
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014 2103

PowerRush: An Efficient Simulator for Static
Power Grid Analysis

Jianlei Yang, Student Member, IEEE, Zuowei Li, Yici Cai, Senior Member, IEEE,
and Qiang Zhou, Senior Member, IEEE

Abstract— Efficient power grid analysis is critical for mod-
ern very large scale integration design but is computationally
challenging in runtime and memory consumption because of
the increasing size of power grids. PowerRush is proposed
as an efficient IR-drop simulator, which includes an efficient
SPICE parser, a robust circuit builder, and a linear solver
Algebraic MultiGrid Preconditioned Conjugate Gradient. The
proposed AMG-PCG solver is a pure algebraic method, which
can provide stable convergence without geometric information.
Aggregation-based AMG with K-cycle acceleration is adopted as
a preconditioner to improve the scalability of iterative method.
In multigrid scheme, double pairwise aggregation technique is
applied to matrix graph in coarsening to ensure low setup
cost and memory requirement. Furthermore, K-cycle multigrid
scheme is adopted to provide Krylov subspace acceleration at
each level to guarantee enhanced robustness and scalability. The
experimental results for large-scale power grids have shown
that PowerRush has remarkable scalability both in runtime
and memory consumption. DC analysis of power grid with
60-million nodes can be solved by PowerRush for 0.01 mV
accuracy within 150 s and 21.99 GB total memory used. More-
over, the proposed AMG-PCG solver can perform much better
than widely used direct solver Cholmod and well-developed
Hybrid solver both on runtime and memory consumption.

Index Terms— Aggregation, algebraic multigrid (AMG),
K-cycle, power grid, PowerRush.

I. INTRODUCTION

MODERN VLSI circuits are rapidly becoming more and
more power intensive due to the scaling impacts. In [1],

it reports that IBM POWER7 microprocessor can consume
230 W within 567 mm2 area, which means that it has a
current density of tens of Amps/cm2. The supply voltage
observed by a chip cell is known to vary with its dynamic
current drawn due to the impedance of the power delivery
network. Fig. 1 shows logic density and supply voltage value
projection from the 2011 International Technology Roadmap
for Semiconductors (ITRS) report. The trend shows that the
voltage profile is going to get worse and power consumption is
increasingly prominent in advanced technology nodes, which

Manuscript received January 4, 2013; revised July 5, 2013; accepted
September 12, 2013. Date of publication October 2, 2013; date of current
version September 23, 2014. This work was supported by the National Natural
Science Foundation of China under Grant 61274031.

The authors are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China, (e-mail:
yjl09@mails.tsinghua.edu.cn; lizuoweirain@gmail.com; caiyc@mail.
tsinghua.edu.cn; zhouqiang@mail.tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2282418

Fig. 1. High-performance design trends of ITRS 2011.

means that the effect of voltage fluctuations on power grid
becomes more and more significant. With the decreased VDD
value, how to retain the switching speeds and satisfy the noise
margin is becoming more and more challengeable for high
performance chip designs. A critical issue in the analysis of
power grids is the large size of the network. For recent power
grid analysis of IBM processors [1]–[5], the problem size of
a ground network on a single core can reach hundreds of
millions nodes. Such a large-scale problem can only be solved
by highly tuned algorithms with supercomputing resources.
Therefore, the design and analysis of extremely large-scale
power grids are a very computationally challenging task for
VLSI design.

Many contributions have been developed for efficient power
grid analysis, which includes direct solvers, iterative solvers,
and many other specialized solvers. Direct solvers such as
KLU [6] and Cholmod [7] are usually adopted for transient
simulation with a fixed time step because the factorized
triangular matrix can be reused in the simulation of each time
step. However, direct approaches cannot scale well with the
problem size for larger scale power grids. Furthermore, the
reusability of matrix factorization will be impracticable for
simulation with variable time step, which is more appreciated
for practical use. Therefore, iterative approaches are relatively
competitive than direct approaches in many cases.

Iterative solvers are usually developed for static simulation,
such as Krylov subspace method [8] with all sorts of pre-
conditioners, i.e., random walk [9], support graphs [10], and
so forth. Among them the random walk-based Hybrid solver
has been well developed as a stochastic preconditioner [11]
and proved to be very efficient for power grid analysis [9].

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Especially, there are many specialized methods proposed for
efficient power grid analysis, which includes hierarchical and
macromodeling methods [12], domain decomposition [13],
and some matrix-oriented algebraic methods such as SPAI [14]
and H-matrix [15] as well as HSS methods [16], [17].

Due to the similarity between the power grids and dis-
cretization of Laplacian equations, multigrid methods are
introduced for fast power grid simulation. Geometric-based
multigrid like technique [18] was first applied to power grid
analysis but its grid coarsening strategy is based on the
topology of power grids, which may limit its practical use.
To further handle irregular power grids, algebraic multigrid
(AMG)-based techniques [19], [20] were also developed. In
parallel view, a GPU-based HMD algorithm [21] is pro-
posed to improve the solving efficiency and MGPCG solver
[22], [23] is further introduced to improve the robustness of
HMD solver. However, the most noticeable problem between
the above GPU-multigrid solvers is the mapping method of
3-D irregular grids to 2-D regular grids, which ignores via
resistances. Obviously, it will result in considerable errors and
therefore slow convergence.

For AMG approaches, there exists a tradeoff between the
setup cost and efficiency of error components reduction.
The grid reduction methods in some AMG-like multigrid
approaches [19] are also somewhat geometrically based, which
may degrade the efficiency due to the irregularity. A pure
AMG method [24] was proposed to improve the efficiency
whose grid reduction was based on matrix graph. However,
its denser prolongation matrices increase setup costs and
memory requirements. To overcome the bottleneck of limited
convergence by controlling the number of coarsening levels,
smoothed aggregation method [25] is developed recently,
which is robust and efficient over a wide variety of problems.
Aggregation-based AMG is also introduced to power grid
analysis [26]. In [27], Fourier analysis has been explored
for several aggregation-based two-grid schemes for a model
anisotropic problem. However, in practice, it is too difficult to
achieve optimal order convergence with V-cycle or even with
standard W-cycle. The work in [28] proposed an aggregation-
based AMG preconditioned CG method with Krylov subspace
acceleration for power grid analysis, which has been proved
to be very close to optimal convergence.

In summary, there is a tradeoff between runtime and mem-
ory consumption among the existing methods. Some direct
solvers can be very robust but require much more memory
resources, while some iterative solvers can be acted as memory
efficient but lack of stable convergence rate when simulating
extremely large-scale power grids. Some particular fast solvers
can be utilized for special or structured power grid simulation
such as [29], but mostly suitable for highly structured grids,
which may limit its practical applications in general grids.
Aiming to break the tradeoff between runtime and memory
consumption and obtain a robust convergence with low setup
cost, in this paper, we propose an efficient simulator Pow-
erRush with pure AMG solver for static IR-drop analysis of
large-scale power grids.

The major contributions of this paper are as follows.
Section III provides the simulation flow of our simula-

Fig. 2. Power grid model.

tor PowerRush, detailed implementations of SPICE parser,
and circuit builder, which should have considerable practi-
cal value to this community. Section IV presents the pro-
posed AMG preconditioned conjugate gradient (AMG-PCG)
solver, which is a pure algebraic method and we have
demonstrated how it can improve the convergence robustness
without geometric information. In multigrid scheme, dou-
ble pairwise aggregation technique is applied to matrix in
coarsening to ensure low setup cost and memory require-
ment. Further, K-cycle multigrid scheme is adopted to pro-
vide Krylov subspace acceleration at each level to guarantee
enhanced robustness and scalability. In particular, Section V
presents the simulation performance of large-scale power
grids.

II. BACKGROUND

A. Power Grid Analysis

In this section, we give the basic modeling and analysis
techniques for efficient and accurate analysis. Typically, power
grid on die is designed from top-level metal layer, which
is connected to the package, down through interlayer vias,
and finally to the active devices, as shown in Fig. 2. For dc
simulation, power grid can be modeled as linear resistive net-
work system. Using modified nodal analysis (MNA) method, a
n-node circuit network can be formulated as a linear system
[8]. After reformulation by Norton’s law, this system can result
in a symmetric, positive definite problem whose system matrix
is a nonsingular M-matrix [19]

Gu = I (1)

where u ∈ R
n×1 is an unknown vector of node voltages, G ∈

R
n×n is the conductance matrix, I ∈ R

n×1 is a vector of node
current sources. The diagonal entries of matrix G are defined
by gii = ∑

j∈Ni

∣
∣gi j

∣
∣, where Ni =

{
j
∣
∣gi j �= 0

}
is the set of

neighbors of node i , gi j defines the conductance between the
two neighboring nodes i and j , thus gi j = g j i , which results
in the G matrix being symmetric.

As the VLSI technology scaling associated with signifi-
cantly increasing device numbers in a die, the number of
nodes in the power grid may easily exceed many millions.
The most accurate and stable methods for solving such huge
linear systems are sparse direct solvers such as KLU [6] and
Cholmod [7], but both of them are time expensive and memory
inefficient for very large scale problems. Another state-of-
the-art approach is iterative methods especially preconditioned

YANG et al.: POWERRUSH: AN EFFICIENT SIMULATOR FOR STATIC POWER GRID ANALYSIS 2105

Fig. 3. Essence of multigrid.

iterative methods, which can be utilized to solve such linear
systems with memory efficiently. However, preconditioned
iterative methods are not stable for many cases because of
either expensive cost or unsatisfactory performance of their
preconditioners [30].

B. AMG Method

The main idea of multigrid is to improve the convergence
of a basic iterative method by global correction on each level,
performed by solving a coarse problem. Multigrid methods
[31] are considered to be scalable, which are expected to solve
a linear system within linear complexity. Multigrid methods
achieve optimality through the effect of a smoother and a
coarse grid correction. In multigrid scheme, as shown in Fig. 3,
the smoother is fixed and generally based on a simple iterative
relaxation method. The coarse grid correction involves trans-
ferring information to a coarse grid through restriction and
computing an approximate solution to the residual equation
on a coarser grid, which is to say, solving a linear system
of smaller size. This solution is then transferred back to the
original grid using an appropriate interpolation, which is also
described as prolongation. In the classical multigrid setting,
smoothing reduces high frequency error, whereas coarse grid
correction eliminates low frequency error.

Multigrid methods are divided into two typical categories,
geometric multigrid (GMD) and AMG [32]. GMD can be
easily implemented if the geometric problem information is
known. AMG methods construct their hierarchy of oper-
ators directly from the system matrix, and the levels of
the hierarchy are simply subsets of unknowns without any
geometric interpretation. Thus, AMG methods become true
black-box solvers for sparse matrices. However, AMG is
regarded as advantageous mainly where GMD is too difficult
to apply.

Due to the irregularity of real power grid designs [33],
AMG methods have been well developed in power grid
simulation area. AMG is a pure matrix-based method for
solving linear equations based on multigrid principles, but
requires no explicit knowledge of the problem geometry.
It determines coarse grids, intergrid transfer operators, and
coarse-grid equations based solely on the matrix entries. With
AMG methods, linear systems Ax = b are solved, where A is
a real n× n matrix and x and b are vectors in R

n . For clarity,

we assume that A is symmetric positive definite matrix. Recall
that the two main components of multigrid are smoothing
and coarse grid correction. Coarse grid correction involves
operators that transfer information between fine and coarse
grids, which are denoted in linear algebra terms simply as the
vector space R

n and the lower dimensional vector space R
nc .

Interpolation (prolongation) maps the coarse grid to the fine
grid and is just the n × nc matrix P : Rnc → R

n . Restriction
maps the fine grid to the coarse grid and operators matrix is
the transpose of interpolation PT . The typical two-grid method
for solving the above equation can be defined as follows:

1) obtain approximate solution x̃ by presmoothing on fine
grid Ax = b;

2) compute residual r = b − Ax̃ = Ae;
3) restrict residual to coarse grid by rc = PT r ;
4) obtain an approximate error ec by relax on coarse grid

Acec = rc;
5) coarse grid correction x = x̃ + Pec;
6) postsmoothing on the fine grid Ax = b.

The error vector e in step 2 reflects the difference between
the exact solution and the current iteration. After restricting the
residual to coarse grid, the approximate error on coarse grid
can be obtained. In practice, we solve the coarse system in step
4 by recursively reapplying the two-grid method, yielding a
hierarchy of coarse grids, transfer operators, and coarse grid
systems. Because AMG is only based on the matrix A, we
only need to define the coarse system Ac with low setup cost
for operators P , and then the total AMG framework can be
performed efficiently.

Although the classical AMG methods work remarkably
well for a wide variety of problems, some of the assump-
tions made in its derivation usually limit its applicability.
In this paper, we introduce an aggregation-based AMG with
K-cycle acceleration as a high quality preconditioner for CG
iteration to perform efficient static power grid analysis. The
smoothed aggregation method [25] is a highly successfully
AMG method that is robust and efficient over a wide variety
of problems. The most interesting aspect of aggregation-based
AMG is its approach to define interpolation. The aggregation
algorithm first partitions the grid by aggregation grid points
into small disjoint sets and then builds a preliminary interpo-
lation operator to coarsen power grids by system matrix level.
Thus, the prolongation matrices with at most one nonzero
entry per row are much sparser than the ones obtained by
the classical AMG approach. Numerical analysis has shown
that for 2-D anisotropic model problem, aggregation-based
two-grid methods [27] may have optimal order convergence
properties. The constructions of interpolation operator and
prolongation operator discussed in Section IV-A will show
that how smoothed aggregation method reduces the setup cost.
Meanwhile, Krylov subspace acceleration is introduced as
cycling strategy of multigrid scheme. The Krylov subspace
smoothing is performed at the end of every recursive cycle
on each level to reduce the residual. Theoretical analysis has
been shown that aggregation-based multigrid with K-cycle can
achieve a guaranteed convergence, which is independent or
near independent of the number of levels.

2106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Fig. 4. Simulation flow of PowerRush.

III. SIMULATION FLOW

This paper presents a friendly efficient simulator with
remarkable scalability for static power grid analysis. The
simulator consists of a smart SPICE parser, a robust circuit
builder, and a linear solver. The detailed simulation flow of
our simulator PowerRush is shown in Fig. 4. The SPICE
format netlist is parsed as nodes list and wires map. Sub-
sequently, it builds them as a topology graph. After extracting
them into conductance matrix, the linear solver is called to
obtain the voltage solutions by solving the involved linear
equations.

A. SPICE Parser

An efficient/robust SPICE parser is critical for circuit
simulation especially for large-scale power grids because it
is extremely time-consuming to parse a very large scale
R/RC/RLC network. For each element of the SPICE netlist,
we need to identify how it is connected to the circuit. It
is necessary to build a hash table of all circuit nodes when
querying them [34], [35].

For each benchmark it reads the netlist twice. The first
reading is to count the total number of resistors as NR and
then estimates the total number of circuit nodes to initialize
hash table T for all nodes set. The second reading is to hash
each circuit node to its index in hash table T by the node
name string given in the SPICE netlist. For a node i with
name string Ki , we define a string hash function

H (Ki) =
∑Li

j=1
mod

(
K j

i × M(Li− j), NR
)

(2)

where Li is the name string length of node i , K j
i is the

j th character of name string Ki , and M is a constant base
number, which is selected to be optimal for the above hash
function. The idea behind this is that we try to use as many
bits as we can while converting strings to integers so that we
can obtain a unique integer as far as possible. Of course, we
are still not able to obtain unique integers for all the strings
and undoubtedly there will be collisions, however, we can try
to minimize the collisions as much as possible. According
to the properties of the node name strings in SPICE netlist,
the 7-bit encoding (or a 128-base number) can be adopted
for the above hash function. After properly testing for real
benchmarks, we choose an optimal constant base M = 131
so that the average clustering in hash table is about 1.16.
That is to say, it can ensure the average search length of

TABLE I

GRID REDUCTION SCALE FOR IBM PG BENCHMARKS

each node is about 1.16 and the maximum search length is no
more than 6.

As we know the complexity of hash method to find an
element in a table is expected to O(1). Therefore, the total
complexity of our parser is expected to O(N), where N is the
number of grid nodes.

B. Circuit Builder

The key step of building circuit is to create a graph to
handle all the wires map and nodes list. For more detailed
implementations, the reader can refer to Appendix A. In addi-
tion, there are some short paths or vertical vias between each
two neighboring metal layers with extremely small or zero
resistance. Many special considerations should be taken for
handling these particular cases to avoid solving the involved
ill-conditioned linear equations. Please refer to Appendix B
for more details.

Noticing that the number of unknowns can be reduced by
merging nodes as short paths (vias with very small or zero
resistance value), a highly efficient equivalence-based merging
technique is adopted in PowerRush. The disjoint-set data struc-
ture is utilized to find and union nodes sets. A disjoint-set data
structure is a data structure that keeps track of a set of elements
partitioned into a number of disjoint (nonoverlapping) subsets.
A union-find algorithm is an algorithm that performs two
useful operations on such a data structure. After placing the
two nodes between the short path into a same disjoint set,
both the find and union operation can be finished within a
complexity of O(logN). Taking IBM power grid benchmarks,
for example, the grid reduction scale is listed in Table I.
Noriginal is the number of original grid nodes. Nequivalent is
the number of equivalent grid nodes. Nequivalent can be about
30%–60% of Noriginal after merging short paths and metal
vias with extremely small resistance value. This grid reduction
scale can lead to a smaller linear system, which is easier to
be solved.

It is noticeable that there exist several separated subnets for
each benchmark in real power grid designs [33]. Our circuit
builder can identify all the separated subnets by depth-first
search (DFS) algorithm with complexity of O(N) and then
solve each subnet independently. Therefore, the total solving
cost can be added linearly by the solving cost of each subnet.

C. Linear Solver

After building the circuit graph, the conductance matrix G
can be formulated by MNA method as well as the correspond-
ing right-hand side vector. Then, the AMG-PCG method is

YANG et al.: POWERRUSH: AN EFFICIENT SIMULATOR FOR STATIC POWER GRID ANALYSIS 2107

Fig. 5. Framework of AMG-PCG solver.

utilized to solve the resulted linear equations. Among AMG-
PCG solver, aggregation-based AMG with K-cycle accelera-
tion is adopted as a preconditioner to improve the robustness
of conjugate gradient iterative method [36].

As shown in Fig. 5, the application of AMG-PCG is
implemented as a three-part process. The first part, which is a
fully automatic setup phase, consists of recursively choosing
the coarser levels and defining the transfer and coarse-grid
operators. The second part, which is the preconditioning phase,
just uses the resulting components to perform acceleration
recursively on all the levels by the use of K-cycle scheme. The
third part, aggregation-based AMG with K-cycle accelerating
is adopted as an implicit preconditioner for CG iterative
method to solve the involved linear equations. The detailed
implementations of AMG-PCG solver are demonstrated in
Section IV.

IV. AMG-PCG SOLVER

In this paper, we use aggregation-based AMG method with
K-cycle acceleration to improve the convergence. This proce-
dure is fully algebraic, that is, it works with the information
present in the system matrix only.

A. Aggregation Coarsening

As shown in Fig. 5, the aggregation scheme contains
two steps. Initially, we need to partition the unknowns into
disjoint subsets to generate the prolongation matrices. Then,
the prolongation matrices are utilized to formulate the coarse
matrices.

As described in [37], we focus on the schemes that use
coarsening by aggregation where the strongest connection
is favored in forming pairs. For each unmarked node i ,
according to some priority rule designed so as to favor
a regular covering of the matrix graph. Then, attempt to
group this node with another unmarked node with which
is most strongly negative coupled, that is, the unmarked
node j for which ai j is minimal. For circuit represen-
tation, strong coupling means a large-conductance value
between each circuit nodes, which has been discussed in
[24] and [26]. Since the diagonal entry of conductance
matrix ai j

∣
∣ j=i is denoted as positive value, the off-diagonal

entry ai j
∣
∣ j �=i representing the conductance between each two

connected nodes is denoted as negative value. Therefore,
the coupling relationship is described as negative coupling.
A threshold β is defined to decide whether it is strong or

Algorithm 1 : Pairwise Aggregation PWA(An×n, β)

weak coupling, and then define the set of nodes Si to which
i is strongly negative coupled by

Si =
{

j �= i

∣
∣
∣
∣aij < −β max

aik<0
|aik|

}

(3)

which means that the node j is formed as a pair with node
i only and if only j satisfies this requirement. As illustrated
in Algorithm 1, the pairwise aggregation strategy selects the
nodes, which have most of the influence on their neighboring
nodes as coarse nodes.

With aggregation scheme above, the fine grid with n
unknown variables is grouped into coarse grid with nc disjoint
subsets Gi , i = 1, 2, . . . , nc, and each such subset is asso-
ciated to a unique coarse level unknown. Prolongation from
coarse level to fine level is a vector defined on the coarse
variable set by assigning the value at a given coarse variable
to all fine grid variables associated to it. The prolongation
operator P is a n × nc Boolean matrix with exactly one
nonzero entry in each row and piecewise constant in each
column, that is

Pij =
{

1 if i ∈ G j ,
0 otherwise,

i = 1, . . . , n; j = 1, . . . , nc

(4)
and restriction operator R is chosen to be the transpose of the
prolongation matrix P .

The coarse grid matrices are then cheap to compute using
the variational property of the Galerkin coarse grid operator
[31] and generally as sparse as the original fine grid matrix. As
we have denoted the conductance matrix G as fine grid matrix
A f , which is symmetric and positive definite, the coarse grid

2108 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Fig. 6. Sample grid with nine nodes is grouped into four aggregates.

Algorithm 2:Double Pairwise Aggregation DPW A (An×n, β)

matrix is computed from the Galerkin formula

Ac = R A f P = PT A f P (5)

which implies that Ac is cheap to construct using

(Ac)ij =
∑

k∈Gi

∑

l∈G j

akl. (6)

That is, the entries in the coarse grid matrix are obtained
by summing the entries in A f that connect the different
aggregates. Taking Fig. 6 as an example, the grid with nine
nodes is aggregated as a coarse grid with four disjoint sets
G1, G2, G3, and G4, then its prolongation operator P can be
as follows:

PT =

1 2 3 4 5 6 7 8 9⎛

⎜
⎜
⎝

1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎠

← G1
← G2
← G3
← G4

. (7)

The above simple pairwise aggregation coarsening is still
relatively slow, which cannot guarantee an optimal perfor-
mance of multilevel methods. This paper adopts the double
pairwise aggregation algorithm, which begins by forming pairs
in the scaled problem matrix [36]. This fast coarsening tech-
nique is implemented in our simulator by repeating the simple
pairwise aggregation process, defining aggregates by forming
pairs of pairs. The details of double pairwise aggregation
algorithm are listed in Algorithm 2.

Furthermore, preliminary numerical results show that
aggregation-based multigrid methods may then indeed exhibit
convergence that is independent or near independent of the
number of levels [27].

Algorithm 3 : AMG as Preconditioner at Level k, zk =
AMG precond (rk, k)

B. Multilevel Preconditioning

Although AMG strategy has been tried to capture all
relevant influences by accurate coarsening and interpolation,
its interpolation will hardly ever be optimal. Multilevel error
reduction technique can smooth the majority of the error com-
ponents very quickly but inefficiency for just a few exceptional
error components. Therefore, its total convergence property
is degraded by this nonideal phenomenon. To improve the
robustness of our approaches, AMG is adopted as an implicit
preconditioner for conjugate gradient method instead of stand-
alone solver [38]. This behavior of scalability enhancement
can be understood when we investigate the eigenvalue spec-
trum of the Richardson iteration matrix. Most of the eigen-
values are generally clustered around zero, only the largest
eigenvalues are outside the clustering. As we know the spectral
radius determines the convergence of multigrid as a stand-
alone solver. This spectral radius increases on finer grids but
the eigenvectors belonging to the larger eigenvalues are very
soon captured into the Krylov subspace when multigrid is
adopted as a preconditioner, and accordingly the convergence
is accelerated considerably.

The AMG preconditioner at each level on a given
residual vector is computed according to Algorithm 3,
which includes presmoothing, restriction, interpolation, and
postsmoothing [36]. As general implementation, symmetric
Gauss–Seidel smoothing method is adopted for presmoothing
and postsmoothing step. The distinguishing characteristics of
our AMG preconditioner are the intergrid operators and multi-
grid cycling strategy. The intergrid operators, which related
to restriction and interpolation steps have been illustrated in
Section IV-A, while the cycling strategy will be demonstrated
in Section IV-C.

The multigrid preconditioning is called by the main iteration
routine at the top level k = K (fine grid), and it recursively
calls itself in step 3 with a smaller index until the coarsest
level. We stop the coarsening when the coarse grid matrix has
400 rows, allowing fast direct solver with sparse Cholesky

YANG et al.: POWERRUSH: AN EFFICIENT SIMULATOR FOR STATIC POWER GRID ANALYSIS 2109

Fig. 7. Schematic description of multigrid cycling strategy. The cycling
proceeds from left to right and from top (find level grid) to bottom (coarsest
level grid). (a) Multigrid as a preconditioner for a Krylov subspace method.
(b) K-cycle: Krylov smoothing is performed on each grid level.

factorization. For k > 1, the AMG preconditioner at level k
computes yk−1 approximately using AMG preconditioner at
level k − 1. The way this is done defines the cycling strategy,
which will be discussed in detail in the following section.

Aiming to enhance the convergence robustness and scala-
bility of iterative method, the above aggregation-based AMG
is adopted as an implicit preconditioner for conjugate gradient
method, which is considered as main (outer) iteration routine.
This AMG preconditioner is called at the top level (fine grid)
K among the outline of AMG-PCG solver.

C. K-Cycle Multigrid

The scalability of the general multigrid method can be
enhanced or accelerated recursively on all levels by the use
of K-cycle strategy [39]. The K-cycle method is so named
because the acceleration of multigrid is typically performed
by Krylov subspace methods. Typically, accelerating multigrid
by a Krylov subspace method at the top level is equivalent
to adopting multigrid as a preconditioner in connection with
Krylov subspace methods. General K-cycle method can be
better understood if we consider the top level acceleration
case first. Fig. 7(a) considers to use standard V-cycle multigrid
as a preconditioner for Krylov subspace method. After each
V-cycle, a Krylov subspace smoothing step is utilized in an
attempt to reduce the residual, and that means that ‖A · x̃k‖
should be less than ‖A · xk‖ where x̃k is the approximate
solution computed using the Krylov subspace method. The
number of V-cycle iterations needed to reach convergence is
hopefully reduced using Krylov smoothing. Although most of

Algorithm 4: AMG as Preconditioner at Level k With Krylov
Subspace Acceleration, zk = AMG precond (rk , k)

the acceleration methods only consider acceleration at the top
level there is no reason why acceleration cannot be utilized
within each grid level. Not only Krylov smoothing on each
coarse grid level is much less time-consuming than Krylov
smoothing on top level (fine grid), but also it can improve
the scalability of convergence, which has been analyzed
in [39].

Fig. 7(b) shows one iteration of K-cycle multigrid strategy,
which is presented to accelerate W-cycle. The details of AMG
as preconditioner at level k with Krylov subspace acceleration
are shown in Algorithm 4, in which the coarse grid system is
recursively solved by K-cycle style. This scheme corresponds
the one implementation of the preconditioner at the next

2110 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

coarser level, whereas a few steps of Krylov subspace iterative
smoothing are performed with K-cycle (steps 7–23). Accord-
ing to the theoretical analysis [39], at most two iterations are
allowed, and the second iteration (steps 16–22) will be skipped
if the relative residual error is less than the threshold t after the
first iteration (steps 8–12 and 14). Practically, we set t = 0.25
as default.

For the sake of clarity, Fig. 7(b) shows an example of
Krylov subspace acceleration recursively on each level. It
first performs smoothing and restriction on the top level grid
(k = K) five times to obtain the residual of coarsest level
grid, then obtains coarse grid correction by directly solving
residual equation on coarsest level grid. After interpolating
coarse grid correction from coarsest level grid to coarse grid,
it performs one or two steps of Krylov subspace smoothing
on coarse grid. The Krylov subspace smoothing is performed
at the end of every recursive cycle on each level to reduce
the residual, in which it is described as inner iteration. In
this scheme, the residual on coarse grid system is smoothed
by several steps of a Krylov subspace iterative method. This
approach is followed recursively until the coarsest level where
the solution is obtained through application of the direct
solver Cholmod [7]. In practice, K-cycle with only two inner
iterations at each level is observed to be optimal.

Theoretical analysis [27], [39] has shown that aggregation-
based multigrid with K-cycle can achieve a guaranteed con-
vergence, which is independent or near independent of the
number of levels. K-cycle multigrid appears to be more
robust than V-cycle or even standard W-cycle. The enhanced
robustness is obtained nearly for free because K-cycle has a
roughly same computational complexity as V- or W-cycle.

D. Complexity Analysis

PowerRush is designed as a scalable simulator for extremely
large-scale power grid analysis. The parser step with hash-
ing method has a linear complexity, and the circuit builder
with disjoint set and DFS method has a complexity between
O(logN) and O(N). That is to say, if our linear solver AMP-
PCG has an approximate linear complexity, the promised
scalable simulator will be hold by PowerRush.

The double pairwise aggregation is adopted in grid coars-
ening to ensure a relative effective reduction. Because double
pairwise means forming pairs of pairs, which means that each
four nodes are reduced as one node from one level to the next
level, the reduction rate is theoretically 1/4. Numerical analysis
has shown that if the grid reduction rate is guaranteed, K-cycle
formulation can be utilized at every level while keeping the
overall cost bounded [36]. In AMG-PCG solver, the cost of
each main (outer) iteration is bounded by

Cost ≤ 2σ

1− 2σ
Cnnz (A) (8)

where C is a constant such that the cost of one iteration with
the multigrid preconditioner at a certain level, nnz (·) stands
for the number on nonzeros, A is the top level matrix, σ is the
grid reduction rate, which is close to 1/4. If the grid reduction
rate is 1/4, the cost of each main iteration is bounded by
Cnnz (A). For a not good grid reduction rate of σ = 3/10,

the cost of each main iteration is at most 3/2Cnnz (A). Even
for a very slow coarsening with the grid reduction rate of
σ = 3/8, the cost of each top level iteration is bounded by
3Cnnz (A).

It is easy to find that the constant C is linearly increased
with the problem size increasing. And the number of nonzeros
of matrix A is also linearly increased with the problem size
increasing. Therefore, the total complexity is only effected by
the grid reduction rate σ . Once the reduction rate σ is stably
performed as a relative small constant, the total complexity
bound can be guaranteed as an approximate linear curve.

V. EXPERIMENTAL RESULTS

All algorithms in PowerRush are implemented by C/C++
language with single thread. The simulation platform is a
64-bit Redhat Enterprise Linux with 2 Quad-Core Intel Xeon
E5506 CPU@2.13 GHz and 24GB RAM on HP ProLiant
DL380 G6 Server. The Hybrid solver [11], which is a well-
developed random walk linear solver [40] is also evaluated
for comparison. An efficient direct solver Cholmod [7], which
is a part of SuiteSparse 3.7.0 [41] is also evaluated for
comparison. Due to the symmetric property when performing
static analysis, other nonsymmetrical matrix solvers such as
SuperLU or KLU will not be evaluated in this paper.

The runtime in simulation flow is measured by system clock
counter. The peak memory usage is measured by a friendly
tool memtime whose memory usage is fetched from a PID
information of /proc/[PID]/stat by sampling [42]. We have to
emphasize that, the reported peak memory usage is the total
memory used for each simulator, which includes SPICE parser,
circuit builder, and linear solver, not only for linear solver.

This paper is focused on efficient algorithms and simulators
for static analysis and consequently only dc simulation is
performed. There are two sets of benchmarks to evaluate,
which include IBM and THU power grid benchmarks. IBM
power grid benchmarks are industrial power grids, which are
drawn from real chip designs [33]. The smallest one of THU
power grid benchmarks is synthesized for a test chip design
using Synopsys Astro based on TSMC 65nm technology. The
remaining THU benchmarks are extended according to the
above synthesized grid by our power grid planner without loss
of generality [43]. The matrix conditioning nature of THU
benchmarks is properly preserved because we adopt a small
real power grid as a seed to create larger cases. All of THU
benchmarks are extracted from the above power grid designs
as SPICE format, without any special consideration we can
benefit from. The details of these benchmarks are listed in
Table II. The top six are IBM power grid benchmarks and the
last ten are THU power grid benchmarks. The second column
is the original grid size, which is from 851 K to 60 million.
The third column is the number of equivalent nodes for each
benchmark after merging the short paths or vias with extremely
small resistance value. The last six columns list the physical
parameters for each benchmark. It should be emphasized that
the shorts listed in column 7 are the number of zero resistance
in SPICE netlist, which is different from the metal vias with
extremely small resistance. The ninth column lists the number
of subnets existed in each benchmark.

YANG et al.: POWERRUSH: AN EFFICIENT SIMULATOR FOR STATIC POWER GRID ANALYSIS 2111

TABLE II

DETAILS OF POWER GRID BENCHMARKS. EQUIVALENT NODES ARE THE NUMBER OF NODES AFTER MERGING SHORT PATHS OR RESISTORS WITH

EXTREMELY SMALL VALUE. SUBNET IS THE NUMBER OF ISOLATED NETS, WHICH MEANS NO ELECTRICAL CONNECTIVITY BETWEEN THEM

TABLE III

DC SIMULATION RESULTS OF IBM POWER GRID BENCHMARKS. THE SETUP COST IS FOR THE THREE SOLVERS AT THE SAME TIME

Many efforts of detail implementations are taken into the
parser step and the circuit building step of PowerRush to guar-
antee a stable simulator for more general power grid designs.
Each benchmark is carefully checked in parser procedure to
merge the short paths as equivalent nodes and subsequently
its original grid size is reduced to a smaller one. Also, the
resistors with extremely small resistance value are properly
neglected, and vertical vias between each two neighboring
layers are handled adaptively. In our simulator, the stopping
criteria of linear solver is defined as relative residual

tol = ‖rk‖2
‖b‖2

(9)

where ‖rk‖2 is the 2-norm of the residual vector after k
iterations, ‖b‖2 is the 2-norm of the right-hand side vector, and
tol is set to 10−6, which is reliable to guarantee the required
voltage solution accuracy.

A. Simulation of Industrial Power Grids

Initially, we carried our various experiments on industrial
power grids, which are drawn from real designs [33] to
validate the promising performance of the proposed simulator
PowerRush. The details of these benchmarks have been listed
in Table II. PowerRush is evaluated on these benchmarks
compared with Cholmod and Hybrid solver in which their
results are shown in Table III. The setup cost that includes
parser and builder is all the same for the three solvers. The
parser and builder time are accordingly listed in columns 2
and 3. Emax and Eave is to represent the max and average

voltage error, respectively. The measured memory is the total
memory used for all simulator, not only for linear solver, but
also including SPICE parser and circuit builder. The max and
average voltage errors of PowerRush are almost the same
as the direct solver Cholmod, which is accurate enough for
practical analysis.

The runtime of PowerRush is also somewhat like Cholmod
solver, from which we can observe that a well-developed direct
solver is also a good choice when solving not very large
scale power grids. Due to the matrix factorization in Cholmod,
the memory consumption of Cholmod solver is much more
than PowerRush, which can be found in columns 5 and 13.
However, Cholmod has more potential competitive advantage
when performing transient simulation with fixed time step
because the factorized triangular matrix can be reused on
each time point. For runtime comparison, Hybrid solver uses
much more CPU time than PowerRush and Cholmod solver.
Therefore, both the runtime and memory usage of PowerRush
are relatively small and increase slowly with the grid size
increasing. As listed in Table IV, the performance of proposed
AMG-PCG solver is also compared with GMD solver [21].
TGMD and TPR are the runtime of GMD solver [21] and
AMG-PCG solver in PowerRush, respectively. Subsequently,
EGMD

ave and EPR
ave are the average solution error when using

GMD solver [21] and when using AMG-PCG solver in Pow-
erRush, respectively. For GMD solver, the listed runtime and
average solution error are listed in [21] of Table I. Even if
the working frequency of our used microprocessor is slower
than [21], AMG-PCG solver in PowerRush can still achieve

2112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

TABLE IV

RUNTIME AND ACCURACY FOR DC SIMULATION COMPARED

WITH GMD SOLVER [21]

about 10 speedups with better accuracy than GMD [21]. The
experimental results have shown that PowerRush is effective
and robust with high accuracy for real power grids analysis.

B. Simulation of Larger Power Grids

Aiming to present the promising enhanced robustness and
scalability of PowerRush, a serious of larger scale power grid
benchmarks [43] are generated by our power grid planner,
in which the grid size is from 5 to 60 million, as listed in
Table II. Among them, there exists only one single net in each
benchmark, which means that there are no separated nets in a
same benchmark. That is to say, it cannot take the advantage
of divide-and-conquer strategy in circuit building process, as
described in Section III-B.

In Table V, it lists the behavior of our proposed simulator
PowerRush on our generated power grids. TC , TH , and TPR are
the runtime of Cholmod solver, Hybrid solver, and AMG-PCG
solver in PowerRush, respectively. MC , MH , and MPR are the
total memory usage when simulation with Cholmod solver,
with Hybrid solver and with AMG-PCG solver, respectively.
Eave is to represent average voltage error. The solution of
Cholmod solver is adopted as a standard for comparison
because there are no golden solutions for the generated bench-
marks. TC/TPR is the speedups of AMG-PCG than Cholmod.
TH/TPR is the speedups of AMG-PCG than Hybrid solver.
MPR/MC is the total memory usage reduction of AMG-PCG
than Cholmod. MPR/MH is the total memory usage reduction
of AMG-PCG than Hybrid solver. The setup cost is listed in
columns 2 and 3. The runtime of each part in our simulator
is shown in Fig. 8. The parsing time, building time, and
solving time are very scalable with the increasing size of
power grids. The outer iterations of AMG-PCG solver are
listed in column 9, which is very robust for large-scale power
grid analysis because the robust convergence is based on the
double pairwise aggregation and Krylov subspace acceleration
techniques.

As listed in Table V, Cholmod solver failed for the largest
four benchmarks and Hybrid solver also failed for the largest
three benchmarks because of limited memory. However,
AMG-PCG solver can simulate all benchmarks correctly. The
runtime comparison of three solvers is shown in Fig. 9(a)
from which we can observe that AMG-PCG solver is much
more efficient than Cholmod and Hybrid solver. The speedups
of AMG-PCG solver than Cholmod are listed in column 13,
which can obtain about 4X–8X speedups. And speedups of
AMG-PCG solver than Hybrid solver are listed in column 14,
which can obtain more than 20X or 30X speedups.

Fig. 8. Runtime of SPICE parser, circuit builder, and AMG-PCG solver in
PowerRush simulator.

Fig. 9. Runtime and memory complexity of three solvers. (a) Runtime.
(b) Memory.

The total memory consumption comparison of three solvers
is shown in Fig. 9(b) from which we can observe that
the memory usage of AMG-PCG solver is much less
than Cholmod and Hybrid solver. AMG-PCG solver can
extremely reduce the memory usage using the double pair-
wise aggregation technique. The memory usage reduction
performance is listed in columns 15 and 16. The simulator
with AMG-PCG solver just uses about 42% memory than
with Cholmod and about 64% memory than with Hybrid
solver.

Obviously, there is a tradeoff between Cholmod and Hybrid
solver whereas Cholmod is faster than Hybrid solver but

YANG et al.: POWERRUSH: AN EFFICIENT SIMULATOR FOR STATIC POWER GRID ANALYSIS 2113

TABLE V

DC SIMULATION RESULTS OF POWERRUSH ON THU POWER GRID BENCHMARKS WHEN COMPARED WITH HYBRID SOLVER AND CHOLMOD SOLVER

TABLE VI

GRID REDUCTION EFFICIENCY OF DOUBLE PAIRWISE AGGREGATION SCHEME. THE INITIAL SIZE IS THE EQUIVALENT NODE

NUMBER AFTER MERGING THE SHORT PATHS OR VERY SMALL RESISTORS

Cholmod is memory inefficient than Hybrid solver. Because
Cholmod is a direct solver, which requires more memory
resources while Hybrid solver just needs to construct a pre-
conditioner whose fill-in can be largely controlled. There is
no doubt that the quality of preconditioner will naturally
affect the preconditioning performance of iterative solvers and
consequently require more runtime. However, our proposed
AMG-PCG solver can reduce the solution residual by
a multilevel fashion while it can not only improve the
solving efficiency, but also reduce the memory consump-
tion. In addition, the voltage error when using AMG-
PCG is much smaller than with Hybrid solver, as shown
in columns 8 and 12. Since the multilevel approach is
essentially better than random walk approach, the solu-
tion accuracy of AMG-PCG solver is much more scal-
able than Hybrid solver when simulating larger scale power
grids.

PowerRush is also evaluated in first annual TAU power
grid simulation contest [44]. The contest results show that
PowerRush not only has a better solving efficiency, but
also is extremely memory efficient. In addition, PowerRush
is expected to explore a widely practical use in industrial

world. For more detailed results, the readers can refer to
[28] and [45]–[47].

C. Grid Reduction Efficiency

Also, in Table VI, it lists the grid reduction efficiency of
double pairwise aggregation strategy. For all benchmarks, the
total average reduction rate is about 0.2689, which is very
close to σ = 1/4 while the scale factor is about 3.7184.
Therefore, the complexity is bounded by

2σ

1− 2σ
Cnnz (A) = 1.1636Cnnz (A) . (10)

Considering a scaling rule for this reduction scheme with

400× (3.7184)10 ≈ 202125475 (11)

it can reduce a power grid of about 200-million nodes easily
to 400 nodes within 11 levels. Thus, the double pairwise
aggregation technique reduces the memory consumption
rapidly, which ensures the scalability in memory usage.

2114 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

VI. CONCLUSION

We have presented the detailed implementations of Power-
Rush. Aggregation-based AMG with K-cycle accelerating is
adopted as an implicit preconditioner for CG iterative method
to solve the involved linear equations for static power grid
simulation. Double pairwise aggregation scheme adopts two
passes of a pairwise matching algorithm to ensure low setup
cost both in runtime and memory usage. K-cycle scheme
is a recursively accelerated W-cycle where acceleration is
performed by finding the optimal linear combination of two
iterations (inner and outer iteration). Thus, a friendly scalable
solver is realized fully with algebraic information on the
involved system matrix only. Also, by taking the advantage of
effective SPICE parser and robust circuit builder, PowerRush
has shown to be an effective and robust simulator with
excellent scalability for real power grids analysis.

APPENDIX A

ADDITIONAL IMPLEMENTATION OF SPICE PARSER

AND CIRCUIT BUILDER

The SPICE parser first builds each kind of elements as a
set, that is to say, all circuit nodes set as Snode, all resistors set
as Swire, all pins, which are connected to current sources as
Spin and all pad nodes, which are connected to voltage sources
as Spad. By traversing on these sets, the power grid circuit is
stored as nodes list and wires map, which are linked to present
their topologies. Each circuit component is pointed to its two
side nodes, such as for a resistor w ∈ Swire with two side nodes
p ∈ Snode and q ∈ Snode, we have q ← w→ p, and thus we
can store the relationships among all circuit components and
nodes as a link table Lwire→node.

Based on the link table Lwire→node, we can build the circuit
topology graph G. For each wire w ∈ Swire, which is not
ignored, the wire w is pointed to its two side equivalent nodes,
and also each equivalent node is pointed to the wire, which
is connected to it. Thus, the circuit topology is constructed
by a two-way mapping relationship by the wires map and
nodes list. The above two-way mapping relationship is denoted
as graph G, which can be easily extracted as a conductance
matrix for simulation.

By merging the short paths, the metal wires on short paths
are removed from Swire and the components, which are pointed
to the original nodes will be pointed to the equivalent nodes.
As shown in Fig. 10, wire 1 is pointed to node b and c. If
there is a short path between node a and b, it will merge
them and choose node b as their equivalent node without loss
of generality. Then, node a is removed from the nodes list
and the voltage solution of node a can be obtained from its
equivalent node b after solving the linear system. Meanwhile,
node b and c are pointed to wire 1.

APPENDIX B

ON THE PERSPECTIVE OF PRECONDITIONING FOR

POWER GRID NETWORK

The involved ill-conditioned problems are arisen from the
dramatically conductance variations in different metal layers

Fig. 10. Link table for wire map and nodes list.

or vias, which are similar to the ill-conditioned finite element
stiffness matrices [48]. With the industrial CMOS process
becoming more advanced, via resistance value will exceed the
sheet resistance by several orders of magnitude, and conse-
quently the max to min ratio of eigenvalues of conductance
matrix becomes too large to converge when using iterative
methods.

From the perspective of preconditioning for power grid
network [33], Rvia (typical resistance value of vertical vias)
is much smaller than Rhorizon (in horizontal metal layers), as
shown in Fig. 11. For ibmpg3, Rhorizon is about 10−2 ohm,
whereas Rvia is about 10−8 ohm. Accordingly, the condition
number of system conductance matrix is too large to obtain a
convergence solution for iterative method. If directly ignoring
Rvia by merging the two nodes as an equivalent node it will
result in some considerable voltage error in final solutions.
Subsequently, the error becomes more and more significant
along with Rvia increasing. For ibmpg3, the nodes number
of GND net is 441 076, which can be reduced to 151 148
after merging the vias with extremely small resistance value
(about 10−8 ohm) and then it leads to a well-conditioned
system to be solved. For clarity, several experiments are carried
out to demonstrate the influence on numerical characteristic
due to the difference between Rvia and Rhorizon. Initially,
Rhorizon is fixed, and then Rvia varies from 10−8 to 10−1 ohm.
Subsequently, we monitor the IR-drop on vertical vias, which
are listed in Table VII. The condition number is computed by
condest function in MATLAB. Solution unreliable means that
the solution is not reliable because of large condition number.
The condition number is almost infinity when Rvia is too small,
and decreases with Rvia increasing because of Rvia is becom-
ing more and more close to Rhorizon. Also, the IR-drop on
vertical vias is increasing when Rvia is increasing. Obviously,
there exists a tradeoff between the solution accuracy and the
condition number. We should set a proper threshold to decide
when Rvia can be ignored under the condition of solution
accuracy requirement.

An approximation strategy is proposed to tackle this ill-
conditioned problem in our simulator. The idea of adaptively
ignoring vertical vias is based on the magnitude of the voltage
drop on via. That is, the voltage drop on via is very small
when gvia is very large, and subsequently the via can be
treated as a short path. Thus, the negligible voltage drop can
properly be ignored while avoiding to solve the ill-conditioned
problem. Before building the conductance matrix, we try to
estimate an average current flow through the vias between

YANG et al.: POWERRUSH: AN EFFICIENT SIMULATOR FOR STATIC POWER GRID ANALYSIS 2115

Fig. 11. Via between neighboring metal layers.

TABLE VII

COMPARISON OF CONDITION NUMBER AND IR-DROP ON VIA WITH

DIFFERENT RESISTANCE VALUE OF VERTICAL VIAS FOR IBMPG3 CASE

each two neighboring metal layers. Because the current sinks
are only attached to the nodes on bottom metal layer, we
can calculate the total current sinks by adding them together
as Itotal. Also, we count the total number of vias between
every two neighboring metal layers as Nl

k between metal layer
k and l. By assuming that the current flow through the vias
between certain two layers are somewhat equilibration, then
the average current flow through each via between layer k and
l can be estimated as I kl

via = Itotal/Nl
k . Assuming the required

accuracy of voltage solution is set to ε and the typical value
of vias resistance is estimated as rtypical, whether the vias
resistance should be ignored or not can be decided by this
formula with a threshold μ

{
rtypical × I kl

via ≤ μ× ε ignore
rtypical × I kl

via > μ× ε do not ignore
(12)

where μ ≈ 0.01 is a rough factor to scale the solution
accuracy ε. The solution accuracy ε is usually specified by
chip designers, such as defining ε as 1 mV. By scaling it
with μ = 0.01 or even smaller, that is, the corresponding
solution error is scaled to 0.01 mV as a threshold, then to
decide whether the vias will be ignored or not. The parameter
μ is just a rough factor, which is usually chosen by scaling
estimation. For IBM power grid benchmarks, it is reasonable
to set μ as about 0.01 by our observations.

This formula means that if the typical resistance value of
vias is small enough to ignore the voltage drop on them we can
merge them as equivalent nodes instead of solving a very ill-
conditioned system. Experiments will show that this estimation
strategy is proper and effective. It can not only avoid to solve
the ill-conditioned problem, but also reduce the problem size
by merging nodes as equivalent node on a large scale.

ACKNOWLEDGMENT

The authors would like to thank Dr. H. Qian from
the T. J. Watson Research Center of IBM for providing them
with the Hybrid solver library.

REFERENCES

[1] H. Smith, “Power delivery and analysis in IBM,” IBM Corporation,
Armonk, NY, USA, Keynote Rep., 2011.

[2] S. R. Nassif, “Power grid simulation—The chip view,” IBM Corporation,
Armonk, NY, USA, Tech. Rep., 2010.

[3] R. Berridge, R. M. Averill, III, A. E. Barish, M. A. Bowen,
P. J. Camporese, J. DiLullo, P. E. Dudley, J. Keinert, D. W. Lewis,
R. D. Morel, T. Rosser, N. S. Schwartz, P. Shephard, H. H. Smith,
D. Thomas, P. J. Restle, J. R. Ripley, S. L. Runyon, and P. M. Williams,
“IBM POWER6 microprocessor physical design and design methodol-
ogy,” IBM J. Res. Develop., vol. 51, no. 6, pp. 685–714, Nov. 2007.

[4] J. Friedrich, R. Puri, U. Brandt, M. Buehler, J. DiLullo, J. Hopkins,
M. Hossain, M. Kazda, J. Keinert, Z. M. Kurzum, D. Lamb, A. Lee,
F. Musante, J. Noack, P. J. Osler, S. Posluszny, H. Qian, S. Ramji,
V. Rao, L. N. Reddy, H. Ren, T. Rosser, B. R. Russell, C. Sze, and
G. Tellez, “Design methodology for the IBM POWER7 microprocessor,”
IBM J. Res. Develop., vol. 55, no. 3, pp. 9:1–9:14, May/Jun. 2011.

[5] V. Zyuban, J. Friedrich, C. J. Gonzalez, R. Rao, M. D. Brown,
M. M. Ziegler, H. Jacobson, S. Islam, S. Chu, P. Kartschoke,
G. Fiorenza, M. Boersma, and J. A. Culp, “Power optimization method-
ology for the IBM POWER7 microprocessor,” IBM J. Res. Develop.,
vol. 55, no. 3, pp. 7:1–7:9, May/Jun. 2011.

[6] T. A. Davis and S. Rajamanickam, “Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems,” ACM Trans. Math. Softw.,
vol. 37, no. 3, pp. 36–52, Sep. 2010.

[7] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algo-
rithm 887: Cholmod, supernodal sparse Cholesky factorization and
update/downdate,” ACM Trans. Math. Softw., vol. 35, no. 3, pp. 22–35,
Oct. 2008.

[8] T. H. Chen and C. C.-P. Chen, “Efficient large-scale power grid analysis
based on preconditioned Krylov-subspace iterative methods,” in Proc.
38th IEEE/ACM DAC, Jun. 2001, pp. 559–562.

[9] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Power grid analysis using
random walks,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 24, no. 8, pp. 1204–1224, Aug. 2005.

[10] X. Zhao, J. Wang, Z. Feng, and S. Hu, “Power grid analysis with
hierarchical support graphs,” in Proc. IEEE/ACM ICCAD, Nov. 2011,
pp. 543–547.

[11] H. Qian and S. S. Sapatnekar, “Stochastic preconditioning for diagonally
dominant matrices,” SIAM J. Sci. Comput., vol. 30, no. 3, pp. 1178–1204,
2008.

[12] M. Zhao, R. V. Panda, S. S. Sapatnekar, T. Edwards, R. Chaudhry, and
D. Blaauw, “Hierarchical analysis of power distribution networks,” in
Proc. 37th IEEE/ACM DAC, Jun. 2000, pp. 150–155.

[13] K. Sun, Q. Zhou, K. Mohanram, and D. C. Sorensen, “Parallel domain
decomposition for simulation of large-scale power grids,” in Proc.
IEEE/ACM ICCAD, Nov. 2007, pp. 54–59.

[14] S. Cauley, V. Balakrishnan, and C. K. Koh, “A parallel direct solver
for the simulation of large-scale power/ground networks,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 4, pp. 636–641,
Apr. 2010.

[15] J. M. S. Silva, J. R. Phillips, and L. M. Silveira, “Efficient simulation of
power grids,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 29, no. 10, pp. 1523–1532, Oct. 2010.

[16] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, “A fast
solver for HSS representations via sparse matrices,” SIAM J. Matrix
Anal. Appl., vol. 29, no. 1, pp. 67–81, 2006.

[17] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Fast algorithms for
hierarchically semiseparable matrices,” Numer. Linear Algebra Appl.,
vol. 17, pp. 953–976, Dec. 2010.

[18] J. N. Kozhaya, S. R. Nassif, and F. N. Najm, “Fast power grid
simulation,” in Proc. IEEE/ACM DAC, Jun. 2000, pp. 156–161.

[19] J. N. Kozhaya, S. R. Nassif, and F. N. Najm, “A multigrid-like technique
for power grid analysis,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 21, no. 10, pp. 1148–1160, Oct. 2002.

2116 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

[20] H. Su, E. Acar, and S. R. Nassif, “Power grid reduction based on alge-
braic multigrid principles,” in Proc. 40th IEEE/ACM DAC, Jun. 2003,
pp. 109–112.

[21] Z. Feng and P. Li, “Multigrid on GPU: Tackling power grid analysis
on parallel SIMT platforms,” in Proc. IEEE/ACM ICCAD, Nov. 2008,
pp. 647–654.

[22] Z. Feng and Z. Zeng, “Parallel multigrid preconditioning on graphics
processing units (GPUs) for robust power grid analysis,” in Proc. 47th
IEEE/ACM DAC, Jun. 2010, pp. 661–666.

[23] Z. Feng, X. Zhao, and Z. Zeng, “Robust parallel preconditioned power
grid simulation on GPU with adaptive runtime performance modeling
and optimization,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 30, no. 4, pp. 562–573, Apr. 2011.

[24] C. Zhuo, J. Hu, M. Zhao, and K. Chen, “Power grid analysis and
optimization using algebraic multigrid,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 4, pp. 738–751, Apr. 2008.

[25] P. Vaněk, “Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems,” Computing, vol. 56, no. 3, pp. 179–196,
1996.

[26] P. Y. Huang, H.-Y. Chou, and Y.-M. Lee, “An aggregation-based
algebraic multigrid method for power grid analysis,” in Proc. 8th IEEE
ISQED, Mar. 2007, pp. 159–164.

[27] Y. C. Muresan and Y. Notay, “Analysis of aggregation-based multigrid,”
SIAM J. Sci. Comput., vol. 30, no. 2, pp. 1082–1103, 2008.

[28] J. Yang, Z. Li, Y. Cai, and Q. Zhou, “PowerRush: A linear simulator
for power grid,” in Proc. IEEE/ACM ICCAD, Nov. 2011, pp. 482–487.

[29] J. Shi, Y. Cai, W. Hou, L. Ma, S. X.-D. Tan, P.-H. Ho, and X. Wang,
“GPU friendly fast Poisson solver for structured power grid network
analysis,” in Proc. IEEE/ACM DAC, Jul. 2009, pp. 178–183.

[30] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA, USA: SIAM, 2003.

[31] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid. San
Francisco, CA, USA: Academic, 2001.

[32] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial,
2nd ed. Philadelphia, PA, USA: SIAM, 2000.

[33] S. R. Nassif. (2011, Aug.). IBM Power Grid Benchmarks [Online].
Available: http://dropzone.tamu.edu/~pli/PGBench

[34] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, MA, USA: Addison-Wesley, 1974,
pp. 111–113.

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009, pp. 219–232.

[36] Y. Notay, “An aggregation-based algebraic multigrid method,” Electron.
Trans. Numer. Anal., vol. 37, no. 6, pp. 123–146, 2010.

[37] Y. Notay, “Aggregation-based algebraic multilevel preconditioning,”
SIAM J. Matrix Anal. Appl., vol. 27, no. 4, pp. 998–1018, 2006.

[38] C. W. Oosterlee and T. Washio, “On the use of multigrid as a precon-
ditioner,” in Proc. 9th Int. Conf. Domain Decomposit. Methods, 1996,
pp. 441–448.

[39] Y. Notay and P. S. Vassilevski, “Recursive Krylov-based multigrid
cycles,” Numer. Linear Algebra Appl., vol. 15, no. 5, pp. 473–487, 2006.

[40] H. Qian and S. S. Sapatnekar. (2012, Aug.). Random Walk Based
Hybrid Solver 1.2.1 [Online]. Available: http://www.ece.umn.edu/users/
sachin/software/hybridsolver/index.html

[41] T. A. Davis. (2011, Dec.). Suitesparse 3.7.0 [Online]. Available: http://
www.cise.ufl.edu/research/sparse/SuiteSparse

[42] J. Yang and Z. Li. (2012, Jul.). Memtime [Online]. Available:
http://tiger.cs.tsinghua.edu.cn/Students/yangjl/memtime

[43] J. Yang and Z. Li. (2012, Jul.). THU Power Grid Benchmarks [Online].
Available: http://tiger.cs.tsinghua.edu.cn/PGBench

[44] Z. Li. (2012, Apr.). TAU 2011 Power Grid Analysis Con-
test [Online]. Available: http://www.tauworkshop.com/PREVIOUS/
tau_2011_contest.pdf

[45] Z. Li, R. Balasubramanian, F. Liu, and S. Nassif, “2011 TAU power grid
simulation contest: Benchmark suite and results,” in Proc. IEEE/ACM
ICCAD, Nov. 2011, pp. 478–481.

[46] C.-H. Chou, N.-Y. Tsai, H. Yu, C.-R. Lee, Y. Shi, and S.-C. Chang, “On
the preconditioner of conjugate gradient method—A power grid simula-
tion perspective,” in Proc. IEEE/ACM ICCAD, Nov. 2011, pp. 494–497.

[47] Z. Zeng, T. Xu, Z. Feng, and P. Li, “Fast static analysis of power grids:
Algorithms and implementations,” in Proc. IEEE/ACM ICCAD, 2011,
pp. 488–493.

[48] S. Gen-Hua, “Direct-iterative solution of ill-conditioned finite element
stiffness matrices,” Int. J. Numerical Methods Eng., vol. 18, no. 2,
pp. 181–194, Feb. 1982.

Jianlei Yang (S’12) received the B.S. degree in
microelectronics from Xidian University, Xi’an,
China, in 2009. He is currently pursuing the Ph.D.
degree in computer science and technology with
Tsinghua University, Beijing, China.

He is involved in research with the EDA Labora-
tory. His current research interests include numerical
algorithms for VLSI power grid analysis and verifi-
cation.

Mr. Yang was a recipient of the first place award
of the TAU Power Grid Simulation Contest in 2011

and the second place award of the TAU Power Grid Transient Simulation
Contest in 2012.

Zuowei Li received the B.S. degree in computer
science and technology from the Wuhan University
of Science and Technology, Wuhan, China, in 2009,
and the M.S. degree in computer science and tech-
nology from Tsinghua University, Beijing, China, in
2012.

He has been with Nimbus Automation Technolo-
gies, Shanghai, China, since 2012.

Mr. Li was a recipient of the first place award of
the TAU Power Grid Simulation Contest in 2011
and the second place award of the TAU Power Grid

Transient Simulation Contest in 2012.

Yici Cai (M’04–SM’10) received the B.S. degree
in electronic engineering and the M.S. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 1983 and 1986, respec-
tively, and the Ph.D. degree in computer science
from the University of Science and Technology of
China, Hefei, China, in 2007.

She has been a Professor with the Department of
Computer Science and Technology, Tsinghua Uni-
versity. Her current research interests include design
automation for VLSI integrated circuits algorithms

and theory, power/ground distribution network analysis and optimization, high
performance clock synthesis, and low power physical design.

Qiang Zhou (M’04–SM’10) received the B.S degree
in computer science and technology from the
University of Science and Technology of China,
Hefei, China, the M.S. degree in computer science
and technology from Tsinghua University, Beijing,
China, and the Ph.D. degree in control theory and
control engineering from the Chinese University of
Mining and Technology, Beijing, in 1983, 1986, and
2002, respectively.

He has been a Professor with the Department
of Computer Science and Technology, Tsinghua

University. His current research interests include VLSI layout theory and
algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

