaMA3.1-8B-Instruct (Grattafiori et al. 2024). Pruning the hidden
state of the critical prompt token “278” (which indicates the correct answer: “$278”) in a later layer (right) results in the correct
output, whereas pruning prompt tokens in an early layer (middle) leads to an incorrect output. (Right) Visualization of layer-
wise attention weights from the decoding token (i.e., response token) “278” to prompt tokens.
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Figure 3: SlimInfer reduces the latency of a layer (i.e., QKV
Generation+ Attention+FFN) by prefetching KV cache that
is offloaded to CPU, overlapping KV cache fetching with
computation. “Sel.” means selecting tokens in KV cache (b)
or hidden state (c) to prune.

the semantic contribution of the critical token has already
been effectively diffused into other tokens during the forward
passes of the early layers. To the contrary, early pruning at
Layer 5 prevents the formation of this stable attention pat-
tern. The absence of the hidden state corresponding to the
critical token results in scattered and faint vertical lines over
irrelevant tokens around Layer 13. This disoriented attention
span reflects a disruption of the standard inference process.
Insights. This series of observations yields two core design
principles for SlimInfer: (i) The hidden state of the early
layer should be retained to preserve semantic fidelity, as
pruning too early disrupts the diffusion process; (ii) In later
layers, even the hidden states of originally important tokens
can be safely pruned, indicating substantial redundancy that
can be exploited to reduce computation.

3.2 Prefetching Opportunities
Managing the KV cache efficiently is a major challenge
in long-context inference, especially when offloading the
KV cache to the CPU for GPU memory savings. It intro-
duces significant I/O costs by fetching offloaded KV cache
from CPU to GPU during subsequent inference steps (Lee
et al. 2024). To reduce this overhead, prior work intro-
duces prefetching, a technique that overlaps KV cache trans-
fer with computation to hide latency. However, enabling

prefetching is non-trivial for token pruning that focuses on
sparse attention. As shown in Figure 3 (b), Quest (Tang et al.
2024) prunes tokens from the KV cache (including offloaded
entries) based on current QKV representations. After the
pruning stage (i.e., Sel.), the offloaded KV entries required
for fetching are available. Thus, it is impossible to overlap
data transfer (KV Fetching) with computation prior to At-
tention. To allow prefetching, InfiniGen (Lee et al. 2024)
addresses this by rehearsing attention patterns using partial
weights and offline SVD, while AttentionPredictor (Yang
et al. 2025) trains a separate CNN to forecast future attention
scores. Both approaches introduce additional computational
and engineering overhead due to their speculative nature.
Analysis. Notably, with the aforementioned hidden state
pruning (Section 3.1) applied following Attention for a given
layer, SlimInfer can eliminate the need for predictive mech-
anisms. As illustrated in Figure 3 (c), KV Fetching can over-
lap with the computation of FFN and QKV Generation prior
to the subsequent Attention. Building upon this analysis, our
framework can naturally achieve timely prefetching without
any predictive or heuristic strategy.

4 SlimInfer
4.1 Framework Overview
In this Section, we propose SlimInfer to accelerate long-
context inference. It incorporates a dynamic block-wise hid-
den state pruning with a predictor-free KV cache prefetch-
ing strategy. Specifically, the prompt tokens are partitioned
into fixed-size blocks, a common abstraction that aligns well
with GPU-friendly batch operations and enables efficient
memory access (Tang et al. 2024; Xiao et al. 2024a). At any
point during inference, a block is called active block if it is
deemed critical for ongoing computations. Only these active
blocks participate in attention computation and have their
KV entries stored in GPU memory. Additionally, our prun-
ing mechanism is applied exclusively to prompt tokens. In
contrast, all tokens generated as responses is fully retained
to preserve fluency throughout generation. As shown in Fig-
ure 4, inference is divided into two stages:

Preserve layers. Motivated by our analysis of information
diffusion, the early layers retain all tokens in the prompt.
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Figure 4: Overview of the proposed SlimInfer. (i) During inference, early Preserve Layers retain all prompt blocks to sup-
port information diffusion (Section 3.1), while later Slim Layers prune less relevant blocks to reduce computation (Sec-
tion 4.1). (ii) Each block is divided into fine-grained Token Units for accurate importance scoring (Section 4.2). (iii) When
overlap < γ (Algorithm 1), SlimInfer triggers asynchronous KV cache swapping, which naturally overlaps data transfer
(prefetching+offloading) with computation (Section 4.3). “T” denotes the current inference step.

This ensures that critical semantic information has sufficient
depth to propagate through the model before pruning.

Slim layers. In the subsequent layers, SlimInfer dynami-
cally prunes prompt blocks of hidden state across inference
steps to reduce computation. This is guided by an accurate
importance estimator that selects the top-k most relevant
blocks based on the recent decoding context. The pruning
decisions (as demonstrated in Section 4.2) are made imme-
diately after Attention computation and determine the ac-
tive block set for the next layer. This active block set is then
propagated unchanged through subsequent layers until the
next pruning operation.

The above hidden state pruning paradigm naturally en-
ables efficient KV cache prefetching, as mentioned in Sec-
tion 3.2. Moreover, we adopt an overlap-aware design (see
Section 4.3) for prefetching to avoid unnecessary data move-
ment: Asynchronous KV cache prefetching and offloading
are triggered only when the active block set changes sig-
nificantly, enabling I/O to be overlapped with computation,
thereby minimizing inference overhead.

4.2 Block-wise Prompt Token Pruning
Here we detail the specific pruning decision for Slim Lay-
ers. Conventional approaches of block-level token pruning
often estimate the contribution of each block to the current
decoding context by compressing the entire block into a sin-
gle vector (Tang et al. 2024; Yang et al. 2025), which may
obscure fine-grained semantic information. To address this
limitation, SlimInfer adopts a more expressive strategy by
partitioning each prompt block of Key states into multiple
smaller subsets, termed as token units. This design captures
finer-grained semantics within each block, enabling more
accurate importance estimation without sacrificing block-
level memory efficiency.

Specifically, each prompt block Bj is divided into M dis-
joint TokenUnits, where each unit consists of a contiguous

sequence of tokens within the block. For each token unit, a
representative Key vector krep(j,m) is computed by averag-
ing the Key states of all tokens within that unit.

krep(j,m) = Mean ({key ∈ TokenUnitj,m}) . (1)

To assess block importance, we construct a local window
of the Query state, ql, by averaging the Query vectors of the
most recent w tokens, drawn from the end of the prompt dur-
ing the prefill phase or from decoded tokens during the de-
coding phase. For each representative Key vector khrep(j,m)
in block Bj , we compute its similarity to ql via dot product
on each attention head. The block-level importance score is
then defined as:

rblock(ql, Bj) = max
m

{
1

H

H∑
h=1

(
qhl · khrep(j,m)

)}
, (2)

where H denotes the number of attention heads, m indexes
token units within the block, and h indexes attention heads.

In addition to this dynamic scoring, our pruning policy
enforces the retention of structurally important blocks to
maintain model stability. Specifically, the initial block of
the prompt, which often acts as attention sinks (Xiao et al.
2024b), is always preserved in the active set, regardless of its
score. For all other blocks, the top-k blocks with the high-
est importance scores are selected to form the candidate set,
Bcandidate(t)

1, for subsequent computation. The KV cache of
pruned blocks is not discarded but is offloaded to CPU mem-
ory, allowing future restoration when they become relevant
again in subsequent decoding steps.

4.3 Predictor-Free KV Cache Prefetching
To reduce GPU memory pressure, SlimInfer offloads the

KV cache of inactive prompt blocks to the CPU. Under

1t denotes the current inference step.



Algorithm 1: Overlap-aware KV Swapping
Input: Bactive(t−1), Bcandidate(t), BMemory, and threshold γ
Output: Updated Bactive(t)

1: Compute overlap ratio:

overlap← |Bcandidate(t) ∩Bactive(t−1)|
|Bcandidate(t)|

2: if overlap < γ then
3: Bactive(t)← Bcandidate(t)
4: Boffload ← (Bactive(t−1) \Bactive(t)) \BMemory
5: Bload ← (Bactive(t) \Bactive(t−1))
6: for each block Bj in Boffload do
7: // Offloading
8: Move KV cache of Bj from GPU to CPU
9: end for

10: for each block Bj in Bload do
11: // Prefetching
12: Load KV cache of Bj from CPU to GPU
13: end for
14: else
15: Bactive(t)← Bactive(t−1)
16: end if

this scenario, SlimInfer naturally allows a predictor-free
prefetching mechanism to reduce significant I/O costs that
leverages its layer-wise hidden state pruning design (as
demonstrated in Section 3.2). Here, we further present an
overlap-aware KV swapping (see Algorithm 1) to minimize
unnecessary data transfer for prefetching as follows.

At each inference step t (t > 1), SlimInfer maintains an
active block set2, Bactive(t), whose corresponding KV cache
entries are stored in GPU memory for fast access. To min-
imize unnecessary data movement, a swap operation (i.e.,
offloading + prefetching) is only enabled when the com-
position of this set needs to change significantly. Specifi-
cally, SlimInfer first establishes the candidate activation set,
Bcandidate(t) (see Section 4.2), calculated based on impor-
tance scores. SlimInfer then computes the overlap ratio be-
tween this candidate set and the previous active block set,
Bactive(t− 1). If the ratio falls below a predefined threshold
γ, a swap operation is triggered. Otherwise, Bactive(t − 1)
is directly reused as Bactive(t), which neglects KV cache
prefetching and incurs negligible performance drops (see
Appendix). This design prioritizes inference efficiency to re-
duce data transfer overhead.

The swap operation, as detailed in Algorithm 1, involves
asynchronous prefetching: (i) KV entries for newly required
blocks (Bload) are transferred from the CPU to the GPU. (ii)
Entries for unneeded blocks (Boffload) that are not yet in the
CPU memory pool are offloaded to the CPU; those already
reside in CPU (i.e., corresponding to blocks BMemory), their
GPU memory is immediately released for newly prefetched
entries. To maximize efficiency and hide I/O latency, the of-
floading and prefetching processes are executed on a sep-
arate CUDA stream. As illustrated in Figure 3, this swap

2The definition of active block can be found in Section 4.1.

overlaps with the subsequent FFN and QKV Generation.

5 Experiments
5.1 Settings
Models The experiments are conducted using LLaMA-
3.1-8B-Instruct (LLaMA-3.1) (Grattafiori et al. 2024) and
Qwen2.5-7B-Instruct (Qwen-2.5) (Qwen et al. 2025) to
evaluate the effectiveness of our method in larger-scale
LLMs. Both models support context lengths of 128k.

Implementation Details Our framework is built on
LazyLLM (Fu et al. 2024) and is implemented in PyTorch.
For the inference pipeline, we integrate SlimInfer into the
Transformers (Wolf et al. 2020) library by replacing the de-
fault self-attention module to support efficient block-wise
token pruning and asynchronous KV cache management.
Unless otherwise noted, we use a block size of 64, a token
unit size of 8, a KV swap threshold γ = 0.9, and a local
query window of 4. Pruning is applied at layers 10, 20, and
30 for LLaMA3.1, retaining 8k, 4k, and 2k tokens respec-
tively; and at layers 9, 18, and 26 for Qwen2.5, retaining
12k, 6k, and 4k tokens. All accuracy experiments are con-
ducted on an NVIDIA H200 GPU, while efficiency evalua-
tions are run on a single NVIDIA RTX 4090 GPU (24GB)
to simulate typical edge deployment.

Baselines To evaluate the effectiveness of SlimInfer, we
compare it with FlashAttention2 (Full KV) (Dao 2023) and 3
token pruning approaches for long-context processing: MIn-
ference (Jiang et al. 2024), FlexPrefill (Lai et al. 2025), and
LazyLLM (Fu et al. 2024). FlashAttention2 serves as the
dense attention baseline, while the others adopt sparse atten-
tion or memory management to improve efficiency. All re-
sults are based on public implementations. To ensure a fair
comparison, LazyLLM applies pruning at the same layers
as SlimInfer, retaining 50% of tokens at each pruning layer.
For FlexPrefill, we use γ = 0.95 for both LLaMA-3.1 and
Qwen-2.5, consistent with its recommended configuration.
For MInference, we follow its official codebase and select
the sparse attention pattern for each head accordingly.

5.2 Accuracy Evaluation
Following common practice (Zhang et al. 2025b; Li et al.
2024; Zhang et al. 2025a), we adopt the LongBench (Bai
et al. 2024) to evaluate the generation quality of our method
under long-context understanding settings. LongBench in-
cludes a wide range of tasks such as single-document
and multi-document QA, summarization, few-shot learning,
synthetic tasks, and code completion. Each task is evaluated
using task-specific metrics such as accuracy, F1-score, and
Rouge-L, where higher scores indicate better performance.

As shown in Table 1, SlimInfer consistently achieves
the highest average accuracy across both LLaMA3.1-8B-
Instruct and Qwen2.5-7B-Instruct models. Beyond its strong
overall performance, SlimInfer exhibits consistent and ro-
bust accuracy across diverse task categories, matching or
surpassing other baselines on most benchmarks. These re-
sults underscore its broad generalization capability across
different model architectures.
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LLaMA3.1-8B-Instruct

Full KV 45.82 55.05 55.50 44.28 30.78 35.21 25.49 27.23 17.17 72.50 91.65 43.92 46.00 7.43 99.50 63.12 56.74 48.08

LazyLLM 46.39 51.28 54.52 43.42 28.86 34.57 25.41 27.05 17.30 70.50 91.00 43.64 46.00 7.94 99.50 59.44 56.12 47.23
MInference 44.29 52.53 52.00 44.10 25.72 35.09 25.47 27.21 17.53 72.00 91.18 43.73 46.00 3.25 97.00 64.87 60.00 47.17
FlexPrefill 44.55 55.56 54.56 43.43 30.07 34.64 25.83 27.05 16.97 70.50 89.81 43.18 41.00 2.59 82.00 64.67 62.06 46.38
SlimInfer 45.19 53.82 55.14 44.37 30.95 34.99 24.77 27.10 16.81 71.00 91.65 44.36 45.50 6.30 98.50 63.65 55.95 47.65

Qwen2.5-7B-Instruct

Full KV 43.92 52.76 57.97 46.56 30.16 31.78 23.36 24.30 16.05 72.50 88.64 45.64 43.00 8.00 100.00 60.44 66.84 47.76

LazyLLM 39.79 45.71 53.30 42.58 28.94 31.16 23.08 23.28 15.61 66.50 87.67 45.31 42.25 6.59 100.00 57.46 63.89 45.48
MInference 44.02 52.86 58.25 46.17 29.85 31.78 23.27 23.88 15.84 71.50 89.09 45.89 41.60 8.00 92.00 61.33 67.98 47.25
FlexPrefill 41.65 51.92 55.29 41.65 29.69 31.71 23.27 24.05 15.91 70.50 88.22 46.45 36.50 2.00 75.00 61.10 63.38 44.61
SlimInfer 43.74 52.31 56.94 46.62 27.25 31.85 23.40 24.26 16.09 72.00 89.01 45.52 43.00 8.50 99.00 60.21 65.71 47.38

Table 1: Performance comparison on LongBench (Bai et al. 2024). The best and second results are in bold and underlined.

5.3 Efficiency Evaluation
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Figure 5: Inference efficiency comparison for LLaMA3.1-
8B-Instruct (Grattafiori et al. 2024). (Upper) TTFT and
(Lower) E2E latency acceleration ratio vs. context length.
SlimInfer far outperforms the baselines at long context
lengths (≥24k) and remains on par with them in other cases.

Latency Profiling We benchmark the inference latency
across various methods with a single input sequence. All
experiments are conducted on an RTX 4090 GPU using
LLaMA-3.1-8B-Instruct (Grattafiori et al. 2024). To assess
how latency scales with input length, we use 5 truncated
versions of a 32k token sequence sampled from Long-
Bench (Bai et al. 2024). We report two metrics: (1) Time-

to-First-Token (TTFT) latency, and (2) End-to-End (E2E)
latency for decoding 16 tokens. In Figure 5, we present
the acceleration ratios of various inference baselines rela-
tive to the FlashAttention-2 (Dao 2023) baseline. Across
all input lengths, our method consistently achieves signif-
icant speedups in both TTFT and E2E latency. In particu-
lar, our SlimiInfer shows an increasing acceleration trend
for TTFT as context length grows, highlighting the advan-
tage of our sparse prefill design in long-context scenarios.
Compared to other baselines, our method achieves the high-
est TTFT speedup (up to 2.53×) and E2E speedup (up to
1.88×) at 32k input length. These results further validate
the superiority of our design in reducing both prompt pre-
filling and decoding latency. Comparison for Qwen2.5-7B-
Instruct (Qwen et al. 2025) can be found in Appendix.

Accuracy vs. Efficiency Our dynamic pruning strategy
enables flexible trade-offs between inference efficiency and
model accuracy. In Figure 6, we compare end-to-end latency
and LongBench (Bai et al. 2024) accuracy across differ-
ent baselines. The results show that SlimInfer establishes
a strong Pareto frontier: It achieves accuracy close to the
full KV baseline while substantially reducing latency. Com-
pared to existing methods, SlimInfer offers a more favorable
balance between quality and efficiency. Detailed settings are
provided in the Appendix.

Memory Efficiency In addition to latency, we evaluate
SlimInfer’s GPU memory footprint against other represen-
tative methods. FlexPrefill (Lai et al. 2025) and MInfer-
ence (Jiang et al. 2024) optimize computation but retain the
full KV cache throughout all layers, resulting in no memory
savings. LazyLLM (Fu et al. 2024) applies dynamic prun-
ing but overlooks KV cache offloading, missing an oppor-
tunity to reduce substantial GPU memory overhead. In con-



Figure 6: Accuracy vs. E2E latency for LLaMA3.1-8B-
Instruct (Grattafiori et al. 2024) on LongBench (Bai et al.
2024) with 32k context. SlimInfer achieves a markedly su-
perior trade-off, delivering near-lossless accuracy drops with
substantially lower latency than other methods.

Method 8k 16k 24k 28k 32k

Full KV (Baseline) 1.00 2.00 3.00 3.50 4.00
SlimInfer (Ours) 0.80 1.11 1.42 1.58 1.73
Memory Saving (%) 20.3 44.5 52.6 54.9 56.6

Table 2: Prompt KV cache memory consumption (GB) on
LLaMA-3.1-8B-Instruct across different input lengths.

trast, SlimInfer combines a dynamic pruning strategy with
offloading for KV pairs from inactive blocks to CPU mem-
ory. Therefore, SlimInfer effectively limits GPU memory us-
age throughout inference. As shown in Table 2, this design
yields 20.3−56.6% reductions in prompt KV cache memory.

5.4 Ablation Study
We use LLaMA3.1-8B-Instruct (Grattafiori et al. 2024) here.
The default settings are given in Section 5.1.

Balancing Pruning Depth and Token Retention We
vary the pruning start layer while keeping the total number
of retained tokens approximately constant, to examine how
the position of pruning affects model performance across
tasks. As shown in Figure 7, all three tasks exhibit a non-
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)

Figure 7: Impact of pruning start layer on task performance
under fixed overall sparsity.

linear pattern: Accuracy improves as pruning is delayed to
the middle layers. However, for MQA and Qasper, further
delaying pruning causes a sharp accuracy drop, while PassR

remains largely stable. This could result from too few to-
kens being retained under the sparsity constraint at later lay-
ers. Early pruning hinders information diffusion, whereas
late pruning restricts token capacity for downstream reason-
ing. This underscores the need to balance early information
preservation with sufficient late-layer token availability.

Method MuSiQue PassR HPQA Avg. Score

Avg-Pooling 30.52 95.00 55.03 47.45
Max-Pooling 29.77 98.00 54.31 47.44
SlimInfer 30.95 98.50 55.14 47.65

Table 3: Ablation study on block importance scoring meth-
ods on LongBench (Bai et al. 2024).

Block Importance Scoring Algorithm To assess the ef-
fectiveness of our block-wise pruning algorithm, we ab-
late the block importance scoring strategy. We compare
our Token Unit–based method, which partitions each block
into finer-grained token units, against two baselines: Avg-
Pooling (average of token key states) and Max-Pooling
(element-wise maximum). All other SlimInfer settings are
kept constant. As shown in Table 3, our approach consis-
tently outperforms the baselines across representative tasks,
achieving the highest average score. This highlights the ad-
vantage of finer-grained representations in capturing seman-
tic importance for more effective pruning.

Method 8k 16k 24k 28k 32k

Full KV (Baseline) 1.00× 1.00× 1.00× 1.00× 1.00×
Ours (w/o async KV) 1.00× 1.18× 1.37× 1.48× 1.60×
Ours (w/ async KV) 1.02× 1.29× 1.53× 1.79× 1.88×

Table 4: End-to-end inference speedup across input lengths
for LLaMA3.1-8B-Instruct.

Overlapping Operations for Latency Reduction To
evaluate the impact of asynchronous KV cache manage-
ment, we compare end-to-end inference latency with and
without this optimization. As shown in Table 4, our method
achieves consistent speedups over the FlashAttention base-
line across input lengths. At 32k context length, SlimIn-
fer reaches a 1.60× speedup without async KV and further
improves to 1.88× with it. The gains increase with input
length, demonstrating the effectiveness of overlapping com-
putation and data transfer for long-context inference.

6 Conclusion
We introduce SlimInfer, a framework that accelerates long-
context LLM inference through dynamic block-wise token
pruning for the hidden state. To preserve essential con-
text, SlimInfer adopts fine-grained importance evaluation
to guide accurate and efficient pruning. This determinis-
tic design further supports a predictor-free asynchronous
KV cache manager that effectively hides I/O latency. Ex-
tensive experiments demonstrate that SlimInfer significantly



improves both Time-To-First-Token and end-to-end latency,
without compromising performance.
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Appendix

A Additional Accuracy Experiments
A.1 Needle-in-a-Haystack Result

Figure A: Needle-in-a-Haystack (Kamradt 2023) test re-
sults for Full KV and SlimInfer on LLaMA3.1-8B-
Instruct (Grattafiori et al. 2024). SlimInfer slightly outper-
forms the Full KV baseline, demonstrating its ability to en-
hance retrieval accuracy while accelerating inference.

To assess long-context retrieval, we conduct the Needle-
in-a-Haystack (Kamradt 2023) test using LLaMA3.1-8B-
Instruct (Grattafiori et al. 2024), with SlimInfer pruning 50%
of tokens at layers 10, 20, and 30. Other configurations re-
main the same as in the main text. As shown in Figure A,
SlimInfer slightly outperforms the Full KV (Flash Atten-
tion2 (Dao 2023)) baseline (0.986 vs. 0.984), suggesting that
pruning irrelevant tokens reduces noise and helps the model
focus on critical information. This demonstrates that Slim-
Infer not only accelerates inference but can also enhance re-
trieval accuracy in long contexts.

B Additional Efficiency Experiments
B.1 Qwen2.5 Latency Profiling
In addition to LLaMA3.1-8B-Instruct (Grattafiori et al.
2024), we also evaluate the performance of SlimInfer on
Qwen2.5-7B-Instruct (Qwen et al. 2025), following the
same experimental setup. The results, presented in Fig-
ure B, demonstrate that SlimInfer consistently outperforms
the baselines on the Qwen2.5-7B-Instruct model as well.
Specifically, SlimInfer achieves up to 2.14× speedup in
Time-to-First-Token (TTFT) and 1.84× speedup in End-to-
End (E2E) latency at a 32k context length. Similar to the
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LLaMA3.1-8B-Instruct

Full KV 45.82 55.05 55.50 44.28 30.78 35.21 25.49 27.23 17.17 72.50 91.65 43.92 46.00 7.43 99.50 63.12 56.74 48.08 5.561

MInference 44.29 52.53 52.00 44.10 25.72 35.09 25.47 27.21 17.53 72.00 91.18 43.73 46.00 3.25 97.00 64.87 60.00 47.17 5.935

FlexPrefill

γ = 0.99 44.06 55.64 55.07 44.91 32.31 35.01 25.22 27.13 17.39 72.00 91.65 43.93 45.50 3.19 85.50 64.29 59.40 47.19 4.949
γ = 0.98 44.83 57.31 55.93 42.14 30.95 34.85 24.97 27.13 17.27 69.50 91.64 44.07 45.50 4.31 81.00 64.30 61.06 46.87 4.690
γ = 0.95 44.55 55.56 54.56 43.43 30.07 34.64 25.83 27.05 16.97 70.50 89.81 43.18 41.00 2.59 82.00 64.67 62.06 46.38 4.403
γ = 0.90 43.64 54.56 55.56 35.74 26.05 34.53 25.07 27.11 17.13 69.00 91.04 42.93 40.00 2.16 82.50 65.56 63.33 45.64 4.231

LazyLLM

50% 46.39 51.28 54.52 43.42 28.86 34.57 25.41 27.05 17.30 70.50 91.00 43.64 46.00 7.94 99.50 59.44 56.12 47.23 4.364
45% 46.78 53.69 49.34 42.94 28.29 34.39 25.35 26.63 17.26 70.00 91.52 43.94 46.00 7.47 99.50 58.47 55.78 46.90 4.124
40% 44.31 55.51 49.12 42.61 30.14 33.97 25.33 26.67 17.60 69.00 91.23 43.86 45.50 7.24 99.50 56.28 55.30 46.66 3.893
35% 42.43 52.76 47.41 43.14 30.74 33.98 24.71 26.66 17.05 69.00 91.23 43.71 46.00 6.33 99.50 55.17 54.14 46.12 3.655

SlimInfer
(Ours)

(16, 8, 4) 45.62 55.93 54.86 43.43 30.00 34.87 24.88 27.20 17.58 72.50 91.47 44.31 46.50 6.96 99.50 63.33 56.73 47.98 3.457
(12, 6, 4) 45.58 53.55 54.76 45.25 30.72 35.15 25.15 27.20 17.42 72.50 91.48 44.27 45.50 6.94 99.00 63.46 56.41 47.90 3.119
(10, 5, 3) 45.71 53.95 54.45 43.51 29.78 34.97 25.09 27.24 17.12 71.50 91.48 44.33 46.00 6.88 99.00 63.46 56.41 47.70 3.028
(8, 4, 2) 45.19 53.82 55.14 44.37 30.95 34.99 24.77 27.10 16.81 71.00 91.65 44.36 45.50 6.30 98.50 63.65 55.95 47.65 2.959

Table E: Detailed performance and latency comparison on LongBench (Bai et al. 2024) for LLaMA3.1-8B-Instruct (Grattafiori
et al. 2024). We report results for baselines and various configurations of our method, SlimInfer. The numbers in parentheses
for SlimInfer, e.g., (16,8,4), denote the number of retained prompt tokens (in units of k, where 1k = 1024) at each of the three
pruning layers, respectively. The E2E Latency column shows the time in seconds to generate 16 tokens with a 32k input.
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Figure B: Inference efficiency comparison for Qwen2.5-7B-
Instruct (Qwen et al. 2025). (Upper) TTFT and (Lower)
E2E latency acceleration ratio vs. context length. SlimInfer
maintains a significant performance advantage, particularly
at longer context lengths.

results on LLaMA3.1, our method shows a growing accel-
eration trend as the context length increases, further under-
scoring its effectiveness in long-context scenarios.

B.2 Details for Accuracy vs. Efficiency Analysis
This section details the specific configurations for the ac-
curacy vs. efficiency trade-off results (i.e., the visualization
of Pareto frontier in the main text), as presented compre-
hensively in Table E. For FlexPrefill, we varied its sparsity
threshold γ across {0.99, 0.98, 0.95, 0.90}. For LazyLLM,
we adjusted the token retention ratio through the set {50%,
45%, 40%, 35%}. For our method, SlimInfer, we tested four
pruning schedules at layers 10, 20, and 30, denoted by the
number of retained tokens (in units of k, where 1k = 1024):
(16, 8, 4), (12, 6, 4), (10, 5, 3), and (8, 4, 2). The (8, 4,
2) setting represents our most aggressive configuration and
corresponds to the main results in the paper. Other baselines
like Full KV and MInference were run with their default set-
tings. The results in Table E illustrate the direct relationship
between computational reduction and model performance.
As expected, more aggressive configurations in FlexPrefill,
LazyLLM, and SlimInfer lead to lower E2E latency. No-
tably, SlimInfer’s configurations consistently offer a more
favorable balance, achieving substantial latency reductions
while incurring minimal accuracy degradation, effectively
pushing the Pareto frontier.

B.3 Performance on Edge Devices
To further validate the practicality and broad applicability of
SlimInfer, we conducted additional performance evaluations
on an edge computing platform, the NVIDIA Jetson AGX
Orin (32GB). Due to limitations of the Triton (Tillet, Kung,
and Cox 2019), which is not supported on the Jetson plat-



Context Full KV (Baseline) SlimInfer (Ours) Speedup

TTFT E2E TTFT E2E TTFT E2E

4k 12.49 18.22 12.76 19.56 0.98× 0.93×
8k 26.16 34.51 22.78 33.34 1.15× 1.04×
16k 57.05 72.71 35.31 59.38 1.62× 1.22×
24k 93.31 115.60 51.01 85.62 1.83× 1.35×
28k 113.35 138.62 59.29 86.58 1.91× 1.60×
32k 134.73 163.10 69.57 96.06 1.94× 1.69×

Table F: Performance comparison on NVIDIA Jetson AGX Orin (32GB) using LLaMA3.1-8B-Instruct (Grattafiori et al. 2024).
Latency is measured in seconds. The end-to-end (E2E) latency corresponds to the time taken to generate 16 tokens.

form, we were unable to run other baselines such as MInfer-
ence and FlexPrefill. Therefore, we directly compare Slim-
Infer against a highly-optimized Full KV baseline. For this
experiment, we used the LLaMA3.1-8B-Instruct model with
the (8, 4, 2) pruning configuration for SlimInfer. The results
are summarized in Table F. SlimInfer demonstrates substan-
tial performance gains over the Full KV baseline across all
context lengths. Notably, at a 32k context length, SlimInfer
achieves a 1.94× speedup in Time-to-First-Token (TTFT)
and a 1.69× speedup in End-to-End (E2E) latency for gen-
erating 16 tokens. These results indicate that SlimInfer is
not only effective on high-end server GPUs but also pro-
vides significant acceleration on edge devices, highlighting
its excellent generalization and practical value for real-world
deployment.

C Additional Ablation Study
We use LLaMA3.1-8B-Instruct (Grattafiori et al. 2024) here.
The default settings are given in the main text.

C.1 Ablation Study on Swap Threshold

Threshold (γ) Avg. Score (%) E2E (s)

0.99 47.67 3.057
0.95 47.67 3.040
0.90 47.65 2.959

Table G: Ablation on the swap threshold (γ) for LLaMA3.1-
8B-Instruct (Grattafiori et al. 2024). We report the average
score on LongBench (Bai et al. 2024) and E2E latency (16
tokens generated, 32k input).

We study the impact of the swapping threshold, γ, which
controls the frequency of asynchronous data transfers. A
lower γ reduces I/O overhead by allowing more tolerance
for changes in the active token set. As shown in Table G, de-
creasing the threshold from 0.99 to our default value of 0.90
reduces the E2E latency from 3.057s to 2.959s. This perfor-
mance gain comes at the cost of a negligible 0.02% drop in
LongBench (Bai et al. 2024) average score. This favorable
trade-off justifies our choice of γ = 0.90 to optimize for
inference speed with minimal impact on accuracy.

C.2 Ablation Study on Block Size
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Figure C: Ablation study on block size, showing the Long-
Bench (Bai et al. 2024) average score and end-to-end (E2E)
latency under different block size settings.

We study the effect of block size on both performance and
accuracy. As shown in Figure C, increasing the block size
consistently reduces E2E latency, measured under a 32k to-
ken input and 16 token output setting. This reduction stems
from improved computational and memory efficiency on the
GPU, as larger blocks reduce the number of memory oper-
ations and pruning decisions required. However, the impact
on accuracy is non-monotonic. When the block size is too
small (e.g., 32), each block contains limited context, mak-
ing it difficult to capture coherent semantic patterns, which
undermines the accuracy of importance evaluation. As the
block size increases, accuracy improves and peaks at block
size 64, where local semantic structure is preserved with-
out introducing too much noise. Beyond this point, further
increases in block size lead to performance degradation, as
overly large blocks tend to incorporate irrelevant tokens, di-
luting critical information and reducing pruning precision.

C.3 Ablation Study on Local Query Window Size
We perform an ablation study on the local query window
size (w), which determines the number of recent tokens used
to construct the local Query vector for importance scoring.
This parameter plays a crucial role in accurately identify-
ing relevant prompt blocks based on the current semantic
context. As shown in Figure D, the model’s performance is
highly sensitive to the choice of window size. The average



1 4 8 16 32 64

Local Query Window Size (w)

46.0

46.5

47.0

47.5

Lo
ng

B
en

ch
 A

vg
. S

co
re

 (%
)

Peak: 47.65%
(w = 4)

Figure D: Ablation study on the local query window size
(w), showing the average score on LongBench (Bai et al.
2024) under different window size settings.

score on LongBench (Bai et al. 2024) reaches its peak at
w = 4. A smaller window size (e.g., w = 1) results in a no-
table performance drop, likely due to insufficient contextual
information for reliable importance estimation. In contrast,
excessively large windows (e.g., w ≥ 8) also lead to a grad-
ual decrease in precision, suggesting that they may incor-
porate outdated or irrelevant tokens, thus diluting the effec-
tiveness of the importance score. Overall, a window size of
4 offers an optimal balance by capturing a sufficiently sta-
ble and relevant context while minimizing the influence of
semantic noise.


