
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 4, APRIL 2021 1703

Efficient Computation Reduction in Bayesian
Neural Networks Through Feature
Decomposition and Memorization

Xiaotao Jia , Member, IEEE, Jianlei Yang , Member, IEEE, Runze Liu, Xueyan Wang , Member, IEEE,

Sorin Dan Cotofana , Fellow, IEEE, and Weisheng Zhao , Fellow, IEEE

Abstract— The Bayesian method is capable of capturing
real-world uncertainties/incompleteness and properly addressing
the overfitting issue faced by deep neural networks. In recent
years, Bayesian neural networks (BNNs) have drawn tremendous
attention to artificial intelligence (AI) researchers and proved to
be successful in many applications. However, the required high
computation complexity makes BNNs difficult to be deployed
in computing systems with a limited power budget. In this
article, an efficient BNN inference flow is proposed to reduce the
computation cost and then is evaluated using both software and
hardware implementations. A feature decomposition and memo-
rization (DM) strategy is utilized to reform the BNN inference flow
in a reduced manner. About half of the computations could be
eliminated compared with the traditional approach that has been
proved by theoretical analysis and software validations. Subse-
quently, in order to resolve the hardware resource limitations, a
memory-friendly computing framework is further deployed to
reduce the memory overhead introduced by the DM strategy.
Finally, we implement our approach in Verilog and synthesize it
with a 45-nm FreePDK technology. Hardware simulation results
on multilayer BNNs demonstrate that, when compared with
the traditional BNN inference method, it provides an energy
consumption reduction of 73% and a 4× speedup at the expense
of 14% area overhead.

Index Terms— Bayesian neural network (BNN), computation
reduction, feature decomposition, memory reduction.

Manuscript received June 21, 2019; revised December 17, 2019; accepted
April 2, 2020. Date of publication May 6, 2020; date of current version
April 5, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 61602022 and Grant 61701013,
in part by the State Key Laboratory of Software Development Environment
under Grant SKLSDE-2018ZX-07, in part by the National Key Technology
Program of China under Grant 2017ZX01032101, in part by the CCF-Tencent
IAGR20180101, in part by the State Key Laboratory of Computer Architecture
under Grant CARCH201917, and in part by the 111 Talent Program under
Grant B16001. (Corresponding authors: Jianlei Yang; Weisheng Zhao.)

Xiaotao Jia, Xueyan Wang, and Weisheng Zhao are with the School of
Microelectronics, BDBC, Fert Beijing Research Institute, Beihang University,
Beijing 100191, China, and also with the Beihang-Goertek Joint Microelec-
tronics Institute, Qingdao Research Institute, Beihang University, Qingdao
266101, China (e-mail: weisheng.zhao@buaa.edu.cn).

Jianlei Yang and Runze Liu are with the School of Computer Science
and Engineering, BDBC, Fert Beijing Research Institute, Beihang University,
Beijing 100191, China (e-mail: jianlei@buaa.edu.cn).

Sorin Dan Cotofana is with the Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, 2628 CD
Delft, The Netherlands.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.2987760

I. INTRODUCTION

DEEP learning paradigm has created the premises for
the development of several deep neural network (DNN)

models [1]–[3]. DNNs have been utilized as underlying imple-
mentation tools to boost various applications, e.g., computer
vision [4], natural language processing [5], speech recog-
nition [6], and autonomous driving [7]. They made DNN
research as one of the most active artificial intelligence (AI)
branches. However, even though practical utilization of DNNs
provides very promising results, e.g., in some cases, DNNs
could even outperform human capabilities [8], their global
proliferation is mainly impeded by the lack of proper theoret-
ical justification. DNN training is an optimization procedure,
which relies on the maximum likelihood estimation (MLE)
of the synaptic weights. However, it is well understood and
accepted that MLE is not able to properly handle the inherent
weights uncertainties. This implies that, from a practical
standpoint, MLE-based training is susceptible to overfitting,
as experimentally observed in many DNN behaviors [9].
Furthermore, DNNs have other disadvantages, such as data
hungry, lack of solid mathematical foundations, and easy to
be fooled [10].

To address these shortcomings, Bayesian methods have been
introduced by providing mathematically grounded approaches.
Bayesian methods could achieve reasonable learning accuracy
from small data sets and exhibit the required robustness to
address the overfitting issue [11]. More importantly, they could
inherently deal with real-world uncertainty and consider prior
knowledge. Thus, the potential combination of the comple-
mentary strengths of Bayesian methods and DNNs is receiving
increasing interest and Bayesian neural networks (BNNs) have
been applied in many different applications [12]–[15]. Several
probabilistic programming frameworks have been developed,
such as Edward [16], Pyro [17], and Zhusuan [18], which
could provide efficient implementations for Bayesian deep
learning (BDL).

However, the remarkable DNN capabilities can only be
exploited at the expense of a high computation complex-
ity associated with the deep layer structure, which requires
the utilization of high-performance computing resources to
accelerate the training and inference procedures. To resolve
this, numerous approaches have been proposed to reduce the

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2207-6092
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0003-0080-4730
https://orcid.org/0000-0001-7132-2291
https://orcid.org/0000-0001-8088-0404

1704 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 4, APRIL 2021

computation cost using, e.g., network pruning [19], low-rank
approximation [20], and structure sparsity learning [21]. How-
ever, those have rather limited impact as DNN models have
been widely applied in Internet-of-Things (IoT) and embedded
systems, which are usually computation resource and power
consumption confined. Aiming to enable the DNN technology
on such devices, the network inference tasks are usually per-
formed on highly parallel and specialized application-specific
integrated circuit (ASIC) hardware [22]. As for BNN, a field-
programmable gate array (FPGA)-based accelerator has been
recently proposed in [23].

In view of the above, a novel BNN inference approach
that could reduce computation complexity is proposed in
this article. It relies on a new mathematical formulation that
enables computation reuse and consequently has a significant
impact on computation latency and energy consumption. This
article only focuses on the inference part as we can assume that
the training is not done in-place for IoT applications (actually,
the Edward framework is adopted for BNN training in this
article), and thus, it does not affect the available power and
computation resources budget. The main contributions of this
article are summarized as follows.

1) We introduce a feature decomposition and memoriza-
tion (DM) approach applicable for BNNs whose para-
meters obey the Gaussian distribution. The DM strategy
takes advantage of single-layer BNN equation character-
istics to perform fast and energy effective inference and
theoretically eliminates nearly half of the traditionally
required computations.

2) In order to apply DM strategy to multilayer BNNs, two
methods are further introduced, which are regarded as
Hybrid-BNN and DM-BNN, respectively. Both of them
could achieve reasonable accuracy with less energy and
less runtime.

3) A memory-friendly computing framework is proposed
to mitigate the DM-associated memory overhead without
any detrimental effect on the inference computation cost
and result quality.

4) The proposed approaches and the traditional BNN infer-
ence have been evaluated using both software and
hardware implementations. The software implementa-
tion indicates that the proposed DM-BNN could reduce
the computation cost by 85% at the cost of very slight
accuracy loss. The hardware implementation suggests
that DM-BNN reduces the energy consumption by 73%
and achieves a 4× speedup at the expense of 14% area
overhead and a minor accuracy degradation.

The rest of this article is organized as follows. Section II
discusses some preliminaries and related works. Section III
demonstrates the proposed DM strategy. The memory-friendly
computing framework is presented in Section IV. Experimen-
tal results are illustrated in Section V. Conclusion is drawn
in Section VI.

II. PRELIMINARIES

In this section, the BNN background is reviewed and some
related works are briefly discussed.

Fig. 1. Different from deterministic neural networks (left) that have scalar
weight values and BNNs (right) that the weight values defined by distributions.

By introducing the augmentation of standard neural net-
works with posterior inference, BNNs aim to create a deep
learning framework that can cope with parameter uncertainty.
Different from DNNs whose weight values are deterministic,
BNNs offer a probabilistic interpretation of deep learning
models by inferring weight value distributions, as graphically
shown in Fig. 1. BNNs place a prior distribution over each
neural network’s parameter, and the likelihood (i.e., the train-
ing data) is then fed into the network aiming to find the optimal
posterior distribution. Usually, BNN posterior distributions fit
the Gaussian profile.

To build a BNN model, we denote the BNN by the
f W(·) function, where f represents the network structure and
W is the distribution set of model parameters, i.e., synap-
tic weights and biases. Given a set of training data sets
X = {X1, X2, . . . , X N } and the associated labels y =
{y1, y2, . . . , yN }, the BNN training aims to find the posterior
distribution over model parameters p(W|X, y), which in
practice is very difficult to find since the posterior weight dis-
tribution is highly complex. Modern BNN research is mainly
focused on variational inference methods [24], [25] or Markov
chain Monte Carlo approaches [26], [27]. In this article,
we mainly focus on the prediction/inference procedure rather
than training procedure, and the Edward framework [16] is
utilized for software evaluations, which relies on a variational
inference method.

BNN prediction procedure starts from instantiating a series
of concrete neural networks for forward propagation. The
instantiation requires Gaussian random variable sampling for
all the posterior distributions that have been identified during
the training process. These sampling operations could be
implemented both in software and hardware approaches [28].
Assuming that the posterior distribution of one weight ω fits
a Gaussian distribution with location (or mean value) of μ
and scale (or standard deviation) of σ , i.e., ω ∼ N(μ, σ 2),
sampling the weight w requires to select a random number h
from the standard Gaussian distribution N(0, 1). Based on the
theory that if U ∼ N(0, 1), then X = Uσ + μ ∼ N(μ, σ 2),
and the resulted random weight is calculated as w = σh + μ
by the scale–location transformation. Once all the random
weights have been sampled, the BNN prediction follows the
evaluation paradigm detailed in Section III. We notice that

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFICIENT COMPUTATION REDUCTION IN BNNs THROUGH FEATURE DM 1705

Fig. 2. Single-layer BNN dataflow divided in two steps: 1) Gaussian random number generation and 2) feedforward propagation. For the sake of convenience,
the sampling procedure is denoted as S© and voters evaluation is denoted as V©. σ and μ are the well-trained BNN weights, and x is the input vector. The bias
terms are not considered for simplify.

standard Gaussian random number generation algorithms are
classified as inversion, transformation, rejection, and recursion
methods [29], among which central limit theorem-based trans-
formation method is most widely used.

As aforementioned, there have been many research works
focused on DNN hardware acceleration, while very little has
been reported in relation to BNN counterparts with the notable
exception of VIBNN [23]. The BNN prediction procedure is
accelerated on the FPGA platform in VIBNN by introduc-
ing two novel Gaussian random number generators, memory
optimization techniques, and a deep pipeline structure. In [23],
concrete neural networks are first instantiated based on weights
distribution; then, VIBNN performs DNN evaluations repeat-
edly on them. However, these concrete neural networks are
not independent so that VIBNN could not exactly capture the
nature of the BNN paradigm. In this article, a novel BNN
inference framework is proposed to reduce the computation
complexity and BNN-oriented architecture is implemented to
improve the hardware efficiency.

III. BNN COMPUTATION REDUCTION

In this section, a novel BNN inference method is demon-
strated by taking the advantages of a fact that a certain amount
of computations could be shared between its associated neural
network instances. We first analyze the single-layer BNN
dataflow and propose a feature DM approach to reduce the com-
putation complexity. Subsequently, we extend DM to multilayer
BNNs and analyze its computation complexity and memory
consumption.

A. BNN Dataflow

Given a well-trained BNN, actual weights and biases sam-
pling are required to instantiate a concrete neural network

for inference procedure. However, several concrete neural
networks with different parameter values are usually required
for instantiation to fully explore the uncertainty using pos-
terior distribution, rather one. Subsequently, the input data
(e.g., an image) are fed into all the instantiated neural net-
works to obtain their predictions, and the actual response
is determined by voting. The corresponding BNN dataflow
is shown in Fig. 2 for a one-layer fully connected neural
network. The involved variables of matrices and vectors are
described in Table I, and the defined operators are shown
in Table II.

The considered BNN contains N input neurons and M
output neurons. μ and σ are M × N dimensional BNN
weight values of posterior distribution parameters, regarded
as location matrix and scale matrix, respectively. T is the
number of NN samples to be evaluated in order to obtain the
appropriate BNN’s response. Based on the NN theory, an NN’s
output is calculated by (1), which means that when deriving
BNN’s output, (1) will be evaluated for T times

y = W x + b. (1)

Compared with the computation cost of matrix-vector mul-
tiplication between W and x , the computation cost of vector
addition between W x and b could be neglected. Hence, the
bias terms are not considered in the following complexity
analysis. Fig. 2 graphically shows the standard single-layer
BNN dataflow, and Algorithm 1 details the computation pro-
cedure as follows.

1) T concrete weight matrices W1, W2, . . . , WT are sam-
pled according to the weight posterior distributions
by exploiting Gaussian random number generators
(GRNGs) (Lines 2–4).

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

1706 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 4, APRIL 2021

TABLE I

BNN NOTATIONS

TABLE II

BNN OPERATIONS

Algorithm 1 Standard BNN Evaluation
Input: Well-trained BNN with weight parameters μ and σ
Input: Input data x
Output: BNN output ȳ
1: for (k = 1; k ≤ T ; k = k + 1) do
2: Sample uncertainty matrix Hk from N(0, 1)
3: Qk = Hk × σ
4: Wk = Qk + μ
5: yk = Wk · x
6: end for
7: ȳ =

∑T
k=1 yk

T

2) Matrix-vector multiplication operation is performed
between the input x and each weight matrix to generate
T outputs y1, y2, . . . , yT (Line 5).

3) Output result ȳ is computed by averaging voter results
of y1, y2, . . . , yT (Line 7).

As clearly suggested in Fig. 2, there are T sampling
dataflow that could be performed in parallel, and each of them
could be regarded as a voter who contributes to the output
results’ calculation in the final voting stage.

B. Feature Decomposition and Memorization

As previously discussed, the instantiated NNs are evaluated
in parallel, and then, the following voting procedure deter-
mines the final output. Obviously, improving the number of
instantiations could improve the BNN model robustness but
will introduce more computation cost. In this section, the BNN
inference dataflow is reformulated through the proposed DM
strategy to reduce the total computation complexity. It is based
on the observations that a certain amount of computations
could be actually shared among different instantiated NNs.

1) DM for Single-Layer BNNs: To evaluate BNN’s response
for a given input, each voting result yk is calculated by

Algorithm 2 DM-Based BNN Evaluation
Input: Well-trained BNN with weight parameters μ and σ
Input: Input data x
Output: BNN output ȳ
1: η = μ · x
2: β = σ × x
3: for (k = 1; k ≤ T ; k = k + 1) do
4: Sample uncertainty matrix Hk from N(0, 1)
5: zk =< Hk, β >L

6: yk = zk + η
7: end for
8: ȳ =

∑T
k=1 yk

T

performing multiplication and addition on the input x and
sampled weights Wk by (1). Each element of yk is calculated
as follows:

yi
k =

N∑
j=1

w
i j
k x j =

N∑
j=1

(
hi j

k σ i j + μi j
)

x j (2a)

=
N∑

j=1

hi j
k σ i j x j

����
+

N∑
j=1

μi j x j
����

(2b)

where k = 1, 2, . . . , T and i = 1, 2, . . . , M , w
i j
k is sampled

according to σ
i j
k , and μ

i j
k , hi j

k is introduced to represent the
uncertainty.

Following (2a), the single-layer BNN inference dataflow
is shown in Fig. 2. Note that the input x and posterior
distribution parameters σ and μ are the same for different
voting evaluations, and we could consider to reuse these
computations among them. The features expressed in (2a)
could be equivalently decomposed as (2b) in which the
computation results of σ × x and μ · x are the same for
all the T voters. Such potential computation sharing is the
underlying property utilized in the proposed DM strategy,
which memorizes σ i j x j , (i = 1, 2, . . . , M; j = 1, 2, . . . , N)
and

∑N
j=1 μi j x j , (i = 1, 2, . . . , M) so that they could be

directly loaded from memory instead of being T× recomputed
during the voters evaluation stage.

Following (2b), the BNN inference dataflow is shown in
Fig. 3 with the proposed DM strategy. Compared with the
standard dataflow as shown in Fig. 2, the multiplications
of x and σ (as well as x and μ) are precomputed and
stored in local memory. Hence, the BNN evaluation could
be performed directly with the uncertainty matrices
Hk (sampled from standard Gaussian distribution) without
scale–location transformation. For each BNN evaluation, the
voter’s response yk could be obtained according to the pre-
computed features and sampled uncertainty matrix Hk. The
BNN inference dataflow with DM strategy is described in
Algorithm 2. In Line 2, “×” means that vector x performs
elementwise product with every row of σ , which implies that β
has the same dimension as σ . Obviously, the resulted η and β
requires additional memory space to store them. In line 5, the
operation “<>L” indicates linewise inner product operation,
i.e., an inner product is performed on each row of W and β.
In Algorithm 2, Lines 1 and 2 and Lines 3–7 correspond to

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFICIENT COMPUTATION REDUCTION IN BNNs THROUGH FEATURE DM 1707

Fig. 3. Single-layer BNN dataflow with feature DM. The bias terms are not considered. β and η is precomputed and stored in local memory.

the precompute and feedforward stage in Fig. 3, respectively.
For the sake of convenience, the precompute stage is denoted
as P© and the feedforward evaluation is denoted as F©.

2) DM for Multilayer BNNs: It is well known that DNNs
exhibit more intrinsic computation capabilities than single-
layer counterparts when dealing with complex input–output
mapping. It is of obvious interest to extend the DM strategy
for multilayer Bayesian networks. As shown in Fig. 3, a single-
layer network has a 1-to-T relationship between the input
vector and the output vector, which means that all voters
receive the same input x. It is the key condition behind the
DM strategy utilization. As for multilayer BNN, we can get T
output vectors after the computation of the first layer which are
also the input vectors of the second layer, that is to say, there is
a T -to-T relationship between the input vector and the output
vector rather than 1-to-T . As a result, the proposed DM strategy
cannot be directly applied in all layers of multilayer BNNs.
In this section, two methods are introduced for multilayer
BNNs: Hybrid-BNN and DM-BNN, to take the advantages
of DM strategy. A four-voter two-layer BNN (i.e. with one
hidden layer) is taken as an example, which has been well
trained with the distribution parameters (σ1, μ1) and (σ2, μ2)
for each layer.

The dataflows of these two methods are shown in Fig. 4.
For the Hybrid-BNN method, the DM strategy is only applied
in the first layer and the corresponding dataflows are shown
in Fig. 4(a), which could be derived from Figs. 2 and 3. In the
first layer, β11 and η11 are precomputed using x, σ1, and μ1,
and memorized. Four sampled uncertainty matrices (H11–H14)
are processed with β11 and η11 using the DM strategy yielding
four outputs (y11– y14). In the second layer, four weight
matrices (W21–W24) are obtained based on scale–location

transformation and operated with the previous four outputs
(y11– y14), respectively. Then, the results (y21– y24) are
obtained for voting to determine the final BNN response ȳ.

For the DM-BNN method, the DM strategy is applied in all
layers, as graphically shown in Fig. 4(b). The one-input to
T -outputs relationship now exists not only in the first layer but
also in the following layer(s). In the first layer, two uncertainty
matrices (H11 and H12) are sampled and two corresponding
outputs (y11 and y12) are calculated using the DM strategy.
In the second layer, y11 is treated as input and two output
(y21 and y22) are generated based on the DM strategy. Similarly,
two outputs (y23 and y24) corresponding to y12 are generated.

C. Discussion

The performance of single-layer BNN and multilayer BNN
with the DM strategy, as well as the memory overhead intro-
duced by the DM strategy, is analyzed in this section.

1) Single-Layer BNN: To get inside on the implications of
our proposal, we further evaluate the required computation
complexity in terms of a number of operations, i.e., additions
(ADD) and multiplications (MUL), and memory requirements.

Table III summarizes the number of arithmetic oper-
ation required by the dataflow in Figs. 2 and 3,
i.e., Algorithms 1 and 2, respectively. If we concentrate on
the number of multiplications, as they are more time con-
suming, the two approaches require 2M NT and M N(T + 2)
multiplications, respectively. This indicates that if T > 2,
which is obviously the case if one would like to deal with
uncertainties using a Bayesian approach, the DM approach
outperforms standard one. As T increases, the advantage is
more substantial, reaching a theoretical maximum of 50%

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

1708 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 4, APRIL 2021

Fig. 4. Simplified dataflow of multilayer BNNs (with one hidden layer), where P©, F©, and T© stand for precompute, feedforward, and scale–location
transformation, respectively. (a) Hybrid-BNN: DM strategy is only applied for the first layer. (b) DM-BNN: DM strategy is applied for all layers.

TABLE III

SINGLE-LAYER BNN COMPUTATION COST

reduction as suggested by the following equation:

lim
T →∞

M N(T + 2)

2M NT
= 1

2
. (3)

Given that one addition takes one cycle and one multiplica-
tion by 2 cycles in state-of-the-art processors, the computation
cost in terms of ADD only could be regarded as ≈ 3M NT
and ≈ 6M NT for single-layer BNN evaluation with and
without DM strategy, respectively, which results in an overall
speedup of ≈ 2.

2) Multilayer BNN: Related to the multilayer BNN
dataflows in Fig. 4, the performance of Hybrid-BNN and
DM-BNN will be discussed.

In the Hybrid-BNN dataflow, the DM strategy is only applied
in the first layer. Thus, it could only reduce the computation
cost of the first layer. Usually, the first layer accounts for
more than 80% of the total computation, and consequently,
the computation cost of the entire flow in Hybrid-BNN could

be still reduced by 40%. In the DM-BNN dataflow, the com-
putation cost of all layers could be reduced by about 50%.
It can also be found that the required number of uncertainty
matrices for each layer in DM-BNN is less than that in Hybrid-
BNN. As shown in Fig. 4, eight uncertainty matrices (four for
each layer) are sampled in Hybrid-BNN in order to get four-
voter results, whereas four uncertainty matrices (two for each
layer) are sampled in DM-BNN. In general, if BNN has L
layers, L√T uncertainty matrices are sufficient for each layer
to obtain T voter results. Less uncertainty matrices mean less
computation cost. Finally, DM-BNN could reduce more than
50% computation cost when compared with standard BNN.
Even though some voting outputs inherit the same uncertainty,
the experimental results indicate that its influence could be
ignored.

3) DM Deployment in Convolutional Layers: Convolutional
neural networks (CNNs) are a class of DNNs able to cap-
ture spatial and temporal dependences in an image through
the application of relevant filters. The advantages of CNNs
make them most successful in perspective tasks. Thus, it is
important to extend the proposed DM strategy in convolu-
tional layers. Fortunately, this extension could be achieved
using convolutional layer unfolding [30], which is a well-
known technique that has been utilized in many applications
(see [31]–[33]). This technique relies on the creation of
convolution matrices such that the convolution computation is
transformed into a matrix multiplication. Thus, after applying
unfolding on the convolution layers, the DM strategy can be
directly applied to them.

4) Memory Overhead: Based on the previous analysis, the
proposed DM strategy could effectively reduce the computation

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFICIENT COMPUTATION REDUCTION IN BNNs THROUGH FEATURE DM 1709

cost at the expense of additional local memory. In the standard
BNN dataflow, we only need to store the weight distribution
parameters σ and μ, but for DM dataflow, additional storage is
required for matrix β who has the same dimension as σ and μ,
which means that about 50% memory overhead is introduced.

IV. MEMORY REDUCTION FOR DM STRATEGY

In this section, the memory overhead issue introduced by the
DM strategy is considered and a memory-friendly computing
mechanism is proposed. The goal is to minimize the additional
allocated memory as much as possible without inducing addi-
tional computation overhead.

Generally speaking, due to hardware limitations, one cannot
simultaneously evaluate all the T -sampling feedforward neural
networks. For some edge devices, a neural network is even
divided into several parts and operates in a time-multiplexed
manner [34], [35]. When assuming that only αT -sampling
feedforward neural networks can be evaluated simultaneously
where 0 < α ≤ 1, only αT M N Gaussian random numbers
are sampled in each iteration. Thus, αT entire uncertainty
matrices (H ∈ R

M×N) and voting outputs (y ∈ R
M) are

generated in each iteration, while α−1 iterations are required
totally. In order to match the dimension of uncertainty matrix,
additional memory with a size of M × N should be allocated
to store β by this way.

If we want to reduce the memory overhead of DM strategy,
the dimension of uncertainty matrix involved in each iteration
should be shrunken first. Guided by this, a memory-friendly
computing mechanism can be derived. In this computing
mechanism, αT M N Gaussian random numbers generated
in each iteration are redistributed to T submatrices (H ′ ∈
R

αM×N). Consequently, β could be partially computed and
memorized with the same size as H ′. At the end of each
iteration, T suboutputs (y′ ∈ R

αM) are calculated, and after
α−1 iterations, all T voter outputs are obtained. With this
approach, the introduced memory overhead by the DM strategy
could be reduced from 50% to α×50%. For the sake of concise
and simplicity, the mechanism is shown for α = 1/2 in Fig. 5.

It is worth noting that the benefit of the proposed memory
friendly approach is determined by computation resources.
If only limited computation resources are available, it could
reduce the memory overhead as much as possible while
maintaining the computation performance. If the computation
resources are adequate that all T voters could be evaluated in
parallel, the memory-friendly approach could provide a trade-
off between computation performance and memory overhead.

V. EXPERIMENTAL RESULTS

The advantages of BNN have been demonstrated by many
previous works. The work of [36]–[38] show BNNs ability
when dealing with uncertainty. The advantages of BNNs in
autonomous vehicle safety are presented in [39] and [40]. The
work [23] suggests that BNN performs much better than DNN
as training data size shrinks. Rawat et al. [41] concluded that
BNN can be considered for detecting adversarial examples.
In this section, we first demonstrate the strengths of BNN in
classification tasks using small data sets. Then, the efficiency
of the proposed DM strategy is evaluated.

Fig. 5. BNN evaluation with α = 1/2 for memory reduction. (a) Standard DM
approach. (b) Memory friendly DM approach. The additional memory allocated
by (b) is reduced from M× N to αM× N (i.e., by 1/2M× N). In (b), variable
with ′ indicates the first half part of it and with ′′ indicates the second half
of it. For example, β = [

β ′β ′]T .

A. BNN Performance on Small-Scale Data Sets

In order to evaluate the BNN performance on small data
sets, two famous data sets MNIST [42] and FMNIST [43]
are utilized. Both MNIST and FMNIST data sets have 60 000
images for training and 10 000 images for testing. Each image
is a gray bitmap whose size is 28 × 28. The MNIST data set
contains ten classes of handwritten digits (from “0” to “9”),
whereas the FMNIST data set contains ten classes of clothes or
shoes. In this experiment, two data sets are reduced to small-
scale data sets based on a shrink ratio. In the reduced data
sets, the images are randomly selected from the original data
set and the number of images for each class is the same. For
example with the shrink ratio of 256, each class has about
24 (i.e., �60 000/256/10�) images to be chosen as a subset.
Due to the fact that there are ten classes in MNIST/FMNIST,
each subset contains 240 images for training. It is noted that
there are still 10 000 images for testing no matter how many
training images there are.

For the MNIST dataset, a three-layer (with two hid-
den layers) fully connected neural network is built with a
784-200-200-10 configuration. For the FMNIST data set that is
much more complicated, the LeNet-5 [44] structure is utilized.
The non-BNN is trained using TensorFlow [45], whereas
the BNN is trained using the Edward framework [16]. The
training parameters, such as epochs, batch size, and learning
rate, are set to be the same for fairness. An overview for
the NN and BNN achieved accuracy on the small-scale data
sets is presented in Fig. 6. The horizontal axis represents
the shrink ratio of the original data set, and the vertical axis
represents the testing accuracy on the 10 000 testing data sets.
Fig. 6 clearly indicates that the BNN could achieve better
performance than the non-BNN when the training data size
shrinks.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

1710 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 4, APRIL 2021

Fig. 6. Accuracy comparison between NN and BNN on MNIST/FMNIST
data sets for different training data scales. The accuracy is calculated using
10 000 testing data sets.

TABLE IV

SOFTWARE IMPLEMENTATION RESULTS

B. DM Strategy Evaluation

In this article, two methods are described for multilayer
BNNs in Section III, which are theoretically proved to reduce
the computation complexity. In this section, both software
implementation and hardware implementation are presented in
order to evaluate the performance of the proposed DM strategy.
The three-layer (with two hidden layers) fully connected
neural networks with the MNIST data set are used. The
number of sampling T in standard BNN and Hybrid-BNN
for each layer is set as 100, and for the three layers in
DM-BNN, T is set as 10, 10, and 5, respectively. Consequently,
500 voting results are generated for DM-BNN.

In this experiment, both Hybrid-BNN (the DM strategy is
applied only in the first layer) and DM-BNN (the DM strategy is
applied in all layers) are implemented for evaluation. Recently,
Cai et al. [23] proposed an approach to accelerate BNN
inference. In their work, two GRNGs and some architecture-
level optimizations are proposed. Its dataflow is also reimple-
mented in our experiments, which is referred to as standard
BNN (the DM strategy is not applied at all). In order to
make a fair comparison, the energy consumption of GRNGs
is not calculated and no architecture-level optimizations are
implemented. In this way, the comparison results could well
demonstrate the efficiency of the proposed DM strategy.

1) Software Implementation: All methods are implemented
using Python language and evaluated on a 64-bit Linux server.
Table IV summarizes the accuracy and required number of
operations. The second column reports the prediction accuracy
for the 10 000 MNIST testing images, whereas the compu-
tation complexity in terms of multiplications (# MUL) and
additions (# ADD) is given in columns 3 and 4, respectively.

In Hybrid-BNN, the DM strategy is only applied in the first
layer, which covers about 79% of total network computation,
and Table IV confirms the expected Hybrid-BNN theoretical
computation reduction of about 39%. DM-BNN could effec-
tively reduce the computation cost because the feature DM
strategy is utilized with all layers. Moreover, because only
ten uncertainty matrices are sampled to participate in the first
BNN layer, the total computation dropped by 82.5%, which

Fig. 7. Evaluation of memory reduction strategy.

is beyond the 50% upper bound achievable by DM in single-
layer BNNs. From Table IV, we can observe that the accuracy
of Hybrid-BNN and standard BNN is the same as expected,
whereas DM-BNN could significantly reduce the computations
only at the cost of very slight accuracy degradation.

2) Hardware Implementation: Hardware implementations
of the three methods are also performed for evaluating the
BNN inference latency, power consumption, and area effi-
ciency. They are implemented as Verilog and synthesized by
Synopsys Design Compiler with a 45-nm FreePDK technol-
ogy; 8-bit fixed-point number representation is utilized in the
designs. Cacti [46] is exploited to estimate the area and energy
consumption of the involved memory.

We first evaluate the efficiency of the memory-friendly com-
puting mechanism, which is proposed to reduce the memory
overhead introduced by the DM strategy. This mechanism is
designed based on the fact that hardware resources are always
limited. Therefore, in this experiment, the computing mech-
anism efficiency is evaluated using the required system area.
Assuming that only αT -sampling feedforward neural networks
can be evaluated simultaneously, Fig. 7 shows the system area
corresponding to different α values. The horizontal axis means
the value of α, and the vertical axis means the required hard-
ware system area (mm2). The experimental results demonstrate
that when α decreases, the required hardware system area
could also be reduced.

The efficiency of the proposed DM strategy in the BNN
inference stage is evaluated with α = 0.1. Table V describes
the comparison of the three hardware implementations in
terms of accuracy, area (mm2), energy consumption (n J),
and total execution time (×103 s) for BNN inference. One
can observe that the accuracy has been slightly diminished
when compared with the software implementation, but this
is inherent due to the utilization of lower precision, 8-bit
fixed-point number instead of 32-bit floating-point number.
Compared with the standard BNN, Hybrid-BNN and DM-BNN
have about 27% and 14% area overhead, respectively. There
are two reasons why standard BNN has the best area efficiency,
while Hybrid-BNN has the worst area efficiency. First, both
Hybrid-BNN and DM-BNN require extra local memory that
is inherent to feature DM strategy utilization. Second, while
hardware resources could be shared among different layers
in the standard BNN and DM-BNN, because the computing
mechanisms of all layers are the same, this is not the case
for Hybrid-BNN, in which the first layer requires a different
mechanism than the other layers. As reported in column 4,
Hybrid-BNN and DM-BNN provide 29% and 73% energy

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

JIA et al.: EFFICIENT COMPUTATION REDUCTION IN BNNs THROUGH FEATURE DM 1711

TABLE V

HARDWARE IMPLEMENTATION RESULTS

consumption reductions, respectively, when compared with
standard BNN. Concerning the total execution time required
for the evaluation of one MNIST test data, a speedup of
1.5× and 4× is obtained for Hybrid-BNN and DM-BNN over
the standard BNN, respectively.

To summarize, Hybrid-BNN reduces the energy consump-
tion by 29% and achieves a 1.5× speedup at the expense of
27% overhead in area, while DM-BNN reduces the energy
consumption by 73% and achieves a 4× speedup at the
expense 14% overhead with a slight accuracy decreasing.

VI. CONCLUSION

This article addresses the high computation complexity of
the BNN inference procedure and introduces a novel com-
putation efficient BNN inference approach, which potentially
enables BNNs’ utilization in resources-constrained systems,
e.g., IoT. We conduct a deep analysis of BNN inference
dataflow and introduce a DM strategy that reduces the com-
putation complexity, while having negligible BNN inference
accuracy reduction, at the expense of some memory overhead.
We further propose the DM strategy utilization in multilayer
BNNs and introduce a memory-friendly computing framework
that is able to mitigate the DM-induced memory overhead.
Finally, our approach is implemented by Verilog and synthe-
sized with a 45-nm FreePDK technology. Evaluation results
demonstrate that the proposed strategy provides an energy con-
sumption reduction of 73% and a 4× speedup at the expense
of 14% area overhead compared with the standard BNN infer-
ence. As a final remark, we note that the reported performance
improvement can be further improved using architecture-level
optimization (e.g., memory optimization in [23]) or network
compression (e.g., pruning in [19]), which constitute future
work subjects.

REFERENCES

[1] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time series,” in The Handbook of Brain Theory and Neural Net-
works. Cambridge, MA, USA: MIT Press, 1998, pp. 255–258.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[5] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2014, pp. 3104–3112.

[6] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[7] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2722–2730.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[10] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 427–436.

[11] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural net-
works with Bernoulli approximate variational inference,” 2015,
arXiv:1506.02158. [Online]. Available: http://arxiv.org/abs/1506.02158

[12] J. L. Ticknor, “A Bayesian regularized artificial neural network for stock
market forecasting,” Expert Syst. Appl., vol. 40, no. 14, pp. 5501–5506,
Oct. 2013.

[13] X. Jia, J. Yang, P. Dai, R. Liu, Y. Chen, and W. Zhao, “SPINBIS:
Spintronics-based Bayesian inference system with stochastic comput-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 4, pp. 789–802, Apr. 2020.

[14] X. Jia, J. Yang, Z. Wang, Y. Chen, H. H. Li, and W. Zhao, “Spintronics
based stochastic computing for efficient Bayesian inference system,”
in Proc. 23rd Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2018, pp. 580–585.

[15] J.-T. Chien and Y.-C. Ku, “Bayesian recurrent neural network for
language modeling,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 2, pp. 361–374, Feb. 2016.

[16] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy,
and D. M. Blei, “Deep probabilistic programming,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2017, pp. 1–18.

[17] E. Bingham et al., “Pyro: Deep universal probabilistic
programming,” 2018, arXiv:1810.09538. [Online]. Available:
http://arxiv.org/abs/1810.09538

[18] J. Shi et al., “ZhuSuan: A library for Bayesian deep learning,” 2017,
arXiv:1709.05870. [Online]. Available: http://arxiv.org/abs/1709.05870

[19] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2015, pp. 1135–1143.

[20] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2014,
pp. 1269–1277.

[21] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2016, pp. 2074–2082.

[22] P. Knag, J. K. Kim, T. Chen, and Z. Zhang, “A sparse coding neural net-
work ASIC with on-chip learning for feature extraction and encoding,”
IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1070–1079, Apr. 2015.

[23] R. Cai et al., “VIBNN: Hardware acceleration of Bayesian neural net-
works,” in Proc. ACM Architectural Support Program. Lang. Operating
Syst. (ASPLOS). New York, NY, USA: ACM, 2018, pp. 476–488.

[24] A. Graves, “Practical variational inference for neural networks,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2011, pp. 2348–2356.

[25] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” 2015, arXiv:1505.05424. [Online].
Available: http://arxiv.org/abs/1505.05424

[26] T. Chen, E. Fox, and C. Guestrin, “Stochastic gradient Hamil-
tonian Monte Carlo,” in Proc. Int. Conf. Mach. Learn. (ICML), 2014,
pp. 1683–1691.

[27] A. K. Balan, V. Rathod, K. P. Murphy, and M. Welling, “Bayesian
dark knowledge,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 3438–3446.

[28] J. S. Malik and A. Hemani, “Gaussian random number generation:
A survey on hardware architectures,” ACM Comput. Surv., vol. 49, no. 3,
p. 53, Dec. 2016.

[29] D. B. Thomas, W. Luk, P. H. W. Leong, and J. D. Villasenor, “Gaussian
random number generators,” ACM Comput. Surv., vol. 39, no. 4, p. 11,
2007.

[30] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Proc. 10th Int. Workshop
Frontiers Handwriting Recognit., 2006, pp. 1–7.

[31] S. Chetlur et al., “CuDNN: Efficient primitives for deep learning,” 2014,
arXiv:1410.0759. [Online]. Available: http://arxiv.org/abs/1410.0759

[32] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proc. IEEE Int. Symp. Circuits Syst.,
May 2010, pp. 253–256.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

1712 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 4, APRIL 2021

[33] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2011,
pp. 1237–1242.

[34] A. Ren, Z. Li, Y. Wang, Q. Qiu, and B. Yuan, “Designing reconfigurable
large-scale deep learning systems using stochastic computing,” in Proc.
IEEE Int. Conf. Rebooting Comput. (ICRC), Oct. 2016, pp. 1–7.

[35] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures for
spiking deep neural networks,” in IEDM Tech. Dig., Dec. 2015, pp. 2–4.

[36] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian
deep learning for computer vision?” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2017, pp. 5574–5584.

[37] Y. Zhu and N. Zabaras, “Bayesian deep convolutional encoder–decoder
networks for surrogate modeling and uncertainty quantification,” J. Com-
put. Phys., vol. 366, pp. 415–447, Aug. 2018.

[38] J. van der Westhuizen and J. Lasenby, “Bayesian LSTMs
in medicine,” 2017, arXiv:1706.01242. [Online]. Available:
http://arxiv.org/abs/1706.01242

[39] R. McAllister et al., “Concrete problems for autonomous vehicle safety:
Advantages of Bayesian deep learning,” in Proc. 26th Int. Joint Conf.
Artif. Intell., Aug. 2017, pp. 4745–4753.

[40] D. Feng, L. Rosenbaum, and K. Dietmayer, “Towards safe autonomous
driving: Capture uncertainty in the deep neural network for lidar 3D
vehicle detection,” in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC),
Nov. 2018, pp. 3266–3273.

[41] A. Rawat, M. Wistuba, and M.-I. Nicolae, “Adversarial phenomenon in
the eyes of Bayesian deep learning,” 2017, arXiv:1711.08244. [Online].
Available: http://arxiv.org/abs/1711.08244

[42] C. C. Y. LeCun and C. J. Burges. (2010). MNIST Handwritten Digit
Database. [Online]. Available: http://yann.lecun.com/exdb/mnist

[43] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747. [Online]. Available: https://arxiv.org/abs/1708.07747

[44] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[45] M. Abadi et al., “TensorFlow: Large-scale machine learning on het-
erogeneous distributed systems,” 2016, arXiv:1603.04467. [Online].
Available: http://arxiv.org/abs/1603.04467

[46] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in Proc. 40th Annu. IEEE/ACM Int. Symp. Microarchi-
tecture (MICRO), Dec. 2007, pp. 3–14.

Xiaotao Jia (Member, IEEE) received the B.S.
degree in mathematics from Beijing Jiao Tong Uni-
versity, Beijing, China, in 2011, and the Ph.D. degree
in computer science and technology from Tsinghua
University, Beijing, in 2016.

From 2016 to 2019, he was a Post-Doctoral
Researcher with the School of Microelectronics,
Beihang University, Beijing, where he is currently
an Assistant Professor. His current research interests
include spintronic circuits, stochastic computing,
and Bayesian deep learning.

Jianlei Yang (Member, IEEE) received the B.S.
degree in microelectronics from Xidian University,
Xi’an, China, in 2009, and the Ph.D. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2014.

From 2014 to 2016, he was a Post-Doctoral
Researcher with the Department of Electrical and
Computer Engineering, University of Pittsburgh,
Pittsburgh, PA, USA. He is currently an Associate
Professor with the School of Computer Science
and Engineering, Beihang University, Beijing. His

current research interests include spintronics and neuromorphic computing
systems.

Dr. Yang was a recipient of the First Place and Second Place on the ACM
TAU Power Grid Simulation Contest in 2011 and 2012, respectively, the IEEE
ICCD Best Paper Award in 2013, the IEEE ICESS Best Paper Award in 2017,
and the ACM GLSVLSI Best Paper Nomination in 2015.

Runze Liu received the B.S. degree from the School
of Computer Science and Engineering, Beihang Uni-
versity, Beijing, China, in 2018.

His research interests include computing architec-
tures for deep learning and machine vision.

Xueyan Wang (Member, IEEE) received the B.S.
degree in computer science from Shandong Univer-
sity, Jinan, China, in 2013, and the Ph.D. degree
in computer science and technology from Tsinghua
University, Beijing, China, in 2018.

From 2015 to 2016, she was a Visiting Scholar
with the University of Maryland, College Park, MD,
USA. She is currently a Post-Doctoral Researcher
with the School of Microelectronics, Beihang Uni-
versity, Beijing. Her current research interests
include highly efficient processing-in-memory (PIM)
architectures and hardware security.

Sorin Dan Cotofana (Fellow, IEEE) received
the M.Sc. degree in computer science from
Politehnica University of Bucharest, Bucharest,
Romania, in 1984, and the Ph.D. degree in electrical
engineering from the Delft University of Technol-
ogy, Delft, The Netherlands, in 1998.

He is currently with the Computer Engineering
Laboratory, Faculty of Electrical Engineering, Math-
ematics and Computer Science, Delft University of
Technology, Delft, The Netherlands. He has coau-
thored more than 250 papers in peer-reviewed inter-

national journals and conferences. His current research interests include the
design and implementation of dependable/reliable systems out of unpre-
dictable/unreliable components, aging assessment/prediction and lifetime
reliability-aware resource management, and unconventional computation par-
adigms and computation with emerging nanodevices.

Dr. Cotofana is a member of HiPEAC. He received 12 best paper
awards at international conferences. He is also the Editor-in-Chief of the
IEEE TRANSACTIONS ON NANOTECHNOLOGY, an Associate Editor of
the IEEE TRANSACTIONS ON COMPUTERS, and a Distinguished Lecturer
and a member of Board of Governors of the IEEE Circuits and Systems
Society (CASS).

Weisheng Zhao (Fellow, IEEE) received the
Ph.D. degree in physics from the University of Paris
Sud, Paris, France, in 2007.

In 2009, he joined the French National Research
Center (CNRS), Paris, as a tenured Research Sci-
entist. Since 2014, he has been a Distinguished
Professor with Beihang University, Beijing, China,
where he is currently a Professor with the School
of Microelectronics. He has published more than
200 scientific articles in leading journals and con-
ferences, such as Nature Electronics, Nature Com-

munications, Advanced Materials, IEEE TRANSACTIONS, the International
Symposium on Computer Architecture (ISCA), and the Design Automation
Conference (DAC). His current research interests include the hybrid integra-
tion of nanodevices with CMOS circuit and new nonvolatile memory (40-nm
technology node and below), such as MRAM circuit and architecture design.

Dr. Zhao is also the Editor-In-Chief of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 24,2021 at 03:12:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

