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Abstract—As technology advances, artificial intelligence be-
comes pervasive in society and ubiquitous in our lives, which
stimulates the desire for embedded-everywhere and human-
centric intelligent computation paradigm. However, conventional
instruction-based computer architecture was designed for algo-
rithmic and exact calculations. It is not suitable for handling the
applications of machine learning and neural networks that usually
involve a large sets of noisy and incomplete natural data. Instead,
neuromorphic systems inspired by the working mechanism of
human brains create promising potential. Neuromorphic systems
possess a massively parallel architecture with closely coupled
memory and computing. Moreover, through the sparse utilizations
of hardware resources in time and space, extremely high power
efficiency can be achieved. In recent years, the use of memris-
tor technology in neuromorphic systems has attracted growing
attention for its distinctive properties, such as nonvolatility, re-
configurability, and analog processing capability. In this paper, we
summarize the research efforts in the development of memristor
crossbar based neuromorphic design from the perspectives of
device modeling, circuit, architecture, and design automation.

Keywords—Neuromorphic computing, neuromorphic circuit
and architecture, memristor, crossbar array, resistive memory.

I. INTRODUCTION

The demand of high performance computing continuously
increases as artificial intelligence becomes pervasive in society
and ubiquitous in our lives. However, traditional von Neumann
computer architecture designed for algorithmic and exact cal-
culations becomes less efficient and scalable. Neuromorphic
hardware systems inspired by the working mechanism of
human brains [1] potentially can provide the capabilities of
biological perception and cognitive information processing
within a compact and energy-efficient platform. Therefore, the
development of neuromorphic systems has gained a great deal
of attention in recent years. Besides conventional CPUs, GPUs,
or FPGAs [2][3], the use of emerging technologies such as
resistive memory devices (a.k.a. memristor) in neuromorphic
design has also been studies [4][5].

As early as in 1971, Professor Chua predicted the existence
of memristor based on circuit theory [6]. Forty years later in
2008, the physical realization of memristor was demonstrated
through a TiO2 thin-film [7]. Afterwards, many memristive
materials and devices have been rediscovered [8]. A memristor
can record its total electrical flux as memristance (M). The
feature is highly similar to weighting function of a biolog-
ical synapse. Moreover, the two-terminal think-film device

structure can be easily integrated into crossbar arrays. It
can provide a large number of signal connections within a
small footprint and conduct the weighted combination of input
signals, making it very promising for massively-parallel, large-
scale neuromorphic systems [9].

In this paper, we give an overview on the research efforts in
developing neuromorphic circuit and architecture design that
leverage memristor crossbar structure. A comprehensive view
including device modeling, circuit, architecture, and design
automation will be covered in the following sections.

II. MEMRISTOR DEVICE MODELING

Fig. 1(a) illustrates the memristor device realized on a
Pt/TiO2/Pt thin-film structure [7]. The memristive function
is achieved through the doping front movement, which can be
controlled by external voltage excitation. And its overall mem-
ristance is determined by the ratio of the stoichiometric TiO2

with low conductivity and the semiconductor-alike oxygen-
deficient titanium dioxide (TiO2−x). Thus, it can be modeled
as a coupled variable resistor model shown in Fig. 1(b), which
is equivalent to two series-connected resistors such as

M(α) = RL · α+RH · (1− α). (1)

Here α (0 ≤ α ≤ 1) is the ratio of doping front position
over the total thickness of TiO2 thin-film, represented by the
relative doping front position. The velocity of doping front
movement v(t), which is driven by the voltage applied across
the memristor V (t) can be expressed as

v(t) =
dα

dt
= μv · RL

h2
· V (t)

M(α)
, (2)

where μv is the equivalent mobility of dopants, h is the
total thickness of the TiO2 thin-film; and M(α) is the total
memristance which is a function of α.
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Fig. 1. TiO2 thin-film memristor. (a) structure, and (b) equivalent circuit.
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Fig. 2. The impact of process variations on TiO2 thin-film memristors. left: v
vs. α ,right: I−V characteristics. (The blue curves are from 100 Monte-Carlo
simulations, and red lines are the ideal condition.)

Note that the above bulk model is derived from the math-
ematical definition of memristor, which assumes a flat doping
front moving up or down. In reality, however, filamentary
conduction has been observed in nano-scale semiconductors:
the current travels through some high conducting filaments
rather than evenly passes the entire device [10]. Moreover,
as process technology shrinks down, device parameter fluc-
tuations incurred by process variations severely affecting the
electrical characteristics. The situation in a memristor could
be even worse: the parameter variations can result in the shift
of electrical responses, which in turn affect the memristance
since the total charge through a memristor indeed is the historic
behavior of its current profile.

An approach to converge the difference between the bulk
and filament models was to divide a TiO2 thin-film into many
tiny filaments and adopt the bulk model to the small flat doping
front in each filament [11]. The implications of memristor
parameters to the circuit design was explored by taking into
account the impact of memristor geometry variations. Fig. 2
shows the dynamic responses of 100 Monte Carlo simulations
which can visually demonstrate the overall impact of process
variations on the memristive behavior.

Moreover, metal oxide based memristor behaves stochasti-
cally and hence even a single memristive device demonstrates
large variations in performance. More specific, the static
states of a single memristor are not fixed, but have large
variations with skewed distributions and heavy tails [12]. The
switching mechanism of a memristor, that is, its dynamic
behavior, performs as a stochastic process [13]. A stochastic
behavior model which bypasses material-related parameters
while directly linking the device analog behavior to stochastic
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Fig. 3. The time dependency of ON (a) and OFF (b) switching at different
external voltage V .

functions was presented to better facilitate the exploration of
memristors in hardware implementation. Fig. 3 shows the time
dependencies of ON and OFF switching probability at different
applied voltages. The results have high approximation to the
experimental results [13].

III. NEUROMORPHIC CIRCUIT DESIGN

The applications of memristor crossbar in acceleration of
scientific and neuromorphic computing have been studied.
For example, the matrix-vector computation can be conducted
through crossbar arrays by using voltage/current magnitudes to
represent the data [5] or through a spiking neural network [14].

Fig. 4 depicts an overview of the spiking computing design
that leverages the compact memristor crossbar structure [14].
It adopts the rate coding model and represents data using
the frequency of spikes [15]. Through different bitlines (BLs)
in the crossbar, the synaptic weighting functions of different
entries are executed in parallel. The integrate and fire circuits
(IFC) as post-neurons generate output spikes based on the
strength of the weighted pre-neuron signals from the crossbar.

A single-layer neural network with N pre-neurons and M
post-neurons can be implemented using a N×M crossbar.
First, the activity pattern of pre-neurons xN×1 is transferred
into a set of pulses to wordlines (WLs). The number of spikes
on WLi within the computation period (nx,i) corresponds to
xi ∈ x. The weight from the jth pre-neuron and the ith

post-neuron maps to the conductance gij at the crosspoint
of WLi and BLj . The total weighted signal to post-neuron
j is transferred to the current flowing through BLj and
accumulated on a capacitor Cm in IFC. Once the voltage on
Cm reaches to a predefined threshold Vth, the IFC fires an
output spike and resets Cm. The activity function of post-
neurons yM×1 is represented by a set of spike numbers such
as [ny,0, ny,1, · · · , ny,M−1]

T .

Under ideal condition without taking into account the
realistic factors in circuit implementation, the spike number

produced at the jth post-neuron ny,j ∝ ∑N−1
i=0 gijδi, where

δi corresponds the spike occurrence at WLi. The assumption∑N−1
i=0 gij → 0, however, is satisfied only when all the resis-

tive devices are at (or close to) the high resistance state. This
cannot be generalized as a common condition in applications.
Moreover, the delay overhead of IFC to generate pulses and
reset Cm cannot be ignored.

The delay of IFC is a critical parameter determining the
performance of the spiking neuromorphic system. Fig. 5(a)
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Fig. 4. The spiking neuromorphic design with a memristor crossbar array.
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Fig. 5. The IFC circuit (a) the schematic and (b) the simulation waveforms.

depicts the schematic of a new IFC design featuring high speed
and low power consumption [14]. During the operation, the
BL voltage Vy continues increasing until it reaches Vth. Then
the differential pair (M1–M4) together with the following two
cascaded inverters (M5–M7 & M10–M12) generates a high
voltage at Vs, which in turn enables the discharging transistor
M13. Consequently, Vy decreases quickly and eventually turns
off M13. As such, the firing of one output spike at Vout is
completed and a new iteration of integrate-and-fire starts. To
shorten the intrinsic operation delay and therefore improve the
IFC throughput, a positive feedback loop (M7–M9) was de-
ployed based on the traditional comparator. Another approach
was to minimize the discharge time of Cm once a spike is fired
out, i.e., using a large M13 to provide sufficient discharging
current.

Fig. 5(b) shows the waveforms of Vy , Vs, and Vout of
the IFC design using IBM 130nm technology, under the
fastest firing frequency (568.2M spikes/sec). The design area
is 175.3μm2, which is compatible to that of traditional de-
signs, e.g., 120μm2 at 65nm technology in [16]. Its energy
consumption is 0.48pJ-per-spike, which is about a quarter of
the one in [16] (2pJ-per-spike).

The computational accuracy of the spiking neuromorphic
design was evaluated based on a 32× 32 crossbar array. Here,
the system computational accuracy is defined as the linearity
between the obtained output spike number ny,j and actual

computation on the crossbar
∑N−1

i=0 gijδi. Assume that an
input spike has a 2ns period with 50% utilization rate (that is,
tm = 1ns). The resistance values and the input pulse numbers
are randomly assigned to cover the entire input range. T varies
from 10ns to 80ns at a step of 10ns to examine the temporal
scalability of the design.

It can be seen from Fig. 6 that as
∑N−1

i=0 gijδi increases,
the rising rate of ny,j becomes smaller. This is because a

larger
∑N−1

i=0 gijδi and therefore a bigger Iy,j . It results in
a faster switching of Vy,j from 0V to Vth, making the impact
of the IFC delay overhead t0 more prominent. Nonetheless, a
good computational accuracy (i.e., output linearity) is obtained

when
∑N−1

i=0 gijδi is small (i.e., < 0.15mS). In fact, our
investigation at application level also show that most of the
operations of neural network implementations fall into this
small range [14]. Furthermore, for different combinations of

inputs and resistive array patterns with the same
∑N−1

i=0 gijδi,
the generated pulse number may be slightly different (no more
than ±1). Such a fluctuation comes from the difference in
Iy,j’s waveform and amplitude generated by these combina-
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tions.

Such a spiking neuromorphic system is designed mainly
for learning and classification applications whose algorithms
naturally tolerate the low resolution and variability in the com-
putations. Moreover, the imperfect output linearity shown in
Fig. 6 can also be compensated during circuit implementation
as long as the output spike and the weighted input spikes have
a monolithic mapping relation.

IV. ARCHITECTURE

Recently, a highly-efficient reconfigurable neuromorphic
computing accelerator with on-chip memristor-based cross-
bar (MBC) arrays as perceptron network, named as RENO,
was proposed aiming at the acceleration of ANNs computa-
tions [17]. Unlike the spike-based computations where the data
is represented by the pulse signals with different frequencies
and amplitudes [18], the design adopts a hybrid method in data
representation: the computation within MBCs and the signal
communications among MBCs are conducted in analog form,
while the control information remains as digital signals.

Fig. 7 illustrates the RENO architecture. It works as a
complimentary functional unit to CPU and particularly ac-
celerates ANN-relevant executions. In the design, memristor-
based crossbar (MBC) arrays are used to perform high ef-
ficient analog neuromorphic computing. And a mixed-signal
interconnection network (M-net) is developed to connect the
MBCs and conduct the topological reconfiguration of RENO.
To receive command/data and send back result in digital form
to processor, input, output and configuration FIFOs are located
at the interface of RENO.

MBC arrays are arranged in a centralized mesh (CMesh)
manner to minimize the cost of the interconnection net-
work [19]. The example in the figure includes four array
groups, each of which is formed with four MBC arrays con-
nected through a group router. A MBC array is partitioned into
four sub-crossbars to implement the multiplication of the com-
bination of the signed signals and the signed synaptic weights.

Fig. 7. The RENO architecture.
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The optimal MBC design contains 64 rows and 64 columns
which offers a good compromise between performance and
reliability. Moreover, this array scale covers the majority of
learning applications, 80% of which have less than 60 neurons
in the input layer [20]. Applications requiring larger connection
matrices can be partitioned into smaller tasks and executed on
multiple MBC arrays simultaneously or sequentially.

In this centralized hierarchical architecture, the data com-
munication is performed at both inter-group and intra-group
levels. The central router shown in Fig. 7 connects to CPU
and all group routers. Each group router talks to the four
local MBC arrays within the group, three other group routers,
and the central router. Such a centralized scheme maximizes
the number of parties that each router communicates with,
minimizes the effective communication distance and the hop
count, mitigates the bottleneck effect of the central router, and
simplifies the control complexity.

The signal transmission within RENO can be realized
in either digital or analog form. Digital signal transfer has
good controllability and supports high-frequency operations.
However, as the computation of MBC arrays is in analog form,
digital-to-analog/analog-to-digital (DA/AD) conversions are
required at the interface of MBC arrays and routers, which in-
evitably degrades the signal precision and results in significant
area and power overheads. The small footprint of the MBC
arrays limits the data communication distance, e.g., within
0.53mm, making it possible to transfer signals in analog form.
Moreover, the impact of signal distortion generated during
the analog signal transmission on computation reliability can
be tolerated by the intrinsic high fault resistance of ANN
algorithms. Instead, a mixed-signal interconnection network
called M-Net is used to assist the task mapping and data
migration in the MBC arrays. M-Net maintains the data in
analog form while transfers the control and routing information
in digital form so as to simplify the synchronization and
communication between CPU and RENO.

A frontend scheme can be used to assist preparing RENO
for ANN computation [21]. As illustrated in Fig. 8, the system
frontend is composed of all the preparation steps. The codes
that are already or can be implemented with ANN are identified
first. Note that here the Boolean function XOR is used just
for illustration purpose and the realistic target codes can be
much more sophisticated. Based on the characteristics and
complexity of the target codes, the topology of ANN, including
the number of layers and the number of neurons at each layer
etc., is decided and the ANN is trained offline. After that,
the trained ANN is mapped to the NCA structure through the
reconfiguration logic. During the NCA-aware compilation, the
target codes are modified with the annotations of NCA IO
instruction generation; then the compiler takes the topology
of the trained ANN as the input parameters to generate NCA
configuration instructions.

Input    Output
0     0        0
0     1        1
1     0        1
1     1        0

c = a XOR b

Target code
Training inputs

ANN topology

NCA inst.

CPU inst.

CPU inst.

Compilation

Fig. 8. The frontend for data preparation.

V. DESIGN AUTOMATION FRAME

Although memristor crossbar is believed to be a game
changing technology for neuromorphic system realization, how
to efficiently design such a system with minimized (or even
practical) hardware cost is still a research topic barely touched.

In application layer, for example, large neural networks
are usually very sparse. In LDPC coding based on message
passing algorithm, for example, the network sparsity is higher
than 99% [22]. Here the sparsity of a network is defined as one
minus the ratio between the number of actual connections and
all possible connections in the network. In fact, such a high
sparsity is also close to the biological facts that in neocortex,
neurons are typically connected to only 10−9 to 10−7 of all the
neurons and these connections are limited in the neighborhood
of 1cm2 of the tissue [9].

However, when the sparsity of a network is high, using
memristor crossbars to implement such a network becomes
inefficient, as the utilization rate of the connections in the
crossbar will be low. It may be more efficient to realize
these sparse connections using smaller-size crossbars or even
discrete synapses. The tradeoffs between the selection of the
crossbars with different sizes, the crossbar utilization rates and
the impacts on physical design cost inspire this work.

An EDA flow called as AutoNCS was proposed to design
a custom memristor-based neuromorphic computing systems
(NCS) [23]. It is an iterative process based on spectral cluster-
ing algorithm to consolidate synapse connections into clusters
and map them to memristor crossbars for high utilization rate
of the connections in the crossbars. Note that implemented
design can still perform various tasks because the function of
a NCS can be trained by tuning the weights of the connections.

Fig. 9 depicts the overview of the design automation frame
for large-scale neuromorphic computing system. It consists of
the following four components:

1) Modified spectral clustering (MSC) that groups the
connections in a network into dense clusters that can
be efficiently mapped to memristor crossbars;

2) Greedy cluster size prediction (GCP) that constrains
the largest cluster size within the maximum available
crossbar scale;

3) Iterative spectral clustering (ISC) that repeatedly
performs clustering on the networks to group the
connections into clusters, and minimize the outliers
that need to be mapped to discrete synapses; and

4) a customized physical design method to realize the
neuromorphic systems based on the clustering result.

A testbench of sparse Hopfield network was used to evalu-
ated AutoNCS. The network with a size of 500 was trained for

Fig. 9. The overview of the EDA frame.
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Fig. 10. The placement and routing results of the Hopfield testbench without
clustering are shown in (a) and (b). The results with AutoNCS are shown in
(c) and (d).

recognition of 30 patterns. While offering a recognition rate
above 90%, the sparsity of the network is 94.39%. Fig. 10 com-
pares the optimal placement and routing results in full crossbar
(FullCro) and AutoNCS. In optimal FullCro, crossbars with the
maximum size are uniformly placed, resulting in heavy wire
congestion in the center. However, in AutoNCS, large crossbars
on the periphery realized the majority of connections, leaving
only sparse connections implemented by small crossbars and
discrete synapses in the inner place. This topology reduces
wirelength, area and aver-age delay substantially.

VI. CONCLUSION

The emerging memristor technology has demonstrated
great potential in neuromorphic system design for its similar
behavior to biological synapse, nonvolatile data storage, re-
configurability, analogy process capability, as well as the
extreme high connectivity. This paper gives a brief summary on
the research activities in utilizing the memristor crossbar arrays
for neuromorphic design. Holistic effects across different areas
shall be integrated and there are still many problems to be
solved to obtain a practical neuromorphic hardware for large-
scale applications.
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