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Abstract—Computing the connected component (CC) of a
graph is a basic graph computing problem, which has numer-
ous applications like graph partitioning and pattern recognition.
Existing methods for computing CC suffer from memory wall
problems because of the frequent data transmission between
CPU and memory. To overcome this challenge, in this article,
we propose to accelerate CC computation with the emerging
processing-in-memory (PIM) architecture through an algorithm–
architecture co-design manner. The innovation lies in computing
CC with bitwise logical operations (such as AND and OR),
and the customized data flow management methods to acceler-
ate computation and reduce energy consumption. As a proof of
concept, experimental results with computational spin-transfer
torque magnetic RAM (STT-MRAM) arrays demonstrate on
average 19.8× and 12.4× speedups compared with the CPU and
GPU implementations, and a 35.4× energy efficiency improve-
ment over the CPU implementation. Moreover, we investigate
the potential associations between graph computing and bitwise
Boolean logic, which could help design more general in-memory
graph computing accelerators in the future.

Index Terms—Bitwise logical operations, connected compo-
nent (CC) computation, data flow, processing-in-memory (PIM)
architecture.
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I. INTRODUCTION

CONNECTIVITY of a graph is an essential property in
graph theory, which is widely used in pattern recogni-

tion [1], graph partitioning [2], graph compression [3], and
many other fields [4], [5]. Connected component (CC) com-
putation is one key step in computing the connectivity of the
graph. CC computation is not difficult, but it is a data-intensive
task, as a result, the frequent data transfers have occupied
most of the time and energy. To overcome the challenge, many
accelerating methods for CC computation have been proposed,
ranging from single-machine algorithms, distributed-memory
algorithms, to MapReduce algorithms [6]. Nevertheless, these
algorithms are usually based on the Von-Neumann architec-
ture [6], [7], which separates CPU and memory [8]. As a result,
the bottleneck caused by the data transfers is only alleviated
while not solved [9], [10].

The processing-in-memory (PIM) architecture has been
proposed to solve the Von-Neumann bottleneck [11]–[14].
It embeds computing into memory and completes comput-
ing while reading data, which reduces a large number of
memory accesses and data transmission between CPU and
memory. The emerging nonvolatile spin-transfer torque mag-
netic RAM (STT-MRAM) memory technology could be well
combined with PIM. It provides fast read/write speed, low
energy consumption, and high endurance among many other
advantages [15]–[17], and the characteristic of resistance
information storage enables the efficient realization of bitwise
logical operations through the accumulation of the electric
current [11], [18], [19].

Existing CC computation methods in the literature cannot be
directly implemented in memory [6]. On one hand, the exist-
ing algorithms for CC computation, including the computation
based on union-find disjoint sets and the computation based on
depth-first search have many recursive operations, which are
difficult to be implemented in memory [20], [21]. On the other
hand, graph data compression is one key step for highly effi-
cient graph computing in sparse graphs. Although there have
been many data compression methods, such as compressed
sparse columns (CSCs), compressed sparse rows (CSRs), and
coordinate (COO) [22], they cannot be directly mapped into
the computational memory array and need complex decom-
pression processes for computation. To overcome the above
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challenges, in this article, we propose a new CC computa-
tion method based on basic bitwise logical operations and
customized graph compression methods to facilitate efficient
in-memory accelerations. The contributions of this article can
be summarized as follows.

1) A new algorithm to compute CC with basic bitwise
logical operations to facilitate in-memory acceleration.

2) Customized data compression methods by data slicing to
speed up computation and save memory, together with
an overall PIM architecture.

3) We investigate the internal associations between graph
computing and in-memory computing for future general
graph computing accelerations.

The remainder of this article is organized as follows.
Section II introduces some preliminary knowledge about the
CC of the graph, related work, and in-memory computing with
STT-MRAM. Section III introduces the proposed CC compu-
tation method with bitwise logical operations. Section IV elab-
orates the sparsity-aware architecture of CC computation in
memory. Section V investigates the associations between graph
computing and in-memory computing. Section VI demon-
strates the experimental results and Section VII concludes this
article.

II. PRELIMINARY

A. Graph-Connected Component

In an undirected graph G, if there is a path between vertex
Vi and vertices Vj, Vi, and Vj are connected. In a subgraph of
G, if any two vertices are connected, it is called the CC of G.
Among all CCs, the CC with the largest number of vertices is
called the largest CC of G.

Two typical CC computation methods are based on union-
find disjoint sets and depth-first search, respectively. The
algorithm based on union-find disjoint sets establishes a set
for each vertex and finds the parent vertex of each vertex.
If two vertices have the same parent vertex, the two sets are
merged. Therefore, each set left is a CC of graph G. Finally,
all the sets are sorted according to the number of vertices, and
the one with the largest number of vertices is the largest CC
of the graph G [20]. For the algorithm based on depth-first
search, it starts from the first vertex and traverses the neigh-
bor vertices of the vertex according to the adjacency list. The
first vertex and all its neighbors are pushed into the stack.
Then, the vertex at the top of the stack is popped, and all its
neighbors are searched and pushed into the stack. The above
process is repeated until the stack is empty, and these vertices
that have been pushed into the stack form a CC. There is a
CC for each depth-first search. Finally, among all the CCs, the
CC with the largest number of vertices is the largest CC of
the graph G [21]. We can see that they both involve complex
data structures or operations, which are resource consuming
to be implemented in memory.

B. Related Work

Due to the wide applications of graph computing and its
challenges, accelerating graph computing has been widely
studied in the literature. Zhou et al. [23] proposed to leverage

large external memory for storing massive graph data and
FPGA for graph computing acceleration. GraVF [24] is a high-
level distribute graph processing framework on FPGAs, which
accelerates graph computing through leveraging the vertex-
centric paradigm. Wang et al. [25] proposed a heterogeneous
processing approach for priority scheduling based on a shared-
memory CPU-FPGA platform. These works show promising
results of accelerating graph computing, however, they are
still restricted by the frequent data transfer overhead in Von-
Neumann architecture. According to Graphicionado [26], the
energy consumption of the storage system in the graph cal-
culation process accounts for more than 90% of the overall
system, and one memory access for 32-bit data consumes
two orders of magnitude higher energy than mathematical
operations [27]. For the PIM-based acceleration approach,
most of the existing methods focus on the architecture and
circuit-level design, which lacks the algorithm–architecture co-
optimization. TCIM [16] proposes to perform triangle counting
with bitwise logical operations to enable in-memory imple-
mentations, through a hardware–software co-design manner.
However, it focuses on the triangle counting problem, and
the dataflow management is less effective to directly han-
dle the adjacency matrix. Also, the potential associations
between graph computing and bitwise Boolean logic need
to be investigated for general in-memory graph computing
accelerators.

C. In-Memory Computing With STT-MRAM

Traditional volatile memory technology, such as SRAM and
DRAM, faces problems, such as high-power consumption and
high-design costs in implementing PIM. New emerging non-
volatile memory (such as RRAM, PCM, and MRAM) utilizes
the resistance information to store data information, there-
fore, through the accumulation of current, logic operations
can be naturally realized. In the literature, PCM faces issues
of high write power, RRAM has been extensively explored
and used to implement matrix-vector multiplication for neural
network accelerations, with the multibit storage property [28].
Comparatively, STT-MRAM has higher write endurance, while
it only has a limited resistance difference between the dis-
tinct resistance states of magnetic tunnel junction (MTJ) [29].
Also, prototype STT-MRAM chip demonstrations and com-
mercial MRAM products have been available by companies,
such as Everspin and TSMC. As a result, STT-MRAM is
widely exploited to implement bitwise Boolean operations for
the general-purpose in-memory computing paradigm, which is
adopted in this article.

As shown in Fig. 1, a typical STT-MRAM bit cell consists
of an access transistor and an MTJ. It is controlled by bit
line (BL), word line (WL), and source line (SL). The relative
magnetic orientation of the free and pinned layers determines
the resistance offered by the MTJ. The resistance for the par-
allel configuration RP corresponds to low resistance and the
antiparallel resistance RAP corresponds to high resistance. The
READ operations are performed by enabling WL and applying
a bias voltage (Vread) between BL and SL. Through compar-
ing the resultant current flowing through the MTJ (IP or IAP)
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Fig. 1. Typical STT-MRAM bit cell and in-memory computing paradigm
with STT-MRAM.

with a global reference to read out the data stored in MTJ.
The WRITE operations could be done by enabling WL and
applying an appropriate voltage (Vwrite) across BL and SL to
pass a current greater than the critical switching current of the
MTJ. The logic value written is dependent on the direction of
the write current. Bitwise logic operations could be demon-
strated in the right part of Fig. 1. It realizes bitwise logical
operations by enabling WLi and WLj, then a bias voltage Vread
is applied across BL and SL, the resultant current which feeds
into the sense amplifier (SA) is a summation of the currents
flowing through each MTJ. Through comparing with the ref-
erence sensing currents, various bitwise logical operations of
enabled WL could be implemented.

III. CONNECTED COMPONENT COMPUTATION

WITH BITWISE LOGICAL OPERATIONS

In this section, we seek to compute the CC of a graph G
with massive bitwise logical operations to make it amenable
to in-memory implementation.

A. Reformulation of CC

Let A be the adjacency matrix of G(V, E), where A[i][j] ∈
{0, 1} represents whether there is an edge between Vi and Vj.
If A[i][j] = 1, it demonstrates that Vj is the neighbor vertex
of Vi, thus Vi and Vj belong to the same CC. In fact, if one
CC includes Vi, then it should include the vertices that Vi can
reach. And the vertices that Vi can reach include the neighbor
vertices of Vi and the vertices that the neighbor vertices of Vi

can reach. The nonzero elements in the ith row Ri represent
the neighbor vertices of Vi. As a result, the CC that involves Vi

can be obtained by conducting OR operations among the rows
that are associated by vertices’ neighborships. The proposed
CC computation method is based on this basic observation.

Specifically, we can follow these steps to compute the CC.
We use a tag sequence (TS) to indicate which vertices have
been processed, and a result sequence (RS) to demonstrate
which vertices belong to the same CC.

1) Initialize TS as 1 and RS as 0.
2) Find the first unmarked vertex Vi (TS[i] = 1) in the tag

sequence and mark it as 1 in the result sequence.
3) Traverse tag sequence and result sequence at

the same time to find vertex Vj which satisfies
AND(TS[j], RS[j]) = 1.

4) Execute OR(Rj, RS), then write the results to the result
sequence, and mark Vj in the tag sequence (TS[j]) as 0.

5) Repeat steps 3) and 4) until no such Vj exists.
6) Calculate the number of vertices in a CC that involves

Vi through a bitcounter.
7) If the number of vertices in the CC is not equal to the

total number of vertices and there exists TS[i] = 1,
repeat steps 2)–6) until all vertices in the tag sequence
are marked.

8) The CC with the largest number of vertices is the largest
CC.

We can see that the CC could be computed through bitwise
logical operations, including AND, OR, and BitCount, and
these operations can be implemented in-memory conveniently.
To sum up, our proposed method has the following advan-
tages. First, it does not need numerous arithmetic operations.
The major operations can be converted to basic bitwise logi-
cal operations, such as AND and OR. Second, it avoids using
complex data structures, such as queue or stack, it only uses
a tag sequence to record which vertices have been processed
and a result sequence to record which vertices belong to the
same CC. Third, this method does not need abundant recursive
operations that cannot be implemented easily in memory. As a
result, our proposed method is suitable for being implemented
in memory.

B. Illustrative Example

Fig. 2 demonstrates an illustrative example of our proposed
CC computation method. As the left part of the figures shows,
the graph has six vertices and five edges. The adjacency matrix
is on the right side of the graph. First, we find the first
unmarked vertex V0 in the tag sequence and mark it as 1
in the result sequence. Second, we traverse the tag sequence
and result sequence at the same time to find V0 that satis-
fies AND(TS[0], RS[0]) = 1. Third, we mark V0 as 0 in the
tag sequence and execute the OR operation between the result
sequence and R0 to obtain all the neighbor vertices of V0,
these vertices and V0 belong to the same CC. We continue to
traverse the new tag sequence and result sequence to find V1
that satisfies AND(TS[1], RS[1]) = 1. We mark V1 as 0 in the
tag sequence and execute the OR operation between the result
sequence and R1. After that, we can know the vertices that V0
can reach directly and the vertices that V0 can reach through
V 1 belong to the same CC. We repeat the above operations
until no such Vi that satisfies AND(TS[i], RS[i]) = 1 can be
found, and it indicates that all the vertices in the first CC of
the graph have been found. Then, we calculate that the number
of vertices in the first CC equals four by bitcounter.

The number of vertices in the first CC is not equal to the
total number of vertices. Therefore, we find a new unmarked
vertex V4 in the tag sequence, which indicates there is a new
CC that involves V4 in the graph. We traverse the tag sequence
and result sequence at the same time to find V4 that satisfies
AND(TS[4], RS[4]) = 1. We mark V4 as 0 in the tag sequence
and execute the OR operation between the result sequence and
R4 to obtain the vertices that V4 can reach directly. We traverse
the tag sequence and result sequence at the same time again
to find the vertex V5 that satisfies AND(TS[5], RS[5]) = 1. We
mark V5 in the tag sequence as 0 and execute the OR operation
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Fig. 2. Demonstrations of CC computation with bitwise logical operations.

between the result sequence and R5 to obtain the vertices in
the new result sequence. These vertices include the vertices
that V4 can reach directly and the vertices that V4 can reach
through V5. They belong to the same CC. When we traverse
the tag sequence and result sequence again, we cannot find
such a vertex Vi that satisfies AND(TS[i], RS[i]) = 1, and it
indicates that all the vertices in the second CC of the graph
have been found. After that, we calculate that the number of
vertices in the second CC equals two by bitcounter. When we
traverse the tag sequence, all the vertices in the tag sequence
are marked. It indicates that all the CCs of the graph have
been found. Finally, we compare the number of vertices of all
the CCs, and the one with the largest number of vertices is
the largest CC. The largest CC of the graph has four vertices.

IV. SPARSITY-AWARE ARCHITECTURE FOR

IN-MEMORY CC COMPUTATION

A. Dataflow Management

To alleviate the bottleneck caused by the frequent data trans-
mission between CPU and memory, we design an algorithm
to be amenable to in-memory implementation in the previous

section. Next, we will elaborate the data flow management
techniques to speed up computation and save memory.

1) Graph Data Slicing: Because most of the graph data
is sparse and there are many zero elements in the adjacency
matrix which cause unnecessary operations, we design a data
slicing strategy for data compression to utilize the sparsity
of the graph. Assume Ri is the ith row of the adjacency
matrix A of graph G(V, E). We set the length of the slice
as |S|, which means each slice contains |S| bits data, so each
row contains �|V|/|S|� number of slices. The kth slice in Ri,
which is represented as RiSk, contains data from k ∗ |S|th
element to [(k + 1) ∗ |S| − 1]th element. If there is at least
one nonzero element in the slice, we call the slice a valid
slice. Exactly, we define that the slice is valid if and only if
∃A[i][j] ∈ RiSk, A[i][j] = 1, j ∈ [k ∗ |S|, (k + 1) ∗ |S| − 1].

According to the above definition, we know that for each
row Ri to be sliced, if Vj is the neighbor vertex of Vi, the slice
that contains Vj is valid. And the index of this valid slice is
the index of the first element in Ri. Based on this observa-
tion, we propose an edge-oriented slicing method. Previously,
TCIM [16] proposes a data slicing method based on the adja-
cency matrix of the graph, which needs to check both the
zero and nonzero slices to find the valid ones. In this article,
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Fig. 3. Edge-oriented data slicing for graph compression.

we propose an edge-oriented slicing method to process the
adjacency list. It iterates edges to directly target at the cor-
responding valid slices, therefore, it can save the expenses of
checking the zero slices. Given that any valid slice must corre-
spond to at least one edge, this method can figure out all valid
slices with no omissions. Specifically, we slice each row and
locate the valid slices by locating its neighbors, which corre-
spond to the edges in the graph. As for the computations, we
only need to load the valid slices of Ri into the computational
memory array and execute the OR operation between the valid
slices and result sequence to obtain the new result sequence.

Fig. 3 demonstrates an example. We slice R0 of adjacency
matrix as an example. All neighbor nodes of V0 are iterated
according to the adjacency list. The neighbor nodes of V0 are
divided into slices according to the slice length. All slices that
contain neighbor nodes of V0 are valid slices. All nodes in
each valid slice correspond to an index that is the index of the
first element of the valid slice. Assuming that the slice length
is 8, the index can be calculated as index = �node/8	 × 8.
Meanwhile, we also need to store the data of valid slices for
further computation. In this demonstration example, we can
see that node V0 has six neighbors, with the largest one being
labeled as 356, the slicing method in TCIM [16] needs to
check at least 357 bits in the first row of the adjacency matrix.
When the slice length is 8, the proposed data slicing method
in this article only needs to deal with 5× 8 = 40 bits (nodes
V33 and V36 correspond to the same slice), which is able to
save (357− 40)/357 = 88% data processing effort.

2) Result/Tag Sequence Slicing: In our proposed CC com-
putation method, we need to traverse the tag sequence and
result sequence at the same time to find the vertex Vi which
satisfies AND(TS[i], RS[i]) = 1. Assuming that we execute an
AND operation in 64-bit units, we need to execute �|V|/64�
numbers of AND operations at most to find a vertex Vi which
satisfies AND(TS[i], RS[i]) = 1. In order to reduce the needed
number of AND operations, we propose to slice tag sequence
and result sequence and only process the nonzero slices.
Initially, a slice index sequence with the size of �|V|/|S|�
is generated. The kth slice in TS and RS, which is repre-
sented as TSk and RSk, contains data from k ∗ |S|th element
to [(k+ 1) ∗ |S| − 1]th element. When traversing tag sequence
and result sequence, we first traverse the slice index sequence
of tag sequence and result sequence to find the slices which
satisfy that the corresponding indexes are 1 at the same time,

which means that the corresponding slices of tag sequence
and result sequence are both valid. Then, we traverse the valid
slices of tag sequence and result sequence simultaneously to
find the vertex Vi that satisfies AND(TS[i], RS[i]) = 1. When
updating the tag sequence and result sequence, we need to
update the corresponding slice index accordingly.

Fig. 4 demonstrates an example. At the beginning of our
proposed method, we find the first unmarked vertex Vi and
mark it as 1 in the result sequence. Therefore, there is only
one valid slice in the result sequence and all slices of the tag
sequence are valid. After executing the OR operation, we tra-
verse the updated part in the tag sequence and result sequence.
If there is a “1” element in the slice, the corresponding slice
in the result sequence is modified to a valid slice. And if there
is no 1 element in the slice of tag sequence, we modify the
corresponding slice to be invalid. In this way, when traversing
tag sequence and result sequence, we only need to find the
valid slices of tag sequence and result sequence according to
the slice index, then traverse the valid slices of tag sequence
and result sequence at the same time to find the vertex Vi

which satisfies AND(TS[i], RS[i]) = 1. In the initial execution
stage of our method, because the number of valid slices in
the result sequence is less, it can obviously save the execution
time. This slicing method will greatly reduce the AND oper-
ations, but the additional cost is to traverse the updated part
of the tag sequence and result sequence to modify the index
of slices after each execution.

3) Memory Requirement Analysis: The two slicing strate-
gies proposed in this article require that the slice length is the
same. Therefore, it is convenient to determine whether the cor-
responding slices in the new tag sequence and result sequence
are valid after each execution. With our proposed data slicing
strategy, we need to store valid slices index and valid slices
data. Assuming that the number of valid slices is NVS and the
slice length is N, we need to use a four-byte integer to store the
index of valid slices. Therefore, the required space for storing
the slice index in memory is IndexLength = NVS × 4 bytes.
The required space for storing all valid slices data in memory
is DataLength = NVS × N/8 bytes. The required space for
storing the overall graph G is NVS × (N/8+ 4) bytes.

For the result/tag sequence slicing strategy, we only need to
store the slice index. Assuming that the number of vertices is
|V| and the slice length is |S|, we also use a four-byte integer to
store the index of tag sequence and result sequence. Therefore,
the required space in memory for storing the index of tag
sequence and result sequence is 4× �|V|/|S|� × 2 bytes.

B. Overall Architecture and Pseudocodes

1) In-Memory CC Computation Architecture: Fig. 5(a)
demonstrates the dataflow management of our proposed CC
computation method. The host processor sends a control sig-
nal to the computational memory to start PIM computing. And
the host processor slices the graph data and compresses the
graph with valid slices. Then, the controller sends the valid
slice index into the data buffer and loads the valid slices into
the computational STT-MRAM array for bitwise logical oper-
ations. According to the AND result of the tag sequence and
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Fig. 4. Tag sequence and result sequence slicing.

Fig. 5. Overall architecture for CC computation. (a) Dataflow management.
(b) Architecture of computational STT-MRAM.

result sequence, the controller selects the corresponding row
and enables the valid slices of the selected row and result
sequence to execute the OR operation.

As for the computational memory array organization,
Fig. 5(b) elaborates the architecture of computational STT-
MRAM. Each chip consists of several Banks and works as
a computational array. Each Bank consists of several compu-
tational memory subarrays, which are connected to a global
row decoder and a global data buffer. By modifying the
read/write circuits of the memory array, the function of bit-
wise logic operation is achieved. Specifically, the operation
data are stored in the memory array. The rows with opera-
tion data will be activated simultaneously for computing. SAs
are enhanced with corresponding circuits to realize the bitwise
logical operations.

2) Pseudocodes of In-Memory CC Computation:
Algorithm 1 demonstrates the pseudocode for CC computation

Algorithm 1: CC Computing With the PIM Architecture
Input: Graph G(V, E).
Output: The number of vertices in the largest connected

component of G.
1 CC_G = 0;
2 Represent G with adjacency matrix A;
3 Tag sequence TS← 1;
4 Result sequence RS← 0;
5 for each vertex vi ∈ V with A[i][j] = 1 do
6 Partition i-th row Ri into slices;

7 for each element i in TS do
8 if TS[i]==1 then
9 CC_G=max(CC_G,COMPUTE (Vi));

10 if CC_G == |V| then
11 exit;

12 return CC_G as the number of vertices in the largest
connected component.

13 —————————————-
14 COMPUTE (Vi)
15 RS← 0;
16 RS[i]← 1;
17 while i < |V| do
18 if TS[i] ∧ RS[i] == 1 then
19 if there is no enough space then
20 Replace processed slices with valid slices of Ri;

21 else
22 Load valid slices of Ri into memory;

23 TS[i]← 0;
24 for each valid slice RiSK do
25 RSK = OR(RiSK , RSK);

26 i← i+ 1;

27 return BitCount(RS).

with the proposed PIM architecture. It iterates every edge of
the graph, and slices each row of the adjacency matrix. We
just need to load the valid slices of each row Ri into memory
and execute the OR operation between valid slices and result
sequence. When Ri has been processed, we load other valid
slices to exchange valid slices of Ri. In this way, we do not
need to load the whole adjacency matrix into memory, we only
need to load valid slices into memory, which greatly saves the
memory space.
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V. OUTREACH FOR ACCELERATING GRAPH COMPUTING

WITH IN-MEMORY COMPUTING

As one promising technique to alleviate the Von-Neumann
bottleneck, the PIM architecture has attracted more and more
attentions from both academia and industry. In this section, we
will discuss about the characteristics of graph computing and
analyze the inner connections between graph computing and
matrix computation, among which matrix computation can be
a natural fit for being implemented in memory.

A. Graph Computing Characteristics Analysis

The Von-Neumann bottleneck has been more than severe in
the graph computing domain [30]. On one hand, although all
vertices of the graph are processed by their storage order in a
vertex array, when updating the compute array for each edge
after each computation, random accesses will happen. On the
other hand, graph algorithms have the nature of a low compu-
tation memory rate. It mainly involves some basic operations
which only need a short computation time, while it takes a
long time to fetch or write the computing results to memory.
As a consequence, high bandwidth is required [28].

B. Graph Computing Versus Matrix Computation

A graph could naturally be represented as a matrix: a graph
with |V| nodes can be represented with a (|V| × |V|) matrix,
also known as an adjacency matrix, with the intersection of
one row and column of the matrix representing the connection
relationship of corresponding vertices in the graph [28]. For
the PIM architecture, data are stored in the memory in the
form of a matrix, at least in the logical point of view. As a
result, if the graph computing problem can be transformed into
matrix computations, then it can be naturally and efficiently
implemented with PIM.

For the edge-related graph computing problem, if we want
to explore whether there is an edge between two vertices Vi

and Vj, assuming that A represents the adjacency matrix of
the graph, we can know it according to A[i][j]. If A[i][j] = 1,
there is an edge between Vi and Vj, and vice versa. As a matter
of fact, An[i][j] generally represents the number of paths of
length n between Vi and Vj. However, matrix multiplication
is a complex operation, especially when it is implemented in
memory, thus one needs to transform matrix multiplication
into logical operations to implement in memory.

For the vertex-related graph computing problem, we usually
need to discover the connectivity among different vertices. As
for discovering whether two vertices Vi and Vj are connected,
one needs to compute the direct path and indirect path between
Vi and Vj. The direct path can be known easily from A[i][j].
However, if A[i][j] = 0, we need to compute the indirect path
between Vi and Vj. When A[i][k] = 1 and A[k][j] = 1, it
means that there is a path between Vi and V k, at the same
time, there is a path between Vk and Vj. Therefore, there is an
indirect path i−k−j between Vi and Vj. Therefore, to compute
the connectivity between Vi and Vj, we only need to exe-
cute OR(Rowi, Rowk). If the jth element in the new sequence
that is obtained by the OR operation is 1, it means there is
a path between Vi and Vj. Consequently, by converting graph

TABLE I
KEY PARAMETERS FOR MTJ SIMULATIONS

computing into matrix operations and then converting matrix
operations into Boolean logical operations, graph computing
can be efficiently implemented in the PIM architecture.

Two examples illustrate how graph computing problems are
refined for efficient in-memory implementations. The first one
is triangle counting. Triangle counting is a classical graph
computing problem, which seeks to determine the number
of triangles in a graph. In general, a triangle consists of
three edges, A3[i][i] represents the number of triangles in
a graph. However, matrix multiplication is complex to be
directly implemented in memory. In the literature, it has been
proposed to perform triangle counting with bitwise logical
operations to enable in-memory implementations [16]. It pro-
poses to compute A2[i][j] that represents the number of paths
of length two between Vi and Vj. If A[i][j] = 1, it means that
there is an edge between Vi and Vj. The path of length two
and the edge between Vi and Vj form a triangle. Because the
elements in the matrix are only 0 and 1, the matrix multi-
plication can be converted to a bitwise Boolean AND result.
Therefore, the number of triangles in the graph is equal to∑

A[i][j]=1 BitCount(AND(Rowi, Columnj)). The second one is
the CC computation proposed in this article. CC computa-
tion is also a basic graph computing problem. The proposed
method in this article is to compute the CC with bitwise
logical operations (such as AND/OR) to enable in-memory
acceleration.

In a similar way, many classical graph computing prob-
lems could be solved by the combination with such bitwise
logical operations in memory. Hopefully, this article could
help and motivate more general in-memory graph computing
accelerators in the future.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To validate the effectiveness of our proposed method,
we develop comprehensive device-to-architecture evaluations
along with two internal simulators. From the device level,
we characterize MTJ from the Landau–Lifshitz–Gilbert (LLG)
equation and the Brinkman model.

Table I shows the specific information of MTJ. From the
circuit-level simulation level, we design a Verilog-A model
for the 1T1R STT-MRAM device and characterize the circuit
with a 45 nm FreePDK CMOS library.
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TABLE II
SNAP GRAPH DATASET

Fig. 6. Percentage of valid slices with the slice length being 16, 32, and 64,
respectively.

We also design a bit counter module based on Verilog
HDL to acquire the number of nonzero elements in a vector.
Specifically, we split the vector and feed each 8-bit subvector
into an 8–256 lookup table to obtain the number of nonzero
elements, then sum up the nonzero numbers in all subvec-
tors. We synthesis the module with Synopsis Tool and conduct
a postsynthesis simulation based on 45 nm FreePDK. After
getting the circuit-level simulation results, we integrate the
parameters into the open-source NVSim simulator [31] and
acquire the memory array performance.

In addition, we use Python to develop a simulator based on
MRAM, which simulates the process of computing CC and
data slicing. In order to make the experimental results more
accurate and convincing, we use the real graph in Stanford
large network dataset collection [32] (see Table II) and com-
pare it with the method of computing CCs in the framework
of GraphX [33] running on CPU and GPU. The configuration
of the adopted CPU is Intel Core i7-7700HQ with 2.8 GHz
and eight cores. And the configuration of the adopted GPU is
NVIDIA Tesla V100 with 1370 MHz. Our proposed method
also runs on the CPU and STT-MRAM computational array
which is set to be 16 MB.

B. Benefits of Data Slicing

To utilize the sparsity of the graph data, we propose cus-
tomized data slicing strategies. From Fig. 6, we can see that the
percentage of valid slices in the total slices decreases slowly
when the slice length increases from 16 to 64 bits. This shows
that the adjacency matrix of the graph is sparse enough, thus
the slice length has little effect on the number of valid slices.
On the other hand, in general computer, a word is 64 bits.
Therefore, we set |S| = 64 in the following experiments.

TABLE III
VALID SLICE DATA SIZE (MB) AND PERCENTAGES

TABLE IV
REDUCTION PERCENTAGE OF AND OPERATIONS

Table III shows the memory space required for all the valid
slices in each graph. The largest graph amazon0505 needs
42 MB. Based on our proposed method, we could load valid
slices into STT-MRAM computational memory by each row.
When valid slices of one row have been processed, exchange
valid slices of other rows into STT-MRAM computational
memory. In this way, 16 MB is enough to store the valid
slices of one row and the required memory space is reduced
significantly. The third column in Table III shows the propor-
tion of the number of valid slices in the total number of slices
in the adjacency matrix of the graph. It can be seen that the
percentages of valid slices in most graphs are less than 1.0%.
Therefore, the proposed data slicing method could significantly
reduce 99% OR operations compared to the needed OR oper-
ations without slicing. As the size of the graph increases, the
proportion of the valid slices keeps decreasing. When the size
of the graph reaches a certain scale, the proposed data slicing
method could significantly reduce 99.9% OR operations.

Table IV shows the reduction percentage of AND opera-
tions. It can be seen that the average reduction percentage of
AND operations in our dataset is 99.2%. Therefore, due to our
proposed result/tag sequence slicing strategy, a large number
of AND operations are decreased. Compared to the needed
AND operations without slicing, only 0.8% AND operations
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TABLE V
RUNTIME (IN SECONDS) COMPARISON AMONG OUR PROPOSED

METHODS, CPU, AND GPU IMPLEMENTATIONS

Fig. 7. Normalized results of energy consumption for PIM compared to CPU
implementation.

are needed. These experimental results demonstrate that the
proposed data slicing can save a large number of computing
resources and execution time.

C. Performance and Energy Results

Table V compares the performance of our proposed in-
memory CC accelerator with the CPU implementation of
our method and the existing framework GraphX for CC
computation on CPU and GPU (without data slicing).

In terms of running speed, although our proposed method
for CC computation in CPU is slower than the GraphX
framework, our proposed method successfully converts com-
plex operations into bitwise logical operations and it is
more adapted at computing in memory. With the emerging
nonvolatile STT-MRAM memory technology, our proposed in-
memory CC accelerator obtains an average 19.8× and 12.4×
speedups compared to the existing advanced framework based
on CPU and GPU for CC computation, respectively. With the
PIM architecture, data transmission between CPU and memory
is substantially reduced, and our proposed in-memory CC
accelerator achieves an inspiring performance.

Fig. 7 shows the energy savings in our proposed CC accel-
erator compared with CC computation on CPU framework
(considering that GPU is less energy efficient). The geometric
mean of energy savings of our CC accelerator compared to the
existing framework on CPU is 35.4× due to several proper-
ties, such as near zero leakage, high density, and nonvolatility
of STT-MRAM, and low-power advantages of bitwise logical
operations.

VII. CONCLUSION

In this article, we propose a new method with bitwise log-
ical operations for CC computation, which is suitable for
the implementation in memory. Furthermore, we design a
PIM architecture for efficiently computing CC in a graph:
by data slicing, the OR operations could be reduced by
99.9%, and the AND operations could be reduced by 99.2%.
Meanwhile, compressed graph data could be directly mapped
onto the STT-MRAM computational memory array for bit-
wise logical operations. Device-to-architecture co-simulation
demonstrates that compared with the CPU and GPU imple-
mentations, our proposed CC computation method achieves
19.8× and 12.4× speedups, respectively, and a 35.4× energy
efficiency improvement over the CPU implementation.
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