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Abstract—Aggregating features from neighbor vertices is a
fundamental operation in graph convolution network (GCN).
However, the sparsity in graph data creates poor spatial and
temporal locality, causing dynamic and irregular memory access
patterns and limiting the performance of aggregation on the
Von Neumann architecture. The emerging processing-in-memory
(PIM) architecture is based on emerging nonvolatile memory
(NVM), like spin-orbit torque magnetic RAM (SOT-MRAM),
and demonstrates promising prospects in alleviating the Von
Neumann bottleneck. However, the limited memory capacity of
PIM medium still incurs non-negligible data movements between
PIM architecture and external memory. To solve this chal-
lenge, we propose an SOT-MRAM-based in-memory computing
architecture, called IMGA, for efficient in-situ graph aggrega-
tion. Specifically, we design adaptive data flow management
strategies that reuse vertex data in MRAM when processing
graphs of different scales and adopt edge data as the control
signal source to utilize the graph’s structural information. A
reordering optimization strategy leveraging hardware–software
co-design principle is proposed to further reduce the costly
data movement. Experimental results demonstrate that IMGA
achieves an average 2523× and 21× speedup, and 1.03E+6
and 1.04E+3 energy efficiency compared with CPU and GPU,
respectively.

Index Terms—Data flow, graph aggregation, processing in
memory (PIM), spin-orbit torque magnetic RAM (SOT-MRAM).
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I. INTRODUCTION

GRAPH is a fundamental data structure that can model
real-world relationships, with broad applications in

recommendation systems, biology, fraud detection, etc. Graph
convolution network (GCN) has been proven to have great
promise in feature extraction from graph data [1]. GCN mainly
consists of two phases: 1) Combination and 2) Aggregation [2].
The Combination phase is similar to multilayer perceptron
operation in the conventional neural network (NN). Every
destination vertex gathers features from its source vertices
in the Aggregation phase. The Aggregation stage enables the
network to learn the topological connections of graphs, which
is the main distinction between GCN and NN. However, the
graph data with its sparsity shows poor spatial and tem-
poral locality during Aggregation phase in the traditional
Von-Neumann architecture, which further induces frequent
random memory access and cache miss. Therefore, inef-
ficient memory bandwidth usage [3] and insufficient data
reuse in Aggregation phase lead to significant idle time
in execution units when waiting for data available. Thus,
the Aggregation phase becomes the performance bottleneck
of GCN. Owing to the ever-increasing importance and the
demand for efficient execution, hardware acceleration for
GCN has drawn tremendous attention in recent years [2],
[4], [5], [6], [7]. Traditional acceleration strategies, based
on Von-Neumann architecture, usually implement customized
execution pipelines and memory organizations to reduce the
irregular accesses and synchronization overheads. However,
the problems caused by poor spatial locality and temporal
locality are difficult to be solved thoroughly.

The processing-in-memory (PIM) accelerators [8], [9], [10],
[11], [12], [13], [14] have demonstrated good promise by real-
izing logic operation and arithmetic computation closer within
the memory to leverage the sizeable internal bandwidth and
inherent parallelism of the memory systems. Several PIM-
based accelerators have been proposed in the past few years
for efficient GCN computing [15], [16], [17], [18], [19], and
they have achieved considerable performance compared with
the accelerators based on Von-Neumann architecture.

However, the limited memory resources in these PIM accel-
erators make it impractical to store the whole large graph
data with millions of vertices. Therefore, some works, such as
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TARe [19], perform Aggregation by storing edge data in the
PIM memory and using vertex data stored in external memory
as input of PIM accelerator. However, edge data in the PIM
accelerator have to be replaced frequently when traversal of
large graph is needed in GCN computing. Under this circum-
stance, the edge data are seldom reused. Besides, the vertex
data in GCN is represented as high-dimension vectors, which
induce huge data movement overhead when read from external
memory.

Recently, some architectures, such as PIM-GCN [18], stores
the vertices in the PIM memory. Although these architectures
achieve reuse of vertices data, there are still several challenges
to further reduce data movement overhead. First, the reuse
of vertices data depends on a significant proportion of ver-
tices stored in PIM memory which is difficult for some large
graphs. The PIM architecture should void unnecessary storage
to reserve space for more vertices data. Second, when it is
impossible to store all vertices in PIM memory, access to exter-
nal memory is inevitable, which is highly cost in both time
and energy. The data flow of the PIM accelerator should be
designed to decrease these access. Third, the complex vertices
data reuse strategy needs a more delicate control mechanism,
which brings significant extra overhead in PIM architecture.

We propose a spin-orbit torque magnetic RAM (SOT-
MRAM)-based PIM Aggregation acceleration architecture
called IMGA to overcome these challenges.

To deal with the first challenge, the edge data is stored
in external memory (such as DRAM) rather than MRAM in
our architecture. The edge data is accessed sequentially during
Aggregation, therefore the bandwidth of external memory can
be utilized effectively. Besides, we propose an adaptive data
flow management strategy with reserved space (RS) design
to avoid unnecessary vertices data storage. To address the
second challenge, we propose a reordering optimization algo-
rithm to reduce vertices data access in external memory. The
third challenge related to the control mechanism is tackled by
treating edge data as control instructions rather than operands.
We use nonvolatile SOT-MRAM for its fast write speed, low-
energy cost, and high-write endurance. Thus, SOT-MRAM is
promising for being the memory device of PIM architecture
for large-scale graph aggregation.

We convert edge data to control signals with decode circuit
and the complex instruction mechanism is avoided.

The contributions of this article can be summarized as
follows.

1) We analyze the performance bottleneck of PIM-based
architecture when processing different scale graphs and
design adaptive data flow to reduce data movement
overhead.

2) We propose a PIM-based Aggregation acceleration archi-
tecture called IMGA which is integrated with adaptive
data flow. IMGA uses edge data as the control signal to
better utilize graph structure information and to design
a more simplified control mechanism.

3) We propose reordering optimization based on the power-
law degree distribution of graphs to improve the
performance of IMGA from the aspect of hardware–
software co-design.

Fig. 1. Illustrative example of Aggregation phase of GCN.

The remainder of this article is organized as follows.
Section II introduces the preliminaries of this article regard-
ing GCN and SOT-MRAM. Section III elaborates the proposed
in-memory Aggregation acceleration architecture. Section IV
demonstrates the experimental results. Section V further dis-
cusses about some insights in adopting the proposed engine
in GCN tasks and Section VI concludes this article.

II. PRELIMINARIES

A. GCN and Aggregation

In GCN, as shown in Fig. 1, each vertex is represented as
a feature vector with high dimensions. Every vertex needs
to aggregate neighbors’ feature vectors in the Aggregation
phase to learn the topology structure of the graph and multi-
plex with weight matrix in the Combination phase. A simple
Aggregation function can be defined as the summation of fea-
ture vectors, which can be computed as a matrix multiplication
between the adjacency matrix and the feature matrix that con-
sists of feature vectors of all the vertices. The equations of
Aggregation and GCN computing can be rewritten as

Xl
a = AXl (1)

Xl+1 = σ
(

Xl
aW

)
. (2)

In (1) and (2), Xl denotes input feature matrix, while Xl
a

is the output feature matrix after Aggregation phase. W is
weight matrix and σ(·) is activation function. There are several
problems caused by this Aggregation equation. The adjacency
matrix A used in Aggregation is highly sparse. Most elements
in A are zero, meaning there is a large amount of useless com-
putation. However, the wildly used sparse matrix compression
format, such as compressed sparse column (CSC) and com-
pressed sparse row (CSR), are not supported in this way of
computing. Besides, the storage and transportation overhead
of A is also significant. Even though the adjacency matrix can
be split in many shards [11] and the shard without edge can be
skipped during computing, the compression rate of this format
is still lower than CSC or CSR. As shown in Table I, The first
and second columns are the edge data compression rates of
CSR format and shard with the size of 8×8, respectively. The
shards format has a lower-compression rate than CSR in all
the datasets. The third column in Table I is the ratio of shards
with only one edge to the total number of shards, which means
most shards are still sparse.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2024 at 15:55:41 UTC from IEEE Xplore.  Restrictions apply. 



WEI et al.: IMGA: EFFICIENT IN-MEMORY GCN AGGREGATION WITH DATA FLOW OPTIMIZATIONS 4697

TABLE I
COMPARISON OF COMPRESSION RATE OF EDGE DATA

IN CSC FORMAT AND 8× 8 SHARDS

The other way to perform Aggregation is vector addition
under the control of the adjacency matrix. The Aggregation of
ith vertex can be written as

xl
ia =

∑
j∈N(i)

xl
j. (3)

N(i) denotes the set of vertex i’s neighbors. In the (3), the
adjacency matrix is converted as control signals rather than
operand. By doing this, we can avoid unnecessary computing
and compress the adjacency matrix in CSC or CSR format.
However, due to the graph’s sparsity, vectors that participate
in an Aggregation operation are often not stored in memory
continuously. The bandwidth of external memory is not fully
utilized under this circumstance. More seriously, the high-
cache-miss rate caused by the poor temporal locality of the
graph data leads to frequent access to external memory. Thus,
improving vertices data reuse is the key to high-performance
computing of Aggregation in this way.

B. In-Memory Computing and SOT-MRAM

In traditional Von-Neumann architecture, data needs to be
transferred from the main memory to the processing unit,
which incurs long memory access latency and energy. The
characteristic of irregular and random memory access pat-
terns of graph computing makes this situation even worse.
For large-scale graph computing, traditional architecture faces
challenges in achieving high bandwidth. In the last two
decades, in-memory computing has become a viable way to
solve the memory and power wall, for it realizes logic units
within memory. In this way, it can take advantage of inher-
ent parallelism and large internal memory bandwidth, saving
significant off-chip data communication energy and delay.

SOT-MRAM technology is a promising candidate for both
last-level cache and main memory [20], [21], [22], [23]. A
typical SOT-MRAM bit-cell is a composite structure of spin
hall metal (SHM) and magnetic tunnel junction (MTJ). The
relative parallel magnetization in both magnetic layers can be
stable in parallel (P state) or anti-parallel (AP state), corre-
sponding to a low-resistance (RP) or a high-resistance (RAP),
respectively. Each SOT-MRAM cell located in computational
subarrays is controlled by the write word line (WWL), read
word line (RWL), write bit line (WBL), read bit line (RBL),
and source line (SL). In summary, SOT-MRAM has the ben-
efits of nonvolatility, low-switching energy, high endurance
and retention time, high integration, and compatibility with

CMOS technology. As a matter of fact, MRAM technology is
undergoing the process of commercialization [24].

III. IMGA ARCHITECTURE

In this section, we first introduce the adaptive data flow
designed to improve the vertex data reuse in graphs with dif-
ferent scale. Then, we design a custom edge data format to
support our control mechanism. After that, we illustrate the
overview of our IMGA architecture based on the adaptive data
flow and the control mechanism. Finally, we propose a reorder-
ing optimization technique for IMGA architecture to improve
the vertex data reuse from the aspect of hardware–software
co-design.

A. Adaptive Data Flow

As each vertex can be accessed several times during the
Aggregation phase, we decide to keep vertices data in IMGA’s
MRAM to reduce expensive data movement between MRAM
and external memory such as DRAM.

During Aggregation phase, most vertices are not only des-
tination vertices for their own Aggregation but also source
vertices for their neighbors. The difference between these
two roles is that, as the source vertex, the vertex feature
value should stay constant until all vertices finish Aggregation.
While as the destination vertex, the vertex feature value
changes during Aggregation. Therefore, in the worst case,
we need double storage space for every vertex if we want
to avoid long-distance data movement from external DRAM.
For some small-scale graphs, MRAM is big enough to do
this. However, MRAM does not have enough space to store
both the source and aggregated destination vertices for some
middle-scale graphs. For large-scale graphs, even only storing
all source vertices is difficult. We propose adaptive data flow
with RS Mode and normal mode to deal with these different
situations.

1) RS Mode: For some small or middle-scale graphs, the
memory size of IMGA’s MRAM is big enough to store all
the source vertices and still has rest space. It is difficult and
inefficient to store all the aggregated vertices’ destination fea-
tures in the rest space. In contrast, adaptive data flow works in
RS Mode, setting rest space as RS and only storing vertices’
destination feature in RS if necessary.

We observed that some vertices’ source features would not
be used later after finishing their own Aggregation as desti-
nation vertices. Thus, these vertices’ aggregated destination
feature can be written back directly to the original address of
storing source feature. It is easy to prove that an aggregated
destination vertex i can replace source vertex i if there is no
edge to the right of the diagonal of the ith row of the adjacency
matrix. As shown in Fig. 2, vertex V3 has no edge on the right
side of the diagonal of the adjacency matrix. Therefore, V3’s
new destination feature can be written back to the address stor-
ing the source feature before. In contrast, vertices, such as V1
s’ destination feature values, need to be stored in RS rather
than replacing source feature value directly.

After V3 finishes its Aggregation, the source feature of ver-
tex V1 will never be visited. The destination feature value of
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Fig. 2. Adaptive data flow in RS Mode. The vertex V1 and V3 written back to RS and original address, respectively.

Fig. 3. Adaptive data flow in normal mode. The edges in region ❷ need to
fetch vertex data from external memory, while the edges in region ❶ need
not.

V1 can be written back, and the RS can be used for another
vertex. Thus, the total size of RS can be further reduced.

2) Normal Mode: If it is impossible to store all the source
vertices in MRAM, we propose normal mode to deal with
this situation. As exampled in Fig. 3, there are 8 vertices in
total, and MRAM is assumed to be able to store 4 vertices
simultaneously. Therefore, we have to load vertices 1–4 to
MRAM first. After these vertices finish their Aggregation, the
rest vertices will be loaded later. The RS design is not used
in normal mode, and the aggregated destination vertex will be
written to external DRAM. Thus, the regions of the adjacency
matrix can be divided into two categories. When an edge is in
region ❶, such as E1 and E3, both vertices it connects are in
the MRAM so that we can perform Aggregation immediately.
However, the source vertex of edge in region ❷ (e.g., E2) is
not in the MRAM and needs to be read from external memory
DRAM. The costly data movement between MRAM and exter-
nal memory should be avoided as much as possible. We will
discuss this in Section III-D.

B. Customized Edge Data Format

The employment of adaptive data flow necessitates fine-
grained controls. Allowing the controller to handle complex
decision-making would lead to a nontrivial hardware overhead.

Fig. 4. Custom Edge Data Format: The topography information of graph
is encoded to CSC format first and then converted to our custom edge data
format with additional information used for the controller later.

Nonetheless, our observations indicate that branch decisions
can be made during the preprocessing phase rather than at
runtime. The data flow branches are solely associated with
structural graph information and are irrelevant to node prop-
erties. Consequently, we introduce a customized edge data
format containing control information derived from the CSC
format during the preprocessing phase.

CSC is suitable for our architecture as we simultaneously
process only one destination vertex. As shown in Fig. 4, the
adjacency matrix is represented by two arrays <I, P>. The
row index array (I) is the set of row indexes of nonzero ele-
ments in the adjacency matrix. The column index pointer array
(P) is the set of the number of nonzero elements in each col-
umn. However, we need more information from the adjacency
matrix to support RS management in RS Mode. We need to
decide whether an aggregated destination vertex needs to be
written to the RS and when the vertex can be written back
to its original address from the RS. We add two mask arrays
<MI, MP> for array I and P separately. When the index of
array P changes from i to i + 1, which means a destination
vertex i finish its Aggregation, the IMGA will check its mask
value in MP. If the value equals 1, the destination vertex will
be stored in RS. In the same way, when a source vertex I(j) is
aggregated, the index of the array I will change and the IMGA
will check corresponding mask value in MI . If the value equals
1, the vertex I(j) will be removed from the RS.

LND denotes the last destination vertex that will aggregate
the vertex i. In Algorithm 1, if the index of LND is larger
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Algorithm 1: Generate Edge Data From the Graph’s
Structural Information

Data: Input graph G = (V,E), adjacency matrix of input graph
A ∈ R

n×n, CSC edge list: pointers array P and indices
array I

Result: Mask MP for array P of size l and mask MI for
array I, Reserved space size Space_total

initialize elements of MP and MI as 0 and
Space_total, Space_now = 0;
for i← 0 to l do

destination vertex index indexD = i;
find the largest index of VindexD’s neighbours LND;
if i < LND then

MPi = 1;
Space_now+ = 1;
update Space_total = Space_now if Space_now is
bigger;

end
for j← Pi−1 to Pi − 1 do

source vertex index indexS = Ij;
find the largest index of VindexS’s neighbours LNS;
if LNS <= indexD then

MIj = 1;
Space_now− = 1;

end
end

end

Fig. 5. Overall architecture of the proposed graph Aggregation acceleration
engine.

than i, the new destination feature of vertex i needs to be
stored in RS after Aggregation. If LND’s Aggregation has also
been done, the vertex i will not be used later, therefore it can
be moved from the RS to the original address. As Algorithm 1
is only relevant to the adjacent matrix, which will not change
during GCN computing, the algorithm only performs once for
each graph. We revise the format of CSC, adding the result of
Algorithm 1 to the edge data.

C. IMGA Architecture Overview

Our architecture design is demonstrated in Fig. 5. The
function of components in our architecture is described as
follows:

MRAM Banks: The vertex vector will be loaded in MRAM
banks before Aggregation. Vertices are stored in MRAM in the
same order as vertex indexes. In RS Mode, Each bank reserve
a few rows as RS. As the total RS can be calculated from the
adjacency matrix, the number of reserved rows is determined
before Aggregation.

Input and Output Buffer: In normal mode, the source vertex
read from DRAM is stored in input buffer. The aggregated
destination vertex that needs to be written to DRAM is stored
in Output Buffer.

Selector: The input data of adder trees may come from
three different sources: 1) row buffer of a bank; 2) input
buffer; and 3) zero registers. The selector is responsible for
selecting the rightful source. Each bank has a selector so
that the vertices in different MRAM banks can be read in
parallel.

Processing Elements (PEs): As we perform Aggregation as
vector addition between the destination vertex and its neigh-
bors, we deploy a group of PEs near banks. A PE consists
of adder trees and an accumulator. The adder tree aggregates
data from different banks, and many adder trees work in par-
allel to aggregate different dimensions of the same vector.
Accumulators are used to store the destination vertex being
aggregated.

Prefetcher and Edge Buffer: Prefetcher reads edge data and
missing source vertex from external memory and stores them
in edge buffer and input buffer, respectively.

Registers: We deploy several registers to store the
information used by controller and selector.

1) Feature Length Register: It is used to store the length
of the feature vector.

2) Vertices Range Register: In normal mode, we use this
register to store the upper and lower-bound indices of
vertices stored in MRAM.

3) Zero Register: If there is no source vertex in both input
buffer and MRAM Bank, the selector will choose zero
registers as the input of PE.

Controller: The controller read edge data from edge buffer
and convert it to control signal used in IMGA architecture.
The controller converts the value of array P to the index
of the destination vertex and maps the index to the storage
address in MRAM. In the same way, the controller map the
value of array I to the address of the source vertex. In RS
Mode, the controller manages the data movement in RS by
checking mask arrays in edge data. In normal mode, the con-
troller checks the vertices range register to determine whether
a source vertex is in MRAM or not. If the source vertex needs
to be read from DRAM, the controller will send correspond-
ing signal to Prefetcher. The control signal of the Selector
also comes from controller. The most complicated functional-
ity aforementioned is RS management in RS Mode. However,
the customized edge data generated during the preprocessing
phase provides explicit signals on whether a particular vertex
should be moved into or out of the RS, thereby streamlining
the controller’s implementation. The controller’s functionality
can be realized using simple decoders that decode the input
of customized edge data and value of registers into control
signals, incurring minimal hardware overhead.
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Fig. 6. Reordering optimization for RS Mode.

Fig. 7. Reordering optimization for normal mode.

D. Reordering Optimization

As elaborated in Section III-A, the adjacency matrix has
a significant effect on the execution efficiency of IMGA.
There are previous works [7], [25] point out that the over-
all performance of graph processing and GCN computing
could be improved by reordering the vertices’ index, which
does not modify the topology of the graph. However, previous
works mainly focus on improving cache locality or identify-
ing clusters in the graph with sophisticated techniques, which
are unsuitable for IMGA. Thus, we propose a lightweight
reordering optimization for adaptive data flow, improving
the performance of IMGA with hardware–software co-design
without bringing huge overhead.

1) Reordering for RS Mode: As elaborated in
Section III-A1, the aggregated destination vertex i can
be written back to its original address directly only if there
is no edge on the right side of the diagonal of the ith row
in the adjacency matrix. Therefore, the target of reordering
for RS Mode is to move the edge from the right side of the
diagonal to the left.

As shown in Fig. 6, the Aggregation of vertex 8 require to
keep original feature value of vertex 1, 3, 4, and 7 in MRAM
until vertex 8 finish its Aggregation. However, if vertex 8 per-
form Aggregation first, only a few vertices’ source features
need to be reserved. Inspired by this, we propose a lightweight
remapping algorithm. We calculate the out-degree for each
vertex and sort the vertices based on that. The sorted vertices
order is also the new indices. By doing this, vertices in the
lower order are less dependent on the vertices in the earlier
order. Thus, the possibility of a vertex can be written back to
the original address increase.

2) Reordering for Normal Mode: For normal mode, we can
still use the reordering technique to improve the performance.
As shown in Fig. 7, IMGA process the edges in diagonal
blocks of adjacency matrix (❶ and ❷) efficiently because both

TABLE II
DATASET INFORMATION

source and destination vertices are in MRAM. In contrast,
the source vertex of edge in region ❸ needs to be read from
DRAM. Reordering aims to make the edges converge toward
the diagonal blocks. The nature graph obeys power-law degree
distribution [26], which means most vertices cluster around a
few high-degree vertices. According to this feature, we can
make the indexes of the same cluster vertices continuous by
reordering. If a whole cluster of vertices is loaded in MRAM,
there will be a lower possibility of reading source vertex out of
the cluster. However, it is costly to recognize the clusters of a
graph precisely. Therefore, we propose a lightweight algorithm
to achieve approximate effects. There is a large proportion of
edges between a few rich vertices. The principle of the reorder-
ing algorithm is to calculate both out-degree and in-degree for
each vertex and sort the vertices based on them. Thus, we can
ensure the edges between high-degree vertices can be moved
to a diagonal block at least.

IV. EVALUATION

A. Experimental Setup

We evaluate the performance of IMGA by simulating
its behavior based on device parameters. We first simu-
late IMGA’s execution time and energy cost of performing
Aggregation on popular graph datasets shown in Table II.
The datasets CR, PB, and CS are selected as small-scale
graphs, and OA, OC, OP, and RD are selected as middle and
large-scale graphs in our experiments. The parameter of SOT-
MRAM is obtained from [27], and the parameter of the adder
is obtained from [28]. Due to limitations in current density,
the MRAM capacity is restricted, and a capacity parameter of
32 MB is chosen as it is a reasonable and moderate value for
MRAM. The PE’s frequency is decided by the critical path
of IMGA, which consists of the latency of memory reading,
the multiplexer and the adders in the adder tree. The num-
ber of PEs is relative to the number of MRAM banks and
the bank’s row buffer size. To compare our work with the
previous PIM-based GCN accelerator, we simulate the com-
puting time of complete GCN by integrating the V100 GPU
as a Combination engine and connecting IMGA and GPU by
PCI-E bus.

Then, we analyze the effect of our optimization strategies,
such as RS design and reordering for adaptive data flow.
To compare IMGA with CPU and GPU, we also implement
Aggregation by state-of-the-art software framework Pytorch
Geometric [29] on Intel Xeon E5-2620 CPU and V100 GPU.
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TABLE III
CONFIGURATION OF BASELINE AND IMGA

Fig. 8. Results of reordering optimization for adaptive data flows.

The detailed configuration of CPU and GPU is shown in
Table III.

B. Overall Results

1) Benefits of Data Flow Optimization: We evaluate the
performance of IMGA with reordering optimization. As shown
in Fig. 8, the performance of IMGA has decreased slightly on
datasets CR∼CS. The reason is that these datasets are small
enough to store both destination vertices and source vertices in
MRAM. The RS design needs data movement between RS and
normal space, which brings extra cost from them. For datasets
OA∼OP, MRAM has space to store all the source vertices and
part of the destination vertex. The rest of the destination ver-
tices have to be stored in DRAM. The reserve space design
reduces the long-distance data movement between DRAM and
MRAM, therefore the execution time of IMGA decreases sig-
nificantly. Only on dataset RD, it is difficult for MRAM of
IMGA to store source vertices, and RS design has no use for
dataset RD. IMGA works in normal mode in this situation.
The target of reordering optimization for normal mode is to put
more computation into MRAM. After reordering optimization,
most Aggregation computing will not need to read vertex data
from DRAM.

We further analyze the effect of our optimization on the
access of DRAM and the time breakdown of our architecture.
As shown in Fig. 9, for small datasets, such as CR, most of
the time is spent in MRAM. There are still some time costs
in DRAM because we need to read edge data from DRAM.
For middle-scale datasets, such as OP, part of aggregated des-
tination vertices have to be stored in DRAM, therefore the
time cost in DRAM increases. Our RS design and reordering
optimization reduce the storage space of aggregated destina-
tion vertices, decreasing the time cost in DRAM. On dataset
RD, most of the time is spent in accessing DRAM.

Fig. 9. Time breakdown of IMGA with and without the optimization of RS
and reorder. Baseline represents IMGA without RS and reordering.

Fig. 10. Effect of RS and reordering optimization on storage cost of vertices.

Fig. 11. Runtime comparison normalized to CPU. OoM denotes out of
memory.

Besides, we evaluate the reserve space design with and
without the reordering optimization. As shown in Fig. 10, the
reserve space design needs about 27.1%–46.4% of the total
space to store aggregated destination vertex. After reorder-
ing optimization, 14.8%–37.8% total space is needed as RS.
Reserve space design and reordering optimization reduce the
space needed to store the destination vertices significantly.

2) Speedup: Fig. 11 depicts that IMGA achieves an aver-
age 2523× speedup compared with CPU and 21× speedup
compared with GPU. The performance improvement comes
from several aspects. First, IMGA utilizes the bank-level high
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TABLE IV
SPEEDUP OF IMGA+ AND OTHER PIM-BASED

ACCELERATORS OVER GPU

Fig. 12. Energy reduction comparison normalized to CPU. OoM denotes
out of memory.

bandwidth inside the MRAM sufficiently. Second, improve-
ment of vertices data reuse makes the Aggregation computing
performed where the data stored and the reduction of long-
distance data movement effectively reduces the time cost of
reading data from DRAM. Third, proposed optimizations, such
as RS design and reordering, reduce the I/O cost significantly.

We use IMGA+ represents the IMGA integrated with
GPU. Table IV shows the speedup of IMGA+ and the other
PIM-based GCN accelerators over GPU when evaluating com-
plete GCN flow. We select the state-of-the-art work DCIM-
GCN [30], and TARe [19] for experiment. We quantized the
GCN model to fixed point format with 8-bit activation and
8-bit weight. As the GPU has huge computing power and is
suitable for Combination, which essentially is dense matrix-
vector multiplication (MVM), the computation latency is still
dominated by Aggregation phase in IMGA.

As the RS and reordering optimization take effect for middle
and large-scale graphs, the performance of IMGA+ is com-
parable to that of other accelerators on small graphs, such as
CR, PB, and CS, which is consistent with the experiment result
in Fig. 8. Due to the lack of experimental data of TARe and
DCIM-GCN on other datasets, the comparison results of the
relatively large graphs cannot be presented.

3) Energy Cost: Fig. 12 shows that our architecture
achieves 1.03E+06× energy reduction over CPU and
1.04E+03× energy reduction over GPU. Energy consumption
reduction comes from three aspects. First, Aggregation is per-
formed near memory, and we propose adaptive data flow with
optimization. Therefore, energy consumed in long-distance
data movement can be saved significantly. Second, MRAM
has a lower-read and write energy cost compared to SRAM

TABLE V
ENERGY REDUCTION OF IMGA+ AND OTHER PIM-BASED

ACCELERATORS OVER GPU

and DRAM used in CPU and GPU. As a nonvolatile memory
(NVM), there is also no need to refresh data frequently like
DRAM. Third, IMGA’s acceleration on Aggregation decreases
execution time significantly, which causes a reduction in static
power consumption.

Table V shows energy reduction comparisons of IMGA+
and other accelerators over GPU. The energy reduction
achieved by IMGA+ is not superior to that of other
approaches. The primary source of energy overhead in
IMGA+ comes from the GPU and data transportation between
GPU and IMGA. However, as the Combination engine is
optional and replaceable, the issue of high-energy cost can
be solved by using other power-efficiency accelerators as
Combination engine, such as a PIM accelerator based on other
types of memory.

V. DISCUSSION

In this section, we discuss about the application of IMGA
in GCN and compare IMGA with other PIM architecture.
In Section V-A, we discuss about how the IMGA architec-
ture integrates with Combination engine for GCN computing.
In Section V-B, we discuss about the comparison between
IMGA and other PIM architecture based on different kinds of
memory, such as hybrid memory cube (HMC) and ReRAM.

A. Application in GCN

IMGA concentrates on accelerating Aggregation because it
is the memory access bottleneck of GCN. However, GCN
performs both Aggregation and Combination for input graph
data, thus we consider how to apply IMGA in complete
GCN computing. The Combination operation involves a MVM
that is computationally intensive, which has already been
extensively researched regrading its acceleration. Thus, an
alternative computing engine, such as a CPU, GPU, or other
memory-based PIM architecture, can be integrated to per-
form the Combination phase. We have presented experimental
results of the IMGA integrated with GPU. Here, we fur-
ther discuss about a possible three-level memory architecture
design when the Combination engine is integrated. The
three-level memory architecture consists of DRAM, MRAM,
and cache. The quantity of feature vectors transferred from
IMGA to the combination engine in a single GCN layer is
the number of vertices, considerably less than the number
of edges in the aggregation phase. Therefore, the vertex fea-
ture should be sent to MRAM from DRAM first and perform
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Aggregation in MRAM. Vertices that have been aggregated
will be written to the cache where the Combination engine
can fetch data. MRAM has to wait for the Combination
engine because the combined result is new input data of the
next iteration Aggregation. A vertex can be written to cache
as soon as it has been aggregated rather than waiting for
all vertexes to be aggregated to reduce waiting time. Note
that Combination can be implemented with a CPU or other
PIM process engine, and the three-level memory architecture
should be modified if the GPU is used as a Combination
engine because it accesses data from DRAM directly by
DMA. In this case, the cache is replaced with the swap space
in DRAM.

B. Comparison With Other PIM Architecture

Many PIM-based accelerators have been proposed over the
past few years. They can be divided into several categories
according to the type of memory used. The SRAM-based PIM
has undergone extensive research. Even though SRAM has
fast write/read speed and mature manufacture, the low den-
sity of SRAM limits its application in the GCN computation
of large graphs. high-bandwidth memory (HBM)/HMC-based
PIM accelerators [12], [31], [32], [33], [34], [35] are relatively
close to practical because the HBM and HMC are commer-
cially mature. HBM has been integrated wildly with the GPU.
Compared to HBM, HMC draw more attention in the PIM
field for its intercube communication mechanism. However,
both of them are volatile memory devices and have higher-
energy costs for computing and reading/writing data than
NVM. Besides, it is challenging to deploy complex computing
logic in these mature memory.

The NVM-based PIM accelerator has drawn much atten-
tion recently. We choose MRAM as our memory device of
PIM architecture for its low-energy cost and fast data access
speed. There are also some ReRAM-based PIM architectures.
Compared with MRAM, ReRAM can store multibit values in
one cell, which makes ReRAM suitable for performing multi-
bit multiplication in ReRAM crossbar [36]. For example, the
Combination phase can be performed in ReRAM. However,
the endurance of ReRAM limits its application in the big-data
field [27]. Besides, the ability of multibit multiplication storage
is not necessary for our architecture as we treat Aggregation as
vector addition, and we perform computing near the memory
cells rather than in them.

Despite the advantages of low-energy consumption com-
pared with HBM and HMC, NVM generally suffers from low
density for its immature in commercial. Thus, the capacity of
NVM is much smaller than DRAM currently. For example,
the MRAM used in our architecture only stores 32-MB data.
However, the real-world graph can be large-scale and it is diffi-
cult for NVM-based PIM architecture to process gigabyte data
on chip. But if PIM architecture has to access data from an
external memory, such as DRAM frequently, the PIM archi-
tecture may degenerate into a non-PIM accelerator. According
to our observation, most NVM-PIM GCN accelerators choose
to ignore this problem temporary. In IMGA, we propose many
techniques to reduce the data movement between MRAM and

DRAM. With the development of NVM technology, the den-
sity and capacity of MRAM will improve in the future. But
the scale of graph data is also growing. Therefore, we believe
it is necessary to pay more attention to solving this problem
from the aspect of architectural design.

VI. CONCLUSION

GCN Aggregation requires frequent and random memory
access, which causes low-performance and energy-inefficient
in traditional architecture like CPU and GPU. In this arti-
cle, we propose an in-memory graph Aggregation acceleration
architecture IMGA to realize in-situ Aggregation. The vertices
data are stored in SOT-MRAM arrays, and the edge data is
utilized as a control signal for automatic feature vector addi-
tion. We propose adaptive data flow for different scale graphs
to reduce the long-distance data movement between the PIM
accelerator and external memory. We also design customized
edge data to take further advantage of the graph’s structural
information and support the control flow of our architec-
ture. The reordering optimization is proposed to improve the
performance of IMGA from the aspect of hardware–software
co-design. We demonstrate that the proposed Aggregation
acceleration engine IMGA can be applied in a wide range
of graph datasets. Experimental results demonstrate promising
speedups and energy efficiency.
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