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Abstract— Efficient power grid analysis is critical for mod-
ern very large scale integration design but is computationally
challenging in runtime and memory consumption because of
the increasing size of power grids. PowerRush is proposed
as an efficient IR-drop simulator, which includes an efficient
SPICE parser, a robust circuit builder, and a linear solver
Algebraic MultiGrid Preconditioned Conjugate Gradient. The
proposed AMG-PCG solver is a pure algebraic method, which
can provide stable convergence without geometric information.
Aggregation-based AMG with K-cycle acceleration is adopted as
a preconditioner to improve the scalability of iterative method.
In multigrid scheme, double pairwise aggregation technique is
applied to matrix graph in coarsening to ensure low setup
cost and memory requirement. Furthermore, K-cycle multigrid
scheme is adopted to provide Krylov subspace acceleration at
each level to guarantee enhanced robustness and scalability. The
experimental results for large-scale power grids have shown
that PowerRush has remarkable scalability both in runtime
and memory consumption. DC analysis of power grid with
60-million nodes can be solved by PowerRush for 0.01 mV
accuracy within 150 s and 21.99 GB total memory used. More-
over, the proposed AMG-PCG solver can perform much better
than widely used direct solver Cholmod and well-developed
Hybrid solver both on runtime and memory consumption.

Index Terms— Aggregation, algebraic multigrid (AMG),

K-cycle, power grid, PowerRush.

I. INTRODUCTION

ODERN VLSI circuits are rapidly becoming more and

more power intensive due to the scaling impacts. In [1],
it reports that IBM POWER?7 microprocessor can consume
230 W within 567 mm? area, which means that it has a
current density of tens of Amps/cm?®. The supply voltage
observed by a chip cell is known to vary with its dynamic
current drawn due to the impedance of the power delivery
network. Fig. 1 shows logic density and supply voltage value
projection from the 2011 International Technology Roadmap
for Semiconductors (ITRS) report. The trend shows that the
voltage profile is going to get worse and power consumption is
increasingly prominent in advanced technology nodes, which
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Fig. 1. High-performance design trends of ITRS 2011.

means that the effect of voltage fluctuations on power grid
becomes more and more significant. With the decreased VDD
value, how to retain the switching speeds and satisfy the noise
margin is becoming more and more challengeable for high
performance chip designs. A critical issue in the analysis of
power grids is the large size of the network. For recent power
grid analysis of IBM processors [1]-[5], the problem size of
a ground network on a single core can reach hundreds of
millions nodes. Such a large-scale problem can only be solved
by highly tuned algorithms with supercomputing resources.
Therefore, the design and analysis of extremely large-scale
power grids are a very computationally challenging task for
VLSI design.

Many contributions have been developed for efficient power
grid analysis, which includes direct solvers, iterative solvers,
and many other specialized solvers. Direct solvers such as
KLU [6] and Cholmod [7] are usually adopted for transient
simulation with a fixed time step because the factorized
triangular matrix can be reused in the simulation of each time
step. However, direct approaches cannot scale well with the
problem size for larger scale power grids. Furthermore, the
reusability of matrix factorization will be impracticable for
simulation with variable time step, which is more appreciated
for practical use. Therefore, iterative approaches are relatively
competitive than direct approaches in many cases.

Iterative solvers are usually developed for static simulation,
such as Krylov subspace method [8] with all sorts of pre-
conditioners, i.e., random walk [9], support graphs [10], and
so forth. Among them the random walk-based Hybrid solver
has been well developed as a stochastic preconditioner [11]
and proved to be very efficient for power grid analysis [9].
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Especially, there are many specialized methods proposed for
efficient power grid analysis, which includes hierarchical and
macromodeling methods [12], domain decomposition [13],
and some matrix-oriented algebraic methods such as SPAI [14]
and H-matrix [15] as well as HSS methods [16], [17].

Due to the similarity between the power grids and dis-
cretization of Laplacian equations, multigrid methods are
introduced for fast power grid simulation. Geometric-based
multigrid like technique [18] was first applied to power grid
analysis but its grid coarsening strategy is based on the
topology of power grids, which may limit its practical use.
To further handle irregular power grids, algebraic multigrid
(AMG)-based techniques [19], [20] were also developed. In
parallel view, a GPU-based HMD algorithm [21] is pro-
posed to improve the solving efficiency and MGPCG solver
[22], [23] is further introduced to improve the robustness of
HMD solver. However, the most noticeable problem between
the above GPU-multigrid solvers is the mapping method of
3-D irregular grids to 2-D regular grids, which ignores via
resistances. Obviously, it will result in considerable errors and
therefore slow convergence.

For AMG approaches, there exists a tradeoff between the
setup cost and efficiency of error components reduction.
The grid reduction methods in some AMG-like multigrid
approaches [19] are also somewhat geometrically based, which
may degrade the efficiency due to the irregularity. A pure
AMG method [24] was proposed to improve the efficiency
whose grid reduction was based on matrix graph. However,
its denser prolongation matrices increase setup costs and
memory requirements. To overcome the bottleneck of limited
convergence by controlling the number of coarsening levels,
smoothed aggregation method [25] is developed recently,
which is robust and efficient over a wide variety of problems.
Aggregation-based AMG is also introduced to power grid
analysis [26]. In [27], Fourier analysis has been explored
for several aggregation-based two-grid schemes for a model
anisotropic problem. However, in practice, it is too difficult to
achieve optimal order convergence with V-cycle or even with
standard W-cycle. The work in [28] proposed an aggregation-
based AMG preconditioned CG method with Krylov subspace
acceleration for power grid analysis, which has been proved
to be very close to optimal convergence.

In summary, there is a tradeoff between runtime and mem-
ory consumption among the existing methods. Some direct
solvers can be very robust but require much more memory
resources, while some iterative solvers can be acted as memory
efficient but lack of stable convergence rate when simulating
extremely large-scale power grids. Some particular fast solvers
can be utilized for special or structured power grid simulation
such as [29], but mostly suitable for highly structured grids,
which may limit its practical applications in general grids.
Aiming to break the tradeoff between runtime and memory
consumption and obtain a robust convergence with low setup
cost, in this paper, we propose an efficient simulator Pow-
erRush with pure AMG solver for static IR-drop analysis of
large-scale power grids.

The major contributions of this paper are as follows.
Section III provides the simulation flow of our simula-
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Fig. 2. Power grid model.

tor PowerRush, detailed implementations of SPICE parser,
and circuit builder, which should have considerable practi-
cal value to this community. Section IV presents the pro-
posed AMG preconditioned conjugate gradient (AMG-PCG)
solver, which is a pure algebraic method and we have
demonstrated how it can improve the convergence robustness
without geometric information. In multigrid scheme, dou-
ble pairwise aggregation technique is applied to matrix in
coarsening to ensure low setup cost and memory require-
ment. Further, K-cycle multigrid scheme is adopted to pro-
vide Krylov subspace acceleration at each level to guarantee
enhanced robustness and scalability. In particular, Section V
presents the simulation performance of large-scale power
grids.

II. BACKGROUND
A. Power Grid Analysis

In this section, we give the basic modeling and analysis
techniques for efficient and accurate analysis. Typically, power
grid on die is designed from top-level metal layer, which
is connected to the package, down through interlayer vias,
and finally to the active devices, as shown in Fig. 2. For dc
simulation, power grid can be modeled as linear resistive net-
work system. Using modified nodal analysis (MNA) method, a
n-node circuit network can be formulated as a linear system
[8]. After reformulation by Norton’s law, this system can result
in a symmetric, positive definite problem whose system matrix
is a nonsingular M-matrix [19]

Gu=1 ey

where u € R”*! is an unknown vector of node voltages, G €
R"*" is the conductance matrix, I € R"*! is a vector of node
current sources. The diagonal entries of matrix G are defined
by gii = ZjeN,» 8ij|, where N; = {j |g,-j * O} is the set of
neighbors of node i, g;; defines the conductance between the
two neighboring nodes i and j, thus g;; = g;;, which results
in the G matrix being symmetric.

As the VLSI technology scaling associated with signifi-
cantly increasing device numbers in a die, the number of
nodes in the power grid may easily exceed many millions.
The most accurate and stable methods for solving such huge
linear systems are sparse direct solvers such as KLU [6] and
Cholmod [7], but both of them are time expensive and memory
inefficient for very large scale problems. Another state-of-
the-art approach is iterative methods especially preconditioned
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iterative methods, which can be utilized to solve such linear
systems with memory efficiently. However, preconditioned
iterative methods are not stable for many cases because of
either expensive cost or unsatisfactory performance of their
preconditioners [30].

B. AMG Method

The main idea of multigrid is to improve the convergence
of a basic iterative method by global correction on each level,
performed by solving a coarse problem. Multigrid methods
[31] are considered to be scalable, which are expected to solve
a linear system within linear complexity. Multigrid methods
achieve optimality through the effect of a smoother and a
coarse grid correction. In multigrid scheme, as shown in Fig. 3,
the smoother is fixed and generally based on a simple iterative
relaxation method. The coarse grid correction involves trans-
ferring information to a coarse grid through restriction and
computing an approximate solution to the residual equation
on a coarser grid, which is to say, solving a linear system
of smaller size. This solution is then transferred back to the
original grid using an appropriate interpolation, which is also
described as prolongation. In the classical multigrid setting,
smoothing reduces high frequency error, whereas coarse grid
correction eliminates low frequency error.

Multigrid methods are divided into two typical categories,
geometric multigrid (GMD) and AMG [32]. GMD can be
easily implemented if the geometric problem information is
known. AMG methods construct their hierarchy of oper-
ators directly from the system matrix, and the levels of
the hierarchy are simply subsets of unknowns without any
geometric interpretation. Thus, AMG methods become true
black-box solvers for sparse matrices. However, AMG is
regarded as advantageous mainly where GMD is too difficult
to apply.

Due to the irregularity of real power grid designs [33],
AMG methods have been well developed in power grid
simulation area. AMG is a pure matrix-based method for
solving linear equations based on multigrid principles, but
requires no explicit knowledge of the problem geometry.
It determines coarse grids, intergrid transfer operators, and
coarse-grid equations based solely on the matrix entries. With
AMG methods, linear systems Ax = b are solved, where A is
a real n x n matrix and x and b are vectors in R”. For clarity,
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we assume that A is symmetric positive definite matrix. Recall
that the two main components of multigrid are smoothing
and coarse grid correction. Coarse grid correction involves
operators that transfer information between fine and coarse
grids, which are denoted in linear algebra terms simply as the
vector space R” and the lower dimensional vector space R"c.
Interpolation (prolongation) maps the coarse grid to the fine
grid and is just the n x n, matrix P : R* — R". Restriction
maps the fine grid to the coarse grid and operators matrix is
the transpose of interpolation P” . The typical two-grid method
for solving the above equation can be defined as follows:

1) obtain approximate solution X by presmoothing on fine
grid Ax = b;

2) compute residual r = b — AX = Ae;

3) restrict residual to coarse grid by r. = PTr;

4) obtain an approximate error e, by relax on coarse grid
Acec =rg;

5) coarse grid correction x = X + Pe,;

6) postsmoothing on the fine grid Ax = b.

The error vector e in step 2 reflects the difference between
the exact solution and the current iteration. After restricting the
residual to coarse grid, the approximate error on coarse grid
can be obtained. In practice, we solve the coarse system in step
4 by recursively reapplying the two-grid method, yielding a
hierarchy of coarse grids, transfer operators, and coarse grid
systems. Because AMG is only based on the matrix A, we
only need to define the coarse system A, with low setup cost
for operators P, and then the total AMG framework can be
performed efficiently.

Although the classical AMG methods work remarkably
well for a wide variety of problems, some of the assump-
tions made in its derivation usually limit its applicability.
In this paper, we introduce an aggregation-based AMG with
K-cycle acceleration as a high quality preconditioner for CG
iteration to perform efficient static power grid analysis. The
smoothed aggregation method [25] is a highly successfully
AMG method that is robust and efficient over a wide variety
of problems. The most interesting aspect of aggregation-based
AMG is its approach to define interpolation. The aggregation
algorithm first partitions the grid by aggregation grid points
into small disjoint sets and then builds a preliminary interpo-
lation operator to coarsen power grids by system matrix level.
Thus, the prolongation matrices with at most one nonzero
entry per row are much sparser than the ones obtained by
the classical AMG approach. Numerical analysis has shown
that for 2-D anisotropic model problem, aggregation-based
two-grid methods [27] may have optimal order convergence
properties. The constructions of interpolation operator and
prolongation operator discussed in Section IV-A will show
that how smoothed aggregation method reduces the setup cost.
Meanwhile, Krylov subspace acceleration is introduced as
cycling strategy of multigrid scheme. The Krylov subspace
smoothing is performed at the end of every recursive cycle
on each level to reduce the residual. Theoretical analysis has
been shown that aggregation-based multigrid with K-cycle can
achieve a guaranteed convergence, which is independent or
near independent of the number of levels.
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Fig. 4. Simulation flow of PowerRush.

III. SIMULATION FLOW

This paper presents a friendly efficient simulator with
remarkable scalability for static power grid analysis. The
simulator consists of a smart SPICE parser, a robust circuit
builder, and a linear solver. The detailed simulation flow of
our simulator PowerRush is shown in Fig. 4. The SPICE
format netlist is parsed as nodes list and wires map. Sub-
sequently, it builds them as a topology graph. After extracting
them into conductance matrix, the linear solver is called to
obtain the voltage solutions by solving the involved linear
equations.

A. SPICE Parser

An efficient/robust SPICE parser is critical for circuit
simulation especially for large-scale power grids because it
is extremely time-consuming to parse a very large scale
R/RC/RLC network. For each element of the SPICE netlist,
we need to identify how it is connected to the circuit. It
is necessary to build a hash table of all circuit nodes when
querying them [34], [35].

For each benchmark it reads the netlist twice. The first
reading is to count the total number of resistors as Nr and
then estimates the total number of circuit nodes to initialize
hash table T for all nodes set. The second reading is to hash
each circuit node to its index in hash table T by the node
name string given in the SPICE netlist. For a node i with
name string K;, we define a string hash function

H(K)) = Z]LZI mod (K] x MEi=D | Ng) @)

where L; is the name string length of node i, sz is the
jth character of name string K;, and M is a constant base
number, which is selected to be optimal for the above hash
function. The idea behind this is that we try to use as many
bits as we can while converting strings to integers so that we
can obtain a unique integer as far as possible. Of course, we
are still not able to obtain unique integers for all the strings
and undoubtedly there will be collisions, however, we can try
to minimize the collisions as much as possible. According
to the properties of the node name strings in SPICE netlist,
the 7-bit encoding (or a 128-base number) can be adopted
for the above hash function. After properly testing for real
benchmarks, we choose an optimal constant base M = 131
so that the average clustering in hash table is about 1.16.
That is to say, it can ensure the average search length of

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

TABLE I
GRID REDUCTION SCALE FOR IBM PG BENCHMARKS

Neguivalent

Benchmark Noriginal Nequivalent I\JZTL‘IZL(th
ibmpg3 851584 286299 33.62%
ibmpg4 953583 610103 63.98%
ibmpg5 1079310 540497 50.08%
ibmpg6 1670494 834633 49.96%

each node is about 1.16 and the maximum search length is no
more than 6.

As we know the complexity of hash method to find an
element in a table is expected to O(1). Therefore, the total
complexity of our parser is expected to O(N), where N is the
number of grid nodes.

B. Circuit Builder

The key step of building circuit is to create a graph to
handle all the wires map and nodes list. For more detailed
implementations, the reader can refer to Appendix A. In addi-
tion, there are some short paths or vertical vias between each
two neighboring metal layers with extremely small or zero
resistance. Many special considerations should be taken for
handling these particular cases to avoid solving the involved
ill-conditioned linear equations. Please refer to Appendix B
for more details.

Noticing that the number of unknowns can be reduced by
merging nodes as short paths (vias with very small or zero
resistance value), a highly efficient equivalence-based merging
technique is adopted in PowerRush. The disjoint-set data struc-
ture is utilized to find and union nodes sets. A disjoint-set data
structure is a data structure that keeps track of a set of elements
partitioned into a number of disjoint (nonoverlapping) subsets.
A union-find algorithm is an algorithm that performs two
useful operations on such a data structure. After placing the
two nodes between the short path into a same disjoint set,
both the find and union operation can be finished within a
complexity of O(log N). Taking IBM power grid benchmarks,
for example, the grid reduction scale is listed in Table I.
Noriginal 18 the number of original grid nodes. Neguivalent 1S
the number of equivalent grid nodes. Nequivalent can be about
30%-60% of Norigina after merging short paths and metal
vias with extremely small resistance value. This grid reduction
scale can lead to a smaller linear system, which is easier to
be solved.

It is noticeable that there exist several separated subnets for
each benchmark in real power grid designs [33]. Our circuit
builder can identify all the separated subnets by depth-first
search (DFS) algorithm with complexity of O(N) and then
solve each subnet independently. Therefore, the total solving
cost can be added linearly by the solving cost of each subnet.

C. Linear Solver

After building the circuit graph, the conductance matrix G
can be formulated by MNA method as well as the correspond-
ing right-hand side vector. Then, the AMG-PCG method is
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utilized to solve the resulted linear equations. Among AMG-
PCG solver, aggregation-based AMG with K-cycle accelera-
tion is adopted as a preconditioner to improve the robustness
of conjugate gradient iterative method [36].

As shown in Fig. 5, the application of AMG-PCG is
implemented as a three-part process. The first part, which is a
fully automatic setup phase, consists of recursively choosing
the coarser levels and defining the transfer and coarse-grid
operators. The second part, which is the preconditioning phase,
just uses the resulting components to perform acceleration
recursively on all the levels by the use of K-cycle scheme. The
third part, aggregation-based AMG with K-cycle accelerating
is adopted as an implicit preconditioner for CG iterative
method to solve the involved linear equations. The detailed
implementations of AMG-PCG solver are demonstrated in
Section IV.

IV. AMG-PCG SOLVER

In this paper, we use aggregation-based AMG method with
K-cycle acceleration to improve the convergence. This proce-
dure is fully algebraic, that is, it works with the information
present in the system matrix only.

A. Aggregation Coarsening

As shown in Fig. 5, the aggregation scheme contains
two steps. Initially, we need to partition the unknowns into
disjoint subsets to generate the prolongation matrices. Then,
the prolongation matrices are utilized to formulate the coarse
matrices.

As described in [37], we focus on the schemes that use
coarsening by aggregation where the strongest connection
is favored in forming pairs. For each unmarked node i,
according to some priority rule designed so as to favor
a regular covering of the matrix graph. Then, attempt to
group this node with another unmarked node with which
is most strongly negative coupled, that is, the unmarked
node j for which a;; is minimal. For circuit represen-
tation, strong coupling means a large-conductance value
between each circuit nodes, which has been discussed in
[24] and [26]. Since the diagonal entry of conductance
matrix a;; | j=i is denoted as positive value, the off-diagonal
entry a;j ‘ j=i representing the conductance between each two
connected nodes is denoted as negative value. Therefore,
the coupling relationship is described as negative coupling.
A threshold g is defined to decide whether it is strong or
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Algorithm 1: Pairwise Aggregation PWA(A; xn, f)

Input: Conductance matrix A, x,; Strong/Weak
coupling threshold 3, default as 0.25.
Output: Number of coarse variables n. and disjoint

subset/aggregates G;, i = 1, ...,n,. which
satisfies G; NG = () for each i # j.
Definition: For each unmarked node ¢, it satisfies

Si=4qJFi|ay < —Bgi);miﬂ :
Initialize: Define all unmarked nodes as set U = [1,n];
Forall i, m; = |[{j € Uli € S; }|; n. =0.
1 Begin
2 while U # 0 do
3 Select ¢ € U with minimal m;
4 Ne =N+ 1
5 Select j € U such that a;; = min a,
keU

6 if j € S; then
7 Gnc = {27]}
8 else
9 G, ={i}
10 end
11 Remove G,,, from U
12 For all k € G,,,, update m; =m; — 1 for [ € Sy,
13 end

14 End

weak coupling, and then define the set of nodes S; to which
i is strongly negative coupled by

aij < —p max |ai| 3)
aik <0

S,-:ij;éi

which means that the node j is formed as a pair with node
i only and if only j satisfies this requirement. As illustrated
in Algorithm 1, the pairwise aggregation strategy selects the
nodes, which have most of the influence on their neighboring
nodes as coarse nodes.

With aggregation scheme above, the fine grid with n
unknown variables is grouped into coarse grid with n, disjoint
subsets G;, i = 1,2,...,n., and each such subset is asso-
ciated to a unique coarse level unknown. Prolongation from
coarse level to fine level is a vector defined on the coarse
variable set by assigning the value at a given coarse variable
to all fine grid variables associated to it. The prolongation
operator P is a n x n. Boolean matrix with exactly one
nonzero entry in each row and piecewise constant in each
column, that is

s e

PijZI(l) ifi € Gy,
“4)

otherwise,
and restriction operator R is chosen to be the transpose of the
prolongation matrix P.

The coarse grid matrices are then cheap to compute using
the variational property of the Galerkin coarse grid operator
[31] and generally as sparse as the original fine grid matrix. As
we have denoted the conductance matrix G as fine grid matrix
A, which is symmetric and positive definite, the coarse grid

i=1,...,n; j=1,...
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Fig. 6. Sample grid with nine nodes is grouped into four aggregates.

Algorithm 2:Double Pairwise Aggregation DPW A (A, xn, f)

Input: Conductance matrix A, ,; Strong/Weak
coupling threshold 5, default as 0.25.
Output: Number of coarse variables n. and disjoint
subset/aggregates G;, i = 1, ..., n. which
satisfies G; N G; = () for each i # j.
1 Begin
2 G LG = PWA(A,B)

3 Compute A'ELlc)l XMy by a§71) = Z Z Akl
keGM 1eG (Y
+ GPLLGY =PWA (AL, )
5 For all « = 1,...,n., compute G; = Ujeng)Ggl)
6 End
matrix is computed from the Galerkin formula
Ac=RAsP =Pl AP (5)

which implies that A, is cheap to construct using

(A= D D au. (6)

keG; leG;

That is, the entries in the coarse grid matrix are obtained
by summing the entries in Ay that connect the different
aggregates. Taking Fig. 6 as an example, the grid with nine
nodes is aggregated as a coarse grid with four disjoint sets
G1, G2, G3, and Gy, then its prolongation operator P can be
as follows:

1 23 456 7 8 9
1 10000000 <« G
Pf=[0 0 0 1 1 0 0 0 0 «~Gy. (1)
00000 O0T1T1 0| <«Gs
001 001 00 1) <«Gqu

The above simple pairwise aggregation coarsening is still
relatively slow, which cannot guarantee an optimal perfor-
mance of multilevel methods. This paper adopts the double
pairwise aggregation algorithm, which begins by forming pairs
in the scaled problem matrix [36]. This fast coarsening tech-
nique is implemented in our simulator by repeating the simple
pairwise aggregation process, defining aggregates by forming
pairs of pairs. The details of double pairwise aggregation
algorithm are listed in Algorithm 2.

Furthermore, preliminary numerical results show that
aggregation-based multigrid methods may then indeed exhibit
convergence that is independent or near independent of the
number of levels [27].
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Algorithm 3 : AMG as Preconditioner at Level k, zx =
AMG precond (ry, k)

Input: The residual 7, of level &k
Output: The preconditioned vector zj,

1 Pre-smoothing: relax the input residual rj to vg by
using smoother of several iterations on Axvy = 7g;

2 Restriction: compute a new residual 7, = r — Axvy and
restrict it to coarser grid by r_1 = ngk;

3 Compute an (approximate) solution yx_; on coarser grid
by Ap_1yx—1 = rr—1 Which is recursively obtained by
yp—1 = AMGprecond (rr—1,k — 1) until the coarsest
level with k = 1;

4 Interpolation: interpolate coarse grid correction by
Yk = Pryr—1 and compute new residual 7, = 7, — Apyx;

5 Post-smoothing: relax the new residual 7y, to wy by
using smoother of several iterations on Axwy = 7k;

6 Obtain preconditioned vector z; = v + yr + Wk;

B. Multilevel Preconditioning

Although AMG strategy has been tried to capture all
relevant influences by accurate coarsening and interpolation,
its interpolation will hardly ever be optimal. Multilevel error
reduction technique can smooth the majority of the error com-
ponents very quickly but inefficiency for just a few exceptional
error components. Therefore, its total convergence property
is degraded by this nonideal phenomenon. To improve the
robustness of our approaches, AMG is adopted as an implicit
preconditioner for conjugate gradient method instead of stand-
alone solver [38]. This behavior of scalability enhancement
can be understood when we investigate the eigenvalue spec-
trum of the Richardson iteration matrix. Most of the eigen-
values are generally clustered around zero, only the largest
eigenvalues are outside the clustering. As we know the spectral
radius determines the convergence of multigrid as a stand-
alone solver. This spectral radius increases on finer grids but
the eigenvectors belonging to the larger eigenvalues are very
soon captured into the Krylov subspace when multigrid is
adopted as a preconditioner, and accordingly the convergence
is accelerated considerably.

The AMG preconditioner at each level on a given
residual vector is computed according to Algorithm 3,
which includes presmoothing, restriction, interpolation, and
postsmoothing [36]. As general implementation, symmetric
Gauss—Seidel smoothing method is adopted for presmoothing
and postsmoothing step. The distinguishing characteristics of
our AMG preconditioner are the intergrid operators and multi-
grid cycling strategy. The intergrid operators, which related
to restriction and interpolation steps have been illustrated in
Section IV-A, while the cycling strategy will be demonstrated
in Section IV-C.

The multigrid preconditioning is called by the main iteration
routine at the top level k = K (fine grid), and it recursively
calls itself in step 3 with a smaller index until the coarsest
level. We stop the coarsening when the coarse grid matrix has
400 rows, allowing fast direct solver with sparse Cholesky
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Fig. 7. Schematic description of multigrid cycling strategy. The cycling

proceeds from left to right and from top (find level grid) to bottom (coarsest
level grid). (a) Multigrid as a preconditioner for a Krylov subspace method.
(b) K-cycle: Krylov smoothing is performed on each grid level.

factorization. For k > 1, the AMG preconditioner at level k
computes yx—1 approximately using AMG preconditioner at
level k — 1. The way this is done defines the cycling strategy,
which will be discussed in detail in the following section.

Aiming to enhance the convergence robustness and scala-
bility of iterative method, the above aggregation-based AMG
is adopted as an implicit preconditioner for conjugate gradient
method, which is considered as main (outer) iteration routine.
This AMG preconditioner is called at the top level (fine grid)
K among the outline of AMG-PCG solver.

C. K-Cycle Multigrid

The scalability of the general multigrid method can be
enhanced or accelerated recursively on all levels by the use
of K-cycle strategy [39]. The K-cycle method is so named
because the acceleration of multigrid is typically performed
by Krylov subspace methods. Typically, accelerating multigrid
by a Krylov subspace method at the top level is equivalent
to adopting multigrid as a preconditioner in connection with
Krylov subspace methods. General K-cycle method can be
better understood if we consider the top level acceleration
case first. Fig. 7(a) considers to use standard V-cycle multigrid
as a preconditioner for Krylov subspace method. After each
V-cycle, a Krylov subspace smoothing step is utilized in an
attempt to reduce the residual, and that means that ||A - xx||
should be less than ||A - xg|| where x; is the approximate
solution computed using the Krylov subspace method. The
number of V-cycle iterations needed to reach convergence is
hopefully reduced using Krylov smoothing. Although most of
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Algorithm 4: AMG as Preconditioner at Level k£ With Krylov
Subspace Acceleration, zx = AM G precond (ri, k)

Input: The residual 7, of level k; The residual threshold
t for inner iteration, default as 0.25.

Output: The preconditioned vector z

1 Pre-smoothing: relax the input residual r; to vy by
using smoother of several iterations on Axvy = 7i;

2 Restriction: compute a new residual 7, = r; — Axvi and
restrict it to coarser grid by r;y_1 = PkT Tks

3 Compute an (approximate) solution y;_; on coarser grid
by Ar_1yr—1 = rr—1 which is recursively obtained by
Yr—1 = AMGprecond (ri,—1,k — 1) until the coarsest
level with k = 1:

4 if £k =1 then

5 directly solve Ay_1yx—1 = rp—1 by
Yr—1 = cholmod (Ag—1,7K—1)
6 else
7 K-Cycle, perform one or two iterations with

Multigrid precondition:
pr—1 = AMGprecond (rip—1,k — 1)
Uk—1 = Ap—1Pk—1

T
10 P1 = Pp_1Uk—1
11 ap = ’I“z_l’l“k,1
12 F—1 = Tk—1 = SrUk—1
13 if [|7x_1]| < t]||rk—1] then
— o
14 Ye—1 = 5 Pk—1
15 else
16 qr—1 = AMGprecond (Tj—1,k — 1)
17 di—1 = Ar—1qk—1
T
18 Y= Qg1 Uk—-1
T
19 B = qp_1dr—1
20 Qo =Tp_ TR
2
—g_2
21 p2=PB—
— _ 1 Qz
2 Yk—1 = (Otl = az) P11+ k-1
23 end
24 end

25 Interpolation: interpolate coarse grid correction by
Yr = Pryr—1 and compute new residual 7 = 7 — Agyr;
26 Post-smoothing: relax the new residual 7y to wy by
using smoother of several iterations on Ajwy = 7x;
27 Obtain preconditioned vector zx = vi + Yx + Wk;

the acceleration methods only consider acceleration at the top
level there is no reason why acceleration cannot be utilized
within each grid level. Not only Krylov smoothing on each
coarse grid level is much less time-consuming than Krylov
smoothing on top level (fine grid), but also it can improve
the scalability of convergence, which has been analyzed
in [39].

Fig. 7(b) shows one iteration of K-cycle multigrid strategy,
which is presented to accelerate W-cycle. The details of AMG
as preconditioner at level k with Krylov subspace acceleration
are shown in Algorithm 4, in which the coarse grid system is
recursively solved by K-cycle style. This scheme corresponds
the one implementation of the preconditioner at the next
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coarser level, whereas a few steps of Krylov subspace iterative
smoothing are performed with K-cycle (steps 7-23). Accord-
ing to the theoretical analysis [39], at most two iterations are
allowed, and the second iteration (steps 16—22) will be skipped
if the relative residual error is less than the threshold ¢ after the
first iteration (steps 8—12 and 14). Practically, we set t = 0.25
as default.

For the sake of clarity, Fig. 7(b) shows an example of
Krylov subspace acceleration recursively on each level. It
first performs smoothing and restriction on the top level grid
(k = K) five times to obtain the residual of coarsest level
grid, then obtains coarse grid correction by directly solving
residual equation on coarsest level grid. After interpolating
coarse grid correction from coarsest level grid to coarse grid,
it performs one or two steps of Krylov subspace smoothing
on coarse grid. The Krylov subspace smoothing is performed
at the end of every recursive cycle on each level to reduce
the residual, in which it is described as inner iteration. In
this scheme, the residual on coarse grid system is smoothed
by several steps of a Krylov subspace iterative method. This
approach is followed recursively until the coarsest level where
the solution is obtained through application of the direct
solver Cholmod [7]. In practice, K-cycle with only two inner
iterations at each level is observed to be optimal.

Theoretical analysis [27], [39] has shown that aggregation-
based multigrid with K-cycle can achieve a guaranteed con-
vergence, which is independent or near independent of the
number of levels. K-cycle multigrid appears to be more
robust than V-cycle or even standard W-cycle. The enhanced
robustness is obtained nearly for free because K-cycle has a
roughly same computational complexity as V- or W-cycle.

D. Complexity Analysis

PowerRush is designed as a scalable simulator for extremely
large-scale power grid analysis. The parser step with hash-
ing method has a linear complexity, and the circuit builder
with disjoint set and DFS method has a complexity between
O(logN) and O(N). That is to say, if our linear solver AMP-
PCG has an approximate linear complexity, the promised
scalable simulator will be hold by PowerRush.

The double pairwise aggregation is adopted in grid coars-
ening to ensure a relative effective reduction. Because double
pairwise means forming pairs of pairs, which means that each
four nodes are reduced as one node from one level to the next
level, the reduction rate is theoretically 1/4. Numerical analysis
has shown that if the grid reduction rate is guaranteed, K-cycle
formulation can be utilized at every level while keeping the
overall cost bounded [36]. In AMG-PCG solver, the cost of
each main (outer) iteration is bounded by

20

1—20
where C is a constant such that the cost of one iteration with
the multigrid preconditioner at a certain level, nnz (-) stands
for the number on nonzeros, A is the top level matrix, ¢ is the
grid reduction rate, which is close to 1/4. If the grid reduction
rate is 1/4, the cost of each main iteration is bounded by
Cnnz (A). For a not good grid reduction rate of ¢ = 3/10,

Cost <

Cnnz (A) (8)
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the cost of each main iteration is at most 3/2Cnnz (A). Even
for a very slow coarsening with the grid reduction rate of
o = 3/8, the cost of each top level iteration is bounded by
3Cnnz (A).

It is easy to find that the constant C is linearly increased
with the problem size increasing. And the number of nonzeros
of matrix A is also linearly increased with the problem size
increasing. Therefore, the total complexity is only effected by
the grid reduction rate o. Once the reduction rate o is stably
performed as a relative small constant, the total complexity
bound can be guaranteed as an approximate linear curve.

V. EXPERIMENTAL RESULTS

All algorithms in PowerRush are implemented by C/C++
language with single thread. The simulation platform is a
64-bit Redhat Enterprise Linux with 2 Quad-Core Intel Xeon
E5506 CPU@2.13 GHz and 24GB RAM on HP ProLiant
DL380 G6 Server. The Hybrid solver [11], which is a well-
developed random walk linear solver [40] is also evaluated
for comparison. An efficient direct solver Cholmod [7], which
is a part of SuiteSparse 3.7.0 [41] is also evaluated for
comparison. Due to the symmetric property when performing
static analysis, other nonsymmetrical matrix solvers such as
SuperLU or KLU will not be evaluated in this paper.

The runtime in simulation flow is measured by system clock
counter. The peak memory usage is measured by a friendly
tool memtime whose memory usage is fetched from a PID
information of /proc/[PID]/stat by sampling [42]. We have to
emphasize that, the reported peak memory usage is the total
memory used for each simulator, which includes SPICE parser,
circuit builder, and linear solver, not only for linear solver.

This paper is focused on efficient algorithms and simulators
for static analysis and consequently only dc simulation is
performed. There are two sets of benchmarks to evaluate,
which include IBM and THU power grid benchmarks. IBM
power grid benchmarks are industrial power grids, which are
drawn from real chip designs [33]. The smallest one of THU
power grid benchmarks is synthesized for a test chip design
using Synopsys Astro based on TSMC 65nm technology. The
remaining THU benchmarks are extended according to the
above synthesized grid by our power grid planner without loss
of generality [43]. The matrix conditioning nature of THU
benchmarks is properly preserved because we adopt a small
real power grid as a seed to create larger cases. All of THU
benchmarks are extracted from the above power grid designs
as SPICE format, without any special consideration we can
benefit from. The details of these benchmarks are listed in
Table II. The top six are IBM power grid benchmarks and the
last ten are THU power grid benchmarks. The second column
is the original grid size, which is from 851 K to 60 million.
The third column is the number of equivalent nodes for each
benchmark after merging the short paths or vias with extremely
small resistance value. The last six columns list the physical
parameters for each benchmark. It should be emphasized that
the shorts listed in column 7 are the number of zero resistance
in SPICE netlist, which is different from the metal vias with
extremely small resistance. The ninth column lists the number
of subnets existed in each benchmark.
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TABLE II
DETAILS OF POWER GRID BENCHMARKS. EQUIVALENT NODES ARE THE NUMBER OF NODES AFTER MERGING SHORT PATHS OR RESISTORS WITH

EXTREMELY SMALL VALUE. SUBNET IS THE NUMBER OF ISOLATED NETS, WHICH MEANS NO ELECTRICAL CONNECTIVITY BETWEEN THEM

Benchmark Nodes Equivalent Nodes | Resistors | Current Sources | Voltage Sources | Shorts | Subnets | Metal Layers
ibmpg3 851584 286299 1401572 201054 955 0 3 5
ibmpg4 953583 610103 1560645 276976 962 0 2 6
ibmpg5 1079310 540497 10768438 540800 277 538810 5 3
ibmpg6 1670494 834633 1649002 761484 381 835858 2 3

ibmpgnew! 1461041 531777 1422830 357930 955 929261 3 7

ibmpgnew2 | 1461041 531777 2352355 357930 955 0 3 7
thupgl 4974439 3261850 8248158 315950 261 0 1 3
thupg2 8989132 6014504 15042090 484424 350 0 1 3
thupg3 11778121 7856200 19698081 610610 395 0 1 3
thupg4 15209208 10259771 25566793 747741 434 0 1 3
thupg5 19231049 13627506 33000795 835113 466 0 1 3
thupg6 23505915 17216192 42430212 926447 535 0 1 3
thupg7 28468261 18690184 47430073 1391500 621 0 1 3
thupg8 39784463 27661623 67904272 1703905 703 0 1 3
thupg9 51810571 31518068 83992792 2793853 911 0 1 3
thupg10 60351149 38415188 99645735 3013079 925 0 1 3

TABLE III

DC SIMULATION RESULTS OF IBM POWER GRID BENCHMARKS. THE SETUP COST IS FOR THE THREE SOLVERS AT THE SAME TIME

Setup PowerRush Hybrid Solver Cholmod

Benchmark Parse | Build | Solve | Memory | Enaz Fave Solve | Memory | Emaz Fave Solve | Memory | Enmaqx Fave
(Sec) | (Sec) | (Sec) (MB) (mV) | (mV) | (Sec) (MB) (mV) | (mV) | (Sec) (MB) (mV) | (mV)
ibmpg3 298 | 0.54 1.70 239.95 0.07 0.0124 | 10.80 | 326.02 0.07 0.0127 | 1.58 314.01 0.05 0.0124
ibmpg4 297 | 093 2.04 319.56 0.23 0.0290 | 12.21 | 515.71 0.22 0.0272 | 341 480.50 0.23 0.0290
ibmpg5 3.05 0.82 1.75 329.37 0.06 0.0117 | 25.26 | 449.31 0.09 0.0162 | 2.51 466.33 0.05 0.0117
ibmpg6 5.07 1.48 4.14 475.70 0.09 0.0122 | 4420 | 743.18 0.11 0.0245 | 3.64 664.35 0.05 0.0122
ibmpgnew!l | 4.29 1.31 3.28 387.97 0.07 0.0124 | 1998 | 577.42 0.07 0.0128 | 3.53 570.96 0.05 0.0124
ibmpgnew2 | 5.07 1.06 3.26 407.01 0.07 0.0124 | 20.17 | 587.32 0.07 0.0128 | 3.51 552.88 0.05 0.0123

Many efforts of detail implementations are taken into the
parser step and the circuit building step of PowerRush to guar-
antee a stable simulator for more general power grid designs.
Each benchmark is carefully checked in parser procedure to
merge the short paths as equivalent nodes and subsequently
its original grid size is reduced to a smaller one. Also, the
resistors with extremely small resistance value are properly
neglected, and vertical vias between each two neighboring
layers are handled adaptively. In our simulator, the stopping
criteria of linear solver is defined as relative residual

il
b1l

where |r¢|l, is the 2-norm of the residual vector after k
iterations, ||b||, is the 2-norm of the right-hand side vector, and
tol is set to 107°, which is reliable to guarantee the required
voltage solution accuracy.

tol

©)

A. Simulation of Industrial Power Grids

Initially, we carried our various experiments on industrial
power grids, which are drawn from real designs [33] to
validate the promising performance of the proposed simulator
PowerRush. The details of these benchmarks have been listed
in Table II. PowerRush is evaluated on these benchmarks
compared with Cholmod and Hybrid solver in which their
results are shown in Table III. The setup cost that includes
parser and builder is all the same for the three solvers. The
parser and builder time are accordingly listed in columns 2
and 3. Epax and E,e is to represent the max and average

voltage error, respectively. The measured memory is the total
memory used for all simulator, not only for linear solver, but
also including SPICE parser and circuit builder. The max and
average voltage errors of PowerRush are almost the same
as the direct solver Cholmod, which is accurate enough for
practical analysis.

The runtime of PowerRush is also somewhat like Cholmod
solver, from which we can observe that a well-developed direct
solver is also a good choice when solving not very large
scale power grids. Due to the matrix factorization in Cholmod,
the memory consumption of Cholmod solver is much more
than PowerRush, which can be found in columns 5 and 13.
However, Cholmod has more potential competitive advantage
when performing transient simulation with fixed time step
because the factorized triangular matrix can be reused on
each time point. For runtime comparison, Hybrid solver uses
much more CPU time than PowerRush and Cholmod solver.
Therefore, both the runtime and memory usage of PowerRush
are relatively small and increase slowly with the grid size
increasing. As listed in Table IV, the performance of proposed
AMG-PCG solver is also compared with GMD solver [21].
Tomp and Tpr are the runtime of GMD solver [21] and
AMG-PCG solver in PowerRush, respectively. Subsequently,
ESMD and EPR are the average solution error when using
GMD solver [21] and when using AMG-PCG solver in Pow-
erRush, respectively. For GMD solver, the listed runtime and
average solution error are listed in [21] of Table I. Even if
the working frequency of our used microprocessor is slower
than [21], AMG-PCG solver in PowerRush can still achieve
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TABLE IV
RUNTIME AND ACCURACY FOR DC SIMULATION COMPARED
WITH GMD SOLVER [21]

/ Torbp | 1PR EGMD | EPR
Benchmark (Sec) (Sec) Speedup (;‘ﬁ%/) (7;31/5)
ibmpg3 16.1 1.70 9X 42 0.0124
ibmpg4 28.5 2.04 14X 0.1 0.0290
ibmpg5 25.8 1.75 15X 1.5 0.0117
ibmpg6 48.5 4.14 12X 3.6 0.0122

about 10 speedups with better accuracy than GMD [21]. The
experimental results have shown that PowerRush is effective
and robust with high accuracy for real power grids analysis.

B. Simulation of Larger Power Grids

Aiming to present the promising enhanced robustness and
scalability of PowerRush, a serious of larger scale power grid
benchmarks [43] are generated by our power grid planner,
in which the grid size is from 5 to 60 million, as listed in
Table II. Among them, there exists only one single net in each
benchmark, which means that there are no separated nets in a
same benchmark. That is to say, it cannot take the advantage
of divide-and-conquer strategy in circuit building process, as
described in Section III-B.

In Table V, it lists the behavior of our proposed simulator
PowerRush on our generated power grids. T¢, Ty, and Tpr are
the runtime of Cholmod solver, Hybrid solver, and AMG-PCG
solver in PowerRush, respectively. Mc, My, and Mpr are the
total memory usage when simulation with Cholmod solver,
with Hybrid solver and with AMG-PCG solver, respectively.
E,ve is to represent average voltage error. The solution of
Cholmod solver is adopted as a standard for comparison
because there are no golden solutions for the generated bench-
marks. T¢/Tpr is the speedups of AMG-PCG than Cholmod.
Ty /Tpr is the speedups of AMG-PCG than Hybrid solver.
Mpr/Mc is the total memory usage reduction of AMG-PCG
than Cholmod. Mpr /My is the total memory usage reduction
of AMG-PCG than Hybrid solver. The setup cost is listed in
columns 2 and 3. The runtime of each part in our simulator
is shown in Fig. 8. The parsing time, building time, and
solving time are very scalable with the increasing size of
power grids. The outer iterations of AMG-PCG solver are
listed in column 9, which is very robust for large-scale power
grid analysis because the robust convergence is based on the
double pairwise aggregation and Krylov subspace acceleration
techniques.

As listed in Table V, Cholmod solver failed for the largest
four benchmarks and Hybrid solver also failed for the largest
three benchmarks because of limited memory. However,
AMG-PCG solver can simulate all benchmarks correctly. The
runtime comparison of three solvers is shown in Fig. 9(a)
from which we can observe that AMG-PCG solver is much
more efficient than Cholmod and Hybrid solver. The speedups
of AMG-PCG solver than Cholmod are listed in column 13,
which can obtain about 4X-8X speedups. And speedups of
AMG-PCG solver than Hybrid solver are listed in column 14,
which can obtain more than 20X or 30X speedups.
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The total memory consumption comparison of three solvers
is shown in Fig. 9(b) from which we can observe that
the memory usage of AMG-PCG solver is much less
than Cholmod and Hybrid solver. AMG-PCG solver can
extremely reduce the memory usage using the double pair-
wise aggregation technique. The memory usage reduction
performance is listed in columns 15 and 16. The simulator
with AMG-PCG solver just uses about 42% memory than
with Cholmod and about 64% memory than with Hybrid
solver.

Obviously, there is a tradeoff between Cholmod and Hybrid
solver whereas Cholmod is faster than Hybrid solver but
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TABLE V
DC SIMULATION RESULTS OF POWERRUSH ON THU POWER GRID BENCHMARKS WHEN COMPARED WITH HYBRID SOLVER AND CHOLMOD SOLVER

Setup Cholmod Hybrid Solver PowerRush Speedup MemReduce
Grid Parse | Build Tc Mc Ty Mg | Eave | 10 | TPrR | MpPR | Eave T Ty Mpr | Mpg
(Sec) (Sec) (Sec) (GB) (Sec) (GB) | (mV) (Sec) (GB) (mV) Tpr Tpr Mc Mpy
thupgl 15.92 4.96 36.41 4.04 214.17 2.39 1.47 6 9.91 1.89 0.05 4X 22X 47% 65%
thupg2 29.17 9.13 85.11 8.05 464.11 5.29 2.80 6 20.93 341 0.06 4X 22X 42% 64%
thupg3 38.37 12.40 | 123.64 | 10.29 660.10 6.90 3.61 7 26.73 443 0.21 5X 25X 43% 64%
thupg4 50.01 16.54 | 184.96 | 13.62 809.94 8.92 4.79 6 32.20 5.79 0.03 6X 25X 43% 65%
thupg5 65.22 2249 | 30895 | 17.56 | 1151.04 | 11.71 7.00 7 47.29 7.53 0.02 7X 24X 43% 64%
thupg6 79.94 29.13 | 418.35 | 22.29 | 1689.16 | 14.70 9.27 6 54.80 9.43 0.05 8X 31X 42% 64%
thupg7 93.83 32.48 - - 2005.46 | 16.35 - 7 75.88 10.63 - - 26X - 65%
thupg8 142.64 | 64.31 - - - - - 6 10242 | 15.39 - - - - -
thupg9 187.22 | 71.12 - - - - - 6 115.75 18.10 - - - - -
thupglO [ 227.93 | 96.49 - - - - - 6 148.91 21.99 - - - - -
TABLE VI
GRID REDUCTION EFFICIENCY OF DOUBLE PAIRWISE AGGREGATION SCHEME. THE INITIAL SIZE IS THE EQUIVALENT NODE
NUMBER AFTER MERGING THE SHORT PATHS OR VERY SMALL RESISTORS
Reduction Level .
Benchmark Initial Si R ion R
enchmar nitial Size 71 ¥ 3 ¥4 45 76 %7 43 %9 eduction Rate
ibmpg3/GNDT 151148 42535 11817 3250 880 239 - - - - 0.2753
ibmpg4/GNDT 303712 78876 21527 5822 1552 407 105 - - - 0.2650
ibmpg5/GNDT 291559 75523 20095 5320 1412 377 - - - - 0.2645
ibmpg6/GNDT 430586 114936 31314 8657 2421 663 174 - - - 0.2720
ibmpgnew/GNDT 272655 75804 21113 5804 1574 416 108 - - - 0.2711
thupgl 3261850 1016250 302693 82384 21244 5404 1369 347 - - 0.2715
thupg2 6014504 1876044 559178 | 152303 39264 9973 2524 640 163 - 0.2694
thupg3 7856200 2448528 729549 | 198959 51293 | 13032 3310 838 213 - 0.2694
thupg4 10259771 3198126 952769 | 259647 66915 | 16990 4303 | 1089 275 - 0.2691
thupg5 13627506 4246482 | 1265492 | 344802 88799 | 22548 5720 | 1445 366 - 0.2691
thupg6 17216192 5365326 | 1598894 | 435519 | 112230 | 28500 7207 | 1824 460 | 117 0.2674
thupg7 18690184 5824651 1735814 | 473105 | 121978 | 30992 7852 | 1985 502 | 128 0.2676
thupg8 27661623 8620564 | 2568323 | 700007 | 180413 | 45840 | 11607 | 2941 744 | 188 0.2674
thupg9 31518068 9817025 | 2925390 | 797496 | 205484 | 52169 | 13205 | 3342 847 | 215 0.2675
thupg10 38415188 11967133 | 3566144 | 972293 | 250721 | 63664 | 16109 | 4074 | 1030 | 264 0.2677

T GND means that only the single net of ground network is used.
* Average reduction rate of all reduction levels

Cholmod is memory inefficient than Hybrid solver. Because
Cholmod is a direct solver, which requires more memory
resources while Hybrid solver just needs to construct a pre-
conditioner whose fill-in can be largely controlled. There is
no doubt that the quality of preconditioner will naturally
affect the preconditioning performance of iterative solvers and
consequently require more runtime. However, our proposed
AMG-PCG solver can reduce the solution residual by
a multilevel fashion while it can not only improve the
solving efficiency, but also reduce the memory consump-
tion. In addition, the voltage error when using AMG-
PCG is much smaller than with Hybrid solver, as shown
in columns 8 and 12. Since the multilevel approach is
essentially better than random walk approach, the solu-
tion accuracy of AMG-PCG solver is much more scal-
able than Hybrid solver when simulating larger scale power
grids.

PowerRush is also evaluated in first annual TAU power
grid simulation contest [44]. The contest results show that
PowerRush not only has a better solving efficiency, but
also is extremely memory efficient. In addition, PowerRush
is expected to explore a widely practical use in industrial

world. For more detailed results, the readers can refer to
[28] and [45]-[47].

C. Grid Reduction Efficiency

Also, in Table VI, it lists the grid reduction efficiency of
double pairwise aggregation strategy. For all benchmarks, the
total average reduction rate is about 0.2689, which is very
close to o 1/4 while the scale factor is about 3.7184.
Therefore, the complexity is bounded by

2
2% Cinz(A) = 1.1636Cnnz (A).

1 -2 (10

Considering a scaling rule for this reduction scheme with

400 x (3.7184)'0 ~ 202125475 (11)
it can reduce a power grid of about 200-million nodes easily
to 400 nodes within 11 levels. Thus, the double pairwise
aggregation technique reduces the memory consumption
rapidly, which ensures the scalability in memory usage.
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VI. CONCLUSION

We have presented the detailed implementations of Power-
Rush. Aggregation-based AMG with K-cycle accelerating is
adopted as an implicit preconditioner for CG iterative method
to solve the involved linear equations for static power grid
simulation. Double pairwise aggregation scheme adopts two
passes of a pairwise matching algorithm to ensure low setup
cost both in runtime and memory usage. K-cycle scheme
is a recursively accelerated W-cycle where acceleration is
performed by finding the optimal linear combination of two
iterations (inner and outer iteration). Thus, a friendly scalable
solver is realized fully with algebraic information on the
involved system matrix only. Also, by taking the advantage of
effective SPICE parser and robust circuit builder, PowerRush
has shown to be an effective and robust simulator with
excellent scalability for real power grids analysis.

APPENDIX A

ADDITIONAL IMPLEMENTATION OF SPICE PARSER
AND CIRCUIT BUILDER

The SPICE parser first builds each kind of elements as a
set, that is to say, all circuit nodes set as Spoge, all resistors set
as Swire, all pins, which are connected to current sources as
Spin and all pad nodes, which are connected to voltage sources
as Spad. By traversing on these sets, the power grid circuit is
stored as nodes list and wires map, which are linked to present
their topologies. Each circuit component is pointed to its two
side nodes, such as for a resistor w € Sy With two side nodes
P € Snode and g € Spode, We have ¢ < w — p, and thus we
can store the relationships among all circuit components and
nodes as a link table Lire—s node-

Based on the link table Ljre—snode, We can build the circuit
topology graph G. For each wire w € Syir, Which is not
ignored, the wire w is pointed to its two side equivalent nodes,
and also each equivalent node is pointed to the wire, which
is connected to it. Thus, the circuit topology is constructed
by a two-way mapping relationship by the wires map and
nodes list. The above two-way mapping relationship is denoted
as graph G, which can be easily extracted as a conductance
matrix for simulation.

By merging the short paths, the metal wires on short paths
are removed from Syire and the components, which are pointed
to the original nodes will be pointed to the equivalent nodes.
As shown in Fig. 10, wire 1 is pointed to node b and c. If
there is a short path between node a and b, it will merge
them and choose node b as their equivalent node without loss
of generality. Then, node a is removed from the nodes list
and the voltage solution of node a can be obtained from its
equivalent node b after solving the linear system. Meanwhile,
node b and ¢ are pointed to wire 1.

APPENDIX B

ON THE PERSPECTIVE OF PRECONDITIONING FOR
POWER GRID NETWORK

The involved ill-conditioned problems are arisen from the
dramatically conductance variations in different metal layers
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Node c

Fig. 10. Link table for wire map and nodes list.

or vias, which are similar to the ill-conditioned finite element
stiffness matrices [48]. With the industrial CMOS process
becoming more advanced, via resistance value will exceed the
sheet resistance by several orders of magnitude, and conse-
quently the max to min ratio of eigenvalues of conductance
matrix becomes too large to converge when using iterative
methods.

From the perspective of preconditioning for power grid
network [33], Ryia (typical resistance value of vertical vias)
is much smaller than Rprizon (in horizontal metal layers), as
shown in Fig. 11. For ibmpg3, Rporizon 1S about 1072 ohm,
whereas Ryi, is about 1078 ohm. Accordingly, the condition
number of system conductance matrix is too large to obtain a
convergence solution for iterative method. If directly ignoring
Ryia by merging the two nodes as an equivalent node it will
result in some considerable voltage error in final solutions.
Subsequently, the error becomes more and more significant
along with R,j; increasing. For ibmpg3, the nodes number
of GND net is 441076, which can be reduced to 151148
after merging the vias with extremely small resistance value
(about 10~® ohm) and then it leads to a well-conditioned
system to be solved. For clarity, several experiments are carried
out to demonstrate the influence on numerical characteristic
due to the difference between Ryiyz and Rhorizon. Initially,
Rhiorizon 18 fixed, and then Ryi, varies from 1078 to 107! ohm.
Subsequently, we monitor the IR-drop on vertical vias, which
are listed in Table VII. The condition number is computed by
condest function in MATLAB. Solution unreliable means that
the solution is not reliable because of large condition number.
The condition number is almost infinity when Ry, is too small,
and decreases with Ry, increasing because of Ryj, is becom-
ing more and more close to Rporizon- Also, the IR-drop on
vertical vias is increasing when Ryj, is increasing. Obviously,
there exists a tradeoff between the solution accuracy and the
condition number. We should set a proper threshold to decide
when Ryi, can be ignored under the condition of solution
accuracy requirement.

An approximation strategy is proposed to tackle this ill-
conditioned problem in our simulator. The idea of adaptively
ignoring vertical vias is based on the magnitude of the voltage
drop on via. That is, the voltage drop on via is very small
when gyi, is very large, and subsequently the via can be
treated as a short path. Thus, the negligible voltage drop can
properly be ignored while avoiding to solve the ill-conditioned
problem. Before building the conductance matrix, we try to
estimate an average current flow through the vias between
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Fig. 11.

Via between neighboring metal layers.

TABLE VII
COMPARISON OF CONDITION NUMBER AND IR-DROP ON VIA WITH
DIFFERENT RESISTANCE VALUE OF VERTICAL VIAS FOR IBMPG3 CASE

Ryiq | Condition Number IR-drop on Via
10—8 Inf. Solution unreliable
10~7 Inf. Solution unreliable
106 ~10° Solution unreliable
1072 ~108 Solution unreliable
104 ~107 ~0.01 mV
10-3 ~10° ~0.1 mV
102 ~10° ~1mV
101 ~10* ~10 mV

each two neighboring metal layers. Because the current sinks
are only attached to the nodes on bottom metal layer, we
can calculate the total current sinks by adding them together
as lioral. Also, we count the total number of vias between
every two neighboring metal layers as N, ,ﬁ between metal layer
k and /. By assuming that the current flow through the vias
between certain two layers are somewhat equilibration, then
the average current flow through each via between layer k and
[ can be estimated as Iéila = Iiotal/ N,i. Assuming the required
accuracy of voltage solution is set to ¢ and the typical value
of vias resistance is estimated as riypical, Whether the vias
resistance should be ignored or not can be decided by this
formula with a threshold u

ignore

T'typical X I\],(il Spuxe
do not ignore (12)

Ftypical X Iyjy > f X €
where x4 =~ 0.01 is a rough factor to scale the solution
accuracy . The solution accuracy ¢ is usually specified by
chip designers, such as defining ¢ as 1 mV. By scaling it
with 4 = 0.01 or even smaller, that is, the corresponding
solution error is scaled to 0.01 mV as a threshold, then to
decide whether the vias will be ignored or not. The parameter
4 1is just a rough factor, which is usually chosen by scaling
estimation. For IBM power grid benchmarks, it is reasonable
to set u as about 0.01 by our observations.

This formula means that if the typical resistance value of
vias is small enough to ignore the voltage drop on them we can
merge them as equivalent nodes instead of solving a very ill-
conditioned system. Experiments will show that this estimation
strategy is proper and effective. It can not only avoid to solve
the ill-conditioned problem, but also reduce the problem size
by merging nodes as equivalent node on a large scale.
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