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Abstract—Graph Neural Networks (GNNs) are becoming in-
creasingly popular for graph-based learning tasks such as point
cloud processing due to their state-of-the-art (SOTA) perfor-
mance. Nevertheless, the research community has primarily
focused on improving model expressiveness, lacking consideration
of how to design efficient GNN models for edge scenarios
with real-time requirements and limited resources. Examining
existing GNN models reveals varied execution across platforms
and frequent Out-Of-Memory (OOM) problems, highlighting the
need for hardware-aware GNN design. To address this chal-
lenge, this work proposes a novel hardware-aware graph neural
architecture search framework tailored for resource constraint
edge devices, namely HGNAS. To achieve hardware awareness,
HGNAS integrates an efficient GNN hardware performance
predictor that evaluates the latency and peak memory usage
of GNNs in milliseconds. Meanwhile, we study GNN memory
usage during inference and offer a peak memory estimation
method, enhancing the robustness of architecture evaluations
when combined with predictor outcomes. Furthermore, HGNAS
constructs a fine-grained design space to enable the exploration
of extreme performance architectures by decoupling the GNN
paradigm. In addition, the multi-stage hierarchical search strat-
egy is leveraged to facilitate the navigation of huge candidates,
which can reduce the single search time to a few GPU hours.
To the best of our knowledge, HGNAS is the first automated
GNN design framework for edge devices, and also the first
work to achieve hardware awareness of GNNs across different
platforms. Extensive experiments across various applications and
edge devices have proven the superiority of HGNAS. It can
achieve up to a 10.6× speedup and an 82.5% peak memory
reduction with negligible accuracy loss compared to DGCNN on
ModelNet40.

Index Terms—Graph neural networks, hardware-aware neural
architecture search, edge devices, hardware efficiency prediction.
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I. INTRODUCTION

GRAPH neural networks (GNNs) have been deemed as a
promising engine of artificial intelligence (AI), achieving

state-of-the-art (SOTA) performance in a wide range of real-
world applications, such as node classification [1], link pre-
diction [2], recommendation system [3] and 3D representation
learning [4]. Due to the powerful feature extraction capabilities
on topological structures, GNN has become a popular strategy
for handling point cloud data [5], which reveals the prospect
of GNN application in edge scenarios. Moreover, with the in-
creasing popularity of 3D scanning sensors in edge devices,
such as mobile phones and unmanned aerial vehicles, it is an
inevitable trend to deploy GNNs on various edge devices to
embrace hardware intelligence [6], [7], [8]. However, the in-
ference process of GNNs involves both compute-intensive and
memory-intensive stages, resulting in a huge computational gap
between resource-limited edge devices and expensive GNNs.
We deployed the popular Dynamic Graph Convolutional Neural
Network (DGCNN) [9] used in point cloud processing on a
Raspberry Pi, where it takes over 4 seconds to process a single
frame and encounters Out-Of-Memory (OOM) problems when
handling graphs with more than 1536 points [10]. Therefore,
deploying GNNs on edge devices for real-time inference is
extremely challenging due to resource constraints.

For the purpose of tackling the prohibitive inference cost,
several handcrafted approaches have been dedicated to design-
ing resource-efficient GNNs for point cloud processing [5],
[11]. However, given the expansive design space and diverse
hardware characteristics, manual optimization incurs significant
computational overhead due to the extensive trial-and-error re-
quired to identify layers for optimization. In practice, manual
optimization performance highly depends on human experi-
ence. To minimize manual labor and address unstable on-device
performance, hardware-aware neural architecture search (NAS)
has recently emerged as a promising automated technique for
customizing optimal CNNs for various application scenarios
[12], [13]. Inspired by these efforts, we seek to take the point
cloud processing application as an opportunity to explore the
prospect of hardware-aware NAS for designing efficient GNNs
on edge devices. Although several studies have applied NAS
techniques to GNN design [14], [15], [16], most focus solely on
optimizing task accuracy while neglecting on-device efficiency.
Both factors are crucial for real-world applications, especially
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in resource-constrained edge scenarios. In this paper, we pro-
pose HGNAS, an efficient hardware-aware graph neural archi-
tecture search framework for edge devices to handle real-time
inference requirements. Specifically, we focus on two critical
efficiency metrics for edge applications: inference latency and
peak memory usage.

In practice, efficient and high-quality GNN architecture ex-
ploration faces many challenges. 1) Tradeoff between effi-
ciency and effectiveness of hardware-aware approaches.
The hardware efficiency of GNNs is influenced by various fac-
tors, including model structure, hardware sensitivity, and graph
characteristics [17]. As such, hardware performance awareness
strategies that estimate performance using approximate met-
rics, such as FLOPs, are often inaccurate [18]. While real-
time on-device measurement offers more accurate results, the
high overhead (communication time, on-device inference time,
etc.) in evaluating numerous sub-architectures can severely
impede exploration efficiency. 2) Redundancy in layer-
wise GNN design space. The design manner of stacking
the same GNN layer results in operational redundancy, neg-
atively impacting on-device inference efficiency [5]. 3) Poor
search efficiency. NAS is often criticized for its lengthy
search times, particularly due to the lack of efficient explo-
ration methods for fine-grained GNN search spaces tailored for
edge applications.

To address the above issues, HGNAS integrates a novel
hardware-aware technique to enable efficient GNN perfor-
mance prediction. By abstracting the GNN architecture into
graphs, the hardware-aware problems for GNNs can be trans-
formed into graph-related problems, which GNNs are special-
ized in handling. This gives rise to the innovative concept of
Using GNN to perceive GNNs. By leveraging a well-polished
GNN-based predictor, HGNAS can effectively perceive the la-
tency and peak memory usage of GNN candidates. In addition,
we provide an efficient peak memory estimation method, lever-
aging GNN inference profiling to further promote the scalability
and robustness of HGNAS. Furthermore, we develop a fine-
grained design space composed of fundamental operations to
unleash the potential of GNN computations. To improve search
efficiency, HGNAS utilizes an efficient multi-stage hierarchical
search strategy, mitigating the complexity inherent in exploring
the fine-grained design space. As shown in Fig. 1, HGNAS has
been proven superior in both latency and peak memory usage
across various edge devices. The contributions of this paper can
be summarized as follow:

• To the best of our knowledge, HGNAS is the first NAS
framework to perform efficient graph neural architecture
search for resource-constrained edge devices. HGNAS can
automatically explore GNN models with multiple objec-
tives (accuracy, latency, and peak memory usage) for tar-
geted platforms.

• We propose an efficient GNN hardware performance pre-
dictor that perceives the latency and peak memory us-
age of GNNs on target devices in milliseconds. To our
best understanding, HGNAS is also the first work to
achieve hardware performance awareness for GNNs across
platforms.

Fig. 1. Inference speed vs. peak memory usage. Our approach signifi-
cantly improves hardware performance while maintaining similar accuracy
to DGCNN on ModelNet40. Details are highlighted in bold in Table III.

• We provide a comprehensive analysis of memory usage
during GNN inference and introduce a peak memory esti-
mation method to improve the robustness and scalability
of HGNAS.

• We propose an efficient multi-stage hierarchical search
strategy to accelerate exploration in the expansive GNN
fine-grained design space.

• We evaluate HGNAS on four edge devices. As expected,
it can achieve up to 10.6× inference speedup and 82.5%
peak memory reduction with a negligible accuracy loss on
point cloud classification tasks.

The rest of the paper is organized as follows. Section II
introduces the background preliminaries and motivations of this
paper. Section III elaborates on the proposed HGNAS frame-
work and Section IV demonstrates the experimental results.
After that, we discuss the related works in Section V. Finally,
we conclude this paper in Section VI.

II. PRELIMINARIES AND MOTIVATIONS

A. Graph Neural Networks

Generally, GNN architecture design follows the Message
Passing (MP) paradigm. Fig. 2 illustrates a typical GNN
pipeline using the example of DGCNN [9]. Each GNN layer
consists of sample, aggregate, and combine operations. Specif-
ically, the sample operation constructs the graph from the point
cloud data for processing, the aggregate operation facilitates
message propagation among nodes, and the combine operation
updates all node features. Note that sample operations are also
executed during the inference process to extract the graph struc-
ture from the point cloud data. The propagation rule of DGCNN
at layer k is defined as follows:

xk
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where h(k)
Θ denotes a neural network, i.e. a MLP. A GNN model

is constructed by stacking GNN layers sequentially.
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Fig. 2. Typical GNN pipeline with MP paradigm.

Fig. 3. (a) Example of reusing sampling results between layers (Reuse-
1112). (b) Accuracy and latency comparison when performing sampled results
reuse among different DGCNN layers on ModelNet40 [19] dataset.

While this design approach is straightforward, its rigid se-
quence of operations and repetitive layer stacking limit the
scope for innovation, thereby constraining potential perfor-
mance breakthroughs in GNN models.

B. Observations and Motivations

Drawing on prior research, we offer key observations that
inspire efficient GNN exploration for edge devices.

Observation 1: Redundant operations introduced in
GNN architecture design bring significant overhead. As
previously described, GNN models designed following the MP
paradigm are formed by stacking GNN layers which possess a
fixed sequence of operations. This naturally raises the question:
Do all the elements within each layer contribute to the final
performance of the GNN model? To demonstrate the redun-
dancy, we conduct inter-layer reuse experiments with DGCNN
on Nvidia RTX3080. Specifically, we remove the sample op-
erations within the latter GNN layers and reused the sampling
results from the front layers. An example of this reuse is shown
in Fig. 3(a). The experimental results, depicted in Fig. 3(b),
demonstrate that reusing the sampling results has no significant
impact on accuracy but remarkably enhances the computational
efficiency. This observation is consistent with the phenomenon
found in [5], fully demonstrating the considerable overhead
introduced by redundant operations in GNN design, posing a
major obstacle to GNN computational efficiency optimization.

To eliminate redundant operations in GNNs, [5], [11] pro-
pose identifying and manually simplifying the model structure
through numerous ablation experiments and analyses, achieving

Fig. 4. Fine-grained design space greatly expands the scope of architectural
exploration.

Fig. 5. Execution time breakdown of DGCNN across various edge devices
on ModelNet40.

notable speedup. However, this manual optimization requires
extensive trial-and-errors and heavily relies on specialized ex-
pertise. On the other hand, some researchers decoupled the MP
paradigm to construct a more flexible design space, achieving
SOTA performance [20], [21]. Inspired by the GNN paradigm
decoupling, we aim to decouple the GNN layer into operations
and construct a fine-grained design space, allowing various
configurations (e.g., aggregation range, operation order) to be
generated through learning instead of manual effort.

Observation 2: Exploring the GNN fine-grained design
space is costly. Fig. 4 illustrates a comparison between the fine-
grained design space and the layer-wise design space, highlight-
ing the remarkable expansion of the architectural exploration
scope. Specifically, the fine-grained design space comprises
fundamental GNN operations, which covers sub-architectures
that grow exponentially with the number of positions. For exam-
ple, the backbone of DGCNN consists of four GNN layers, with
each layer comprising three fundamental operations: sample,
aggregate, and combine. Therefore, to cover most DGCNN
variants, the fine-grained design space contains at least 12 posi-
tions, 3 candidate operations, and at least N functions for each
operation (details in Sec. III-C). Consequently, the design space
contains a staggering (3N)

12 possible configurations, thereby
exacerbating the complexity of exploration.

The expansion of the GNN design space increases flexibility
but also complicates exploration, making manual optimization
challenging. As an AutoML technique, NAS can automatically
locate the optimal design without navigating all candidates.
However, NAS continues to grapple with significant efficiency
challenges, exemplified by instances requiring up to 2,000
GPU-days for a single search [22]. As such, exploring the fine-
grained design space requires a more efficient search strategy.
In practice, the contribution of different layers towards the
overall accuracy within a model may vary significantly [11],
[23]. Leveraging this insight, we aim to improve exploration
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Fig. 6. Overview of the proposed HGNAS framework. HGNAS aims to search for top-performing GNN architectures that excel in both accuracy and
efficiency.

efficiency by decoupling the design space and guiding search
orientation at different positions.

Observation 3: The same GNN model may behave
differently across various computing platforms. A detailed
breakdown of DGCNN execution time across platforms is il-
lustrated in Fig. 5, using data obtained by PyTorch Profiler.
For Nvidia RTX3080 and Jetson TX2, the sample operation
occupies the majority of execution time. This is because GPUs
are better at handling compute-intensive matrix operations, and
not so good at memory-intensive graph sampling operations.
For Intel i7-8700K, aggregate and sample dominate the exe-
cution time, due to irregular memory accesses patterns. These
observations confirm that DGCNN execution is largely I/O-
bound on these platforms. Conversely, the resource constraints
of the Raspberry Pi result in a compute-bound execution,
as all three operations are time-consuming. Therefore, GNN
models running on different devices exhibit varying hardware
sensitivities that must be carefully considered during architec-
ture design.

In practice, inference efficiency and accuracy are equally
important for GNN design in edge scenarios [5]. Additionally,
the hybrid execution mode of GNNs, which consists of both
memory-intensive and compute-intensive operations, poses
great challenges for effectively perceiving GNNs hardware per-
formance [17]. Recent studies have explored analytical estima-
tion to improve hardware efficiency for hardware/algorithm
co-designs [24], [25], [26], [27], [28], [29]. However, these ap-
proaches are often tailored for specific hardware architectures,
limiting their applicability across diverse edge computing plat-
forms [30]. Therefore, an efficient and scalable hardware-aware
approach is highly desirable. Inspired by [12], a GNN-based
hardware performance predictor is integrated to efficiently and
accurately perceive GNN hardware performance across various
platforms.

III. METHODOLOGY

A. HGNAS Overview

This section provides an introduction to the proposed HG-
NAS framework, as illustrated in Fig. 6. We begin with the

problem definition, in which we integrate hardware perfor-
mance metrics to guide the exploration process, ensuring that
the designed GNNs are both efficient and accurate. Given the
target edge devices, hardware constraints, specified dataset,
and the optimizing metrics, HGNAS will first generate a fine-
grained hierarchical design space, comprising the Function
Space and Operation Space. HGNAS subsequently constructs
a supernet to cover the GNN design space, allowing the search
and training processes to be decoupled by one-shot exploration.
Afterward, HGNAS navigates the hierarchical design spaces
using the proposed multi-stage hierarchical search strategy.
During exploration, each candidate architecture is evaluated
based on both its accuracy on the validation dataset and its
hardware performance on the target device. GNN hardware
performance is assessed using our proposed GNN hardware
performance predictor, obviating the need for laborious on-
device measurements. In the following sections, we will detail
the key components of the HGNAS framework.

B. Problem Definition

For simplicity, we first introduce the notations that will facil-
itate the subsequent exposition, as illustrated in Table I. In this
paper, we aim to co-optimize the accuracy and hardware effi-
ciency of GNNs deployed on edge devices. Hardware efficiency
for GNNs is quantified by two key metrics: inference latency
Lat and peak memory usage PM , both of which are critical
considerations for edge applications. Given a target edge device
H, along with latency constraint Clat, and the peak memory
constraint Cmem, we can formulate the multi-objective opti-
mization task for HGNAS as follows:

arg max
{A,H}

(α ∗ accval (W∗,A)− β ∗ E (A,H)), (2)

s.t. W∗ = argmax
W

acctrain (W,A)

Lat < Clat and PM <Cmem

, (3)

where W denotes the model weights, acctrain is the training
accuracy, accval is the validation accuracy, E is the hardware
efficiency on targeted platform H, A is the GNN architecture
candidate, α and β are scaling factors employed to balance
the optimization objectives between accuracy and efficiency.
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TABLE I
NOTATIONS OF THE INVOLVED MATHEMATICAL SYMBOLS AND

CORRESPONDING DESCRIPTIONS

Term Description
A GNN architectures
H target edge device
Lat inference latency
PM peak memory usage
Clat latency constraint
Cmem peak memory constrain
accval validation accuracy

E hardware efficiency
N number of positions in GNN supernet
Fobj objective function during search
α scaling factor for accuracy
β scaling factor for efficiency

This ensures that the designed GNN aligns with the specific
requirements of the target application. Note that both latency
and peak memory usage are jointly influenced by the GNN
architecture as well as the platforms where such networks
are deployed.

C. Fine-Grained Hierarchical GNN Design Space

The traditional layer-wise search space aims to find an op-
timal block and stack multiple instances of it to construct
the optimal architecture, which significantly constrains explo-
ration within the design space. Additionally, the computa-
tional characteristics of GNNs make the sequence of operations
significantly influence efficiency [17]. Notably, the sequence
identified in the optimal block may not be universally applicable
for optimizing all components of the model. To unleash the
potential of efficient GNN design, we propose a fine-grained
hierarchical design space, comprising all the fundamental op-
erations involved in GNN computation. Furthermore, we de-
couple the operations by organizing the design space into two
hierarchical layers: a Function Space and an Operation Space.

The GNN supernet. To lift the restrictions of the traditional
GNN design space, HGNAS adopts a more flexible approach
by building the design space based on positions for GNN opera-
tions, rather than presetting the number of GNN layers. Further-
more, as shown in Fig. 6, HGNAS organizes the GNN design
space as a supernet based on positions, in order to minimize
exploration overhead through the utilization of the single path
one-shot NAS methodology [31]. Candidate architectures are
generated by choosing and fixing an operation and its corre-
sponding function at each supernet position. Specifically, for
each position in the supernet, there are four fundamental op-
erations including connect, aggregate, combine, and sample,
each with distinct properties. Beyond the operations inherited
from the MP paradigm, the connect operation, which includes
both direct and skip-connections, further enhances the design
freedom in constructing GNN models. Besides, the message
type properties in aggregate operations dictate the construction
method of messages to be aggregated for point cloud process-
ing. In practice, supernet training demands uniform lengths
for hidden dimensions across all operations situated at each

Fig. 7. Design space decoupling for GNN.

TABLE II
THE AVAILABLE CHOICES IN GNN’S SUPERNET

Operation Function

Connect Skip-connect, Identity

Aggregate

Aggregator type: sum, min, max, mean

Message type: Source pos, Target pos, Relative pos,

Source ‖ Relative pos, Target ‖ Relative pos,

Euclidean distance, Full

Combine 8, 16, 32, 64, 128, 256

Sample KNN, Random

position. For dimension alignment, HGNAS adds linear trans-
formations to operations, such as sample and aggregate, that
are otherwise incapable of modifying hidden dimensions. These
linear transformations will be omitted in the finalized architec-
ture to avoid introducing additional overhead.

The hierarchical design space. In practice, operations in
the fine-grained design space can be further decoupled. For ex-
ample, the aggregate operation encompasses various properties,
including the aggregation operator and message construction
type. Consequently, HGNAS decouple the fine-grained GNN
design space into Operation Space and Function Space. As
illustrated in Fig. 7, the Operation Space includes operation
types, while the Function Space comprises specific operation
properties. In addition, these two sub-spaces can be explored
separately by leveraging the proposed multi-stage hierarchical
search strategy (see Sec. III-D) to reduce exploration complex-
ity. All candidate operations and functions are listed in Table II.

D. Multi-Stage Hierarchical Search Strategy

To tackle the excessive exploration complexity introduced
by fine-grained design space (see Observation 2), we propose
an efficient multi-stage hierarchical search strategy that divides
the search process into two stages, corresponding to Function
Space and Operation Space. Inspired by [31], we employ a one-
shot approach during the two-stage search process to decou-
ple the supernet training and architecture search, avoiding the
exorbitant cost of sub-architecture retraining. In particular, full
supernet training is only performed once after determining the
optimal function settings. During the search phase, candidates
meeting hardware constraints are evaluated for accuracy by
inference on the validation set using the pre-trained weights
of the supernet. As illustrated in Alg. 1, the algorithm inputs
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Algorithm 1: Multi-stage hierarchical search strategy.

1 Inputs: population size P , hardware constraints C,
target device H, Operation Space Sop, Function Space
Sf , max iteration T , number of positions N .

2 Outputs: the best found GNN design A∗ for target
device H.

3 Initialize GNN supernet Nsuper with N positions and
two function sets upper ← Ø, lower ← Ø

4 /* Stage 1: Function search */
5 Assign function set: Nsuper[0, N/2]← upper,

Nsuper[N/2 + 1, N ]← lower
6 for 1≤ t≤ T do
7 {upper, lower}← EA(P,Nsuper, Sf , obj =

max(accval))
8 end
9 Fix function set F←{upper, lower} for Nsuper

10 Re-initialize and pre-train Nsuper(Sop,F)
11 /* Stage 2: Operation search */
12 Initialize operation set O ← Ø
13 for 1≤ t≤ T do
14 O ← EA(P,Nsuper,F, Sop, obj =max(Fobj(C)))
15 end
16 return optimal architecture A∗ ←{O,F}

include: (1) population size P in evolutionary search, (2) hard-
ware constraints C which will determine the upper bounds of
latency and peak memory usage in the finalized GNNs, (3) the
target edge device H, (4) Operation Space Sop, Function Space
Sf , (5) maximum iterations T which determines the terminating
conditions, and (6) the number of positions N which affects the
exploration scope. During exploration, HGNAS first searches
for an optimal function setting in the Function Space. After that,
the GNN supernet is pre-trained based on this optimal setting.
Subsequently, a multi-objective search is conducted across all
positions in the supernet for optimal operations. Finally, the
algorithm outputs the top-performing model A∗ tailored for
the target edge device H. The details of the multi-stage search
strategy are outlined below.

Stage 1: Function search. In this stage, HGNAS seeks to
identify a function setting that maximizes supernet accuracy.
During the search, HGNAS utilizes an evolutionary algorithm
(EA) to iteratively select sub-functions from the GNN su-
pernet. The score of each sub-function is determined by the
corresponding supernet accuracy, requiring only a few training
epochs. To further improve the exploration efficiency, HGNAS
partitions the N positions of the GNN supernet into two halves,
sharing one set of functions among the Upper half (0, ..., N/2)
and another set among the Lower half (N/2 + 1, ..., N ). This
sharing scheme is inspired by the differing contributions of
the front and latter GNN layers to accuracy [11]. Although
this approach risks overlooking some promising architectures,
the considerable gain in exploration efficiency justifies its use.
For a supernet with 12 positions, through sharing functions
among positions in the decoupled design space, HGNAS can
reduce the number of exploration candidates from 4.2× 1012

to 1.7× 107. Finally, an optimal function set F is determined
for initializing the supernet Nsuper. Note that fixing F will
significantly reduce the complexity of subsequent exploration.

Stage 2: Operation search. Upon fixing F, we pre-
train the GNN supernet to obtain shared weights for all
sub-architectures, thus avoiding retraining. During this stage,
HGNAS explores the remaining Operation Space with the aim
of locating a set of operations to maximize the accuracy and
efficiency of the GNN candidate on the target device. Specif-
ically, the objective function during the operation search is
formulated as:

Fobj(C) =
{
0, if E ≥ C
α ∗ accval − β ∗ E , if E < C

(4)

where E represents the hardware efficiency, including latency
and peak memory usage. For GNN architectures that fail to
meet the hardware constraints C, we will not further evaluate the
accuracy and directly mark zero to avoid the unqualified GNNs.
The evaluation of hardware efficiency is based on the proposed
GNN hardware performance predictor (see Sec. III-E), which
can perceive the latency and peak memory usage of candidate
GNNs on the target device in milliseconds. By adjusting α
and β, we can easily direct the search trend (towards more
accurate or more efficient) to serve the requirements of different
application scenarios.

E. GNN Hardware Performance Prediction

By abstracting the GNN architecture into graphs, the GNN
hardware-awareness problem can be reformulated as a graph
representation learning problem, an area where GNNs excel.
As such, we propose an efficient GNN hardware performance
predictor to learn the relationship between GNN architectures
and hardware efficiency. In addition, we perform an intensive
analysis of the GNN computation process and propose a peak
memory usage estimation method to assist in predicting GNN’s
run-time peak memory usage. As shown in Fig. 8, the prediction
process consists of the following phases: graph construction,
node feature generation, latency prediction, peak memory
usage prediction. Note that the proposed GNN hardware per-
formance predictor is only applied during the search process,
whereas the experiment results in Sec. IV are directly measured
on target edge device for fair comparisons.

Graph construction. During this phase, HGNAS abstracts
GNN architectures into directed graphs, which serve as the
input for the GNN predictor. While GNNs typically use undi-
rected graphs for better connectivity, we choose directed graphs
because their unique dataflow properties significantly impact
prediction accuracy. Specifically, the nodes in these architec-
ture graphs represent inputs, outputs, and operations, while the
edges depict the dataflow within the GNN architecture. In prac-
tice, accurate prediction of hardware efficiency requires both
candidate model architecture and the graph property of the input
dataset, which GNN execution highly depends on. However,
this plain abstraction of the original GNN architectures is too
sparse for the predictor to obtain sufficient structural features,
and lacks the necessary information on input data. To address
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Fig. 8. Latency and peak memory usage prediction of a candidate GNN
model for the target device.

this limitation, HGNAS introduces a global node that connects
with all the other nodes in the graph to improve the graph
connectivity. In this way, the propagation of operational infor-
mation throughout the entire architecture graph is significantly
improved, which benefits the learning of the GNN predictor.
Finally, HGNAS will output an architecture graph in adja-
cency matrix format G ∈ R

N×N , where N denotes the number
of nodes.

Node feature generation. For the node feature initialization,
HGNAS employs the one-hot strategy commonly used in GNNs
[1] to encode the possible candidates at each position. For an
operation node, the node feature comprises the operation type
and its corresponding function. Specifically, HGNAS encodes
these two components into 7-dimensional and 9-dimensional
one-hot vectors, respectively, and subsequently concatenates
these vectors to form the node feature. For input and output
nodes, HGNAS assigns them with zero vectors, indicating that
they do not have any specific operation associated with them.
Regarding the global node, HGNAS encodes the input graph
data properties (such as the number of nodes, density, etc.) into
a 16-dimensional vector as the global node feature. Afterwards,
a node feature matrix X ∈ R

N×L will be generated as input to
the GNN predictor, where L is the feature length.

Latency prediction. To avoid the over-smoothing problem
often induced by deeper GNNs on small-scale graphs (i.e., the
abstracted architecture graph), the latency predictor consists of
only three GCN layers [1] and a multi-layer perceptron (MLP).
Specifically, the GCN layers utilize the sum aggregator with
hidden dimensions of 256× 512× 512. For the MLP part, we
employ three fully-connected layers with hidden dimensions of
256× 128× 1 respectively, followed by a LeakyReLU activa-
tion function σ for generating a scalar prediction of latency.
The predictor takes target edge device H, adjacency matrix G,
and node feature matrix X as inputs, and outputs the predicted
latency. A one-hot encoding method is used for the target device
input. When integrating new devices, only a small amount of

data collection is required, followed by incremental training
of the predictor. The GNN-based latency prediction can be
formulated as follows:

Lat (A) = σ (MLP (GCN (A,G,X ,H))) (5)

The predictor is trained for 250 epochs on 30K randomly
sampled candidate architectures (21K for training and 9K for
validation) in our fine-grained GNN design space, with labels
obtained from measurement results on various edge devices.
During the predictor training, we utilize the mean absolute
percentage error (MAPE) as the loss function to mitigate
the impact of potential outliers, such as system disruptions
during data collection. Additionally, we utilize AdamW as the
training optimizer, employing a batch size of 32 and an ini-
tial learning rate of 0.0008, which is dynamically adjusted
using the ReduceLROnPlateau scheduler. As architecture
graphs typically contain only a few dozen nodes, the prediction
overhead is mostly negligible, requiring only about 10 ms on
GPU platforms.

Peak memory usage prediction. In the design of efficient
GNNs for edge applications, peak memory usage serves as a
critical metric, substantially influencing the feasibility of such
networks on the target platform. Therefore, we extend the GNN
hardware performance predictor to include peak memory usage
prediction during the search process, thereby mitigating the
risk of unsuitable design choices. For data preparation, we
collect 30K random GNN architectures from our fine-grained
GNN design space, employing the same dataset splitting strat-
egy for latency prediction. For GPU devices, we utilize the
max_memory_allocated function in PyTorch [32] to ob-
tain peak memory usage data. For CPU devices, we perform
data collection using the Resource tool [33]. As we observed,
data collection accuracy directly affects prediction accuracy.
Hence, we independently sample the peak memory data of
each architecture to minimize interference. Furthermore, we
employ the same predictor structure and training scheme as for
latency prediction, while adjusting the initial learning rate to
0.0003 and batch size to 16. In practice, initializing the peak
memory predictor using the weights of the latency predictor can
expedite the model convergence, thereby suggesting an interre-
lation between the two performance metrics (see Sec. IV-E).
As such, we utilize the well-trained latency predictor’s weights
to initialize the peak memory predictor. This approach enables
the peak memory predictor to reach training completion within
tens of epochs while attaining performance on par with the
latency predictor.

Peak memory usage estimation. Unlike the runtime latency
of GNNs, influenced by multiple factors, peak memory usage is
closely associated with the size of the tensor generated during
inference. This correlation allows us to develop an accurate
method for estimating peak memory usage for a wider range of
platforms with enhanced evaluation robustness. To this end, we
profile several randomly sampled architectures from the fine-
grained design space and summarize the rules governing the
patterns of their peak memory usage. During GNN inference,
memory usage can be broadly divided into three categories:
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those related to the model, the dataset, and intermediate vari-
ables. The model-related memory usage Mp is approximately
equal to Uk ×Np, where Uk and Np are the precision and
number of the model parameters. And dataset-related Memory
usage Md is determined by the volume of data required for the
inference of a single batch. Upon loading both the model and
the data, the total memory usage M is given by M =Mp +Md.
In addition, the memory usage of intermediate variables are
generated during each operation in the forward execution. For
clarity, we henceforth use M to denote post-execution memory
usage and M ′ for pre-execution memory usage of the current
operation. Specifically, the memory consumption brought by
some typical GNN operations are delineated below.

(1) Sample. For this operation, the intermediate result takes
the form of a graph that is represented as an edge list. Assume
that there are N nodes in the graph and K neighbors are
sampled for each node, the memory usage of sample operation
can be formulated as follows:

Msample =Ne × 2× Uindex, (6)

where Ne, which equals to N ×K, is the number of edges in
the graph and Uindex is the precision of the edge index. After
executing sample operation, the memory usage M is equal to
M ′ +Msample.

(2) Aggregate. The aggregate operation is executed in
two phases: message construction and message broadcasting.
The former generates messages on the edges, while the latter
updates the node features through message passing. By assum-
ing the node feature length as L, the introduced memory usage
can be calculated as follows:

Mmsg =Ne × 2× L× Uk, (7)

Mbroad =N × L× Uk. (8)

Upon completing the message construction phase, the updated
memory usage M is equal to M ′ +Mmsg. Additionally, the
memory usage after the completion of the message construction
phase is denoted as Mmc for subsequent peak memory calcu-
lations. In practice, memory allocated for messages is automat-
ically recycled after message broadcasting. Consequently, the
memory usage M is updated after the aggregate operation as
follows: M =M ′ +Mbroad −Mmsg .

(3) Combine. This operation is typically implemented based
on MLP, introducing memory usage that can be straightfor-
wardly calculated as follows:

Mcom =N × Lout × Uk, (9)

where Lout is the output feature dimension of MLP. Upon exe-
cution of this operation, the updated memory usage M becomes
M ′ +Mcom.

The total memory usage of a candidate GNN architecture
can be determined by accumulating the memory consumed in
each successive operation during forward computation. Never-
theless, the peak memory usage during GNN inference may
not necessarily align with M . Explicit message construction
in graphs with numerous edges and high-dimensional node
features can consume considerable memory, not accounted for

in M . In practice, this phase is often where peak memory usage
is observed. Thus, GNN’s final peak memory usage can be
calculated as follows:

PM =Max(M,M (1)
mc , ...,M

(n)
mc ), (10)

where n is the number of aggregate operations in GNNs.
In summary, this estimation method allows for direct calcu-

lation of peak memory during GNN inference across different
GPU devices. Note that this approach does not directly assess
peak memory on CPU devices, as memory usage on these
devices encompasses both program execution data and Tensor
data. Nevertheless, the method remains useful for assessing the
relative peak memory consumption of candidates during explo-
ration, irrespective of the device targeted. Practically, HGNAS
integrates both the predictor output and estimation metrics to
improve evaluation robustness throughout the search process.
When the predictor output is lower than the estimated value,
indicating a biased prediction, the estimated value is used to
measure the peak memory usage of the candidate architecture.

IV. EXPERIMENT

A. Experimental Settings

Baselines and datasets. To evaluate HGNAS, we consider
two different application datasets for the graph classification
task: the point cloud processing benchmark ModelNet40 [19]
and the text analysis dataset MR [34]. Evaluation and hyper-
parameter settings are based on [11] and [16], respectively.
Our comparison included several baselines: (1) the popular
point cloud processing model DGCNN [9], (2) two manually
optimized variants of DGCNN [5], [11], (3) two SOTA methods
for optimizing point cloud classification accuracy PointGS [35]
and LGFNet [36], and (4) the GNN NAS framework PAS [16].
For a fairer comparison with manual optimizations in [5], [11],
we adopt their reported accuracy, inference speedup, and mem-
ory reduction as the baseline on the GPU platform. For other
edge platforms, we reproduce these baselines based on PyTorch
Geometric (PyG) framework [37], due to the lack of pre-trained
models and evaluation results. To compare with PAS, we use
the PAS_G model, which is the relatively lightweight optimal
searched GNNs, for our testing. In addition, all experimental
and profiling results are obtained using the PyG framework,
taking the average results of 10 runs.

HGNAS settings. We assign 12 positions for the GNN su-
pernet to cover DGCNN architectures. For design space ex-
ploration, the maximum number of iterations is set to 1000,
and the population size for the evolutionary algorithm (EA) is
fixed at 20. Both the search and training phases of HGNAS are
carried out on an Nvidia V100 GPU. During function search and
operation search, the number of GNN supernet training epochs
is set as 50 and 500, respectively.

Predictor settings. The predictor is trained for 250 epochs
using 30K randomly sampled architectures from our fine-
grained design space, where 21K of these are adopted for
training and 9K for validation. Labels for these architectures
are obtained from performance measurements on various edge
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Fig. 9. Comparison between existing networks and HGNAS across various devices.

devices. The performance of the predictor is evaluated using
MAPE and validation accuracy as metrics.

Edge devices. We employ four edge devices for comparing
HGNAS and competitors: (1) Nvidia RTX3080 with 10GB
memory, (2) Intel i7-8700K, (3) Jetson TX2 with 8GB memory,
(4) Raspberry Pi 3B+ with a Cortex-A5 processor and 1GB
memory. Note that the hardware performance of both competi-
tors and HGNAS is derived from real GNN inference executions
on the specified devices.

B. Evaluation on ModelNet40

1) Accuracy vs. Efficiency: Fig. 9 depicts the outcome of
HGNAS exploration, aiming for reduced latency and enhanced
accuracy. The ideal solution is designated by a star and posi-
tioned in the top-left corner of the figure. The green markers
labeled Device_Acc (e.g., RTX_Acc) represent architectures
optimized for specific devices by HGNAS without compromis-
ing accuracy. In contrast, the red markers labeled Device_Fast
permit a 1% drop in accuracy. Note that the original intention
of HGNAS is to design efficient GNN models for edge de-
vices. As such, we have applied a larger scaling factor β to the
hardware efficiency metrics during search, with the objective
of identifying ultra-efficient architectures that still adhering to
accuracy requirements. The results demonstrate that HGNAS
consistently maintains a better performance frontier on various
devices, which is guaranteed by the accurate hardware perfor-
mance prediction of the candidate GNNs during the search. By
carefully selecting scaling factors, HGNAS can easily balance
hardware efficiency and task accuracy, as detailed in Sec. IV-D.

In real-time applications, efficiency is as crucial as accu-
racy. Significant progress in enhancing GNN accuracy does
not mitigate their primary deployment obstacle on edge de-
vices: inefficient inference. As shown in Fig. 10, PointGS and
LGFNet prioritize optimizing accuracy, significantly improving
point cloud classification. However, this emphasis on accuracy
compromises inference efficiency, leading to higher on-device
latency and failing to meet real-time requirements. Conversely,
HGNAS incorporates efficiency metrics into the NAS objective,
enabling the creation of a GNN model that achieves inference
efficiency gains with minimal accuracy loss, meeting real-time
constraints. Specifically, HGNAS demonstrates a balance be-
tween accuracy and efficiency, with less than 2% accuracy loss

Fig. 10. Accuracy and efficiency trade-offs in GNN designs, highlighting
substantial gains with minimal accuracy loss.

compared to PointGS and LGFNet, while achieving speedups
of 275.7× and 9.9× on the RTX3080 platform, respectively.

2) HGNAS Over Existing Graph Neural Architectures:
In this set of experiments, we benchmark HGNAS against
competitors across four edge devices. For HGNAS, we con-
duct separate explorations prioritizing accuracy, latency, and
peak memory usage by assigning them larger scaling factors.
The results are summarized in Table III. It can be observed
that GNN models designed by HGNAS show improved hard-
ware efficiency in terms of reduced latency and peak memory
usage across various edge computing platforms while main-
taining similar accuracy levels. Specifically, HGNAS achieves
speedups of 6.0×, 4.5×, 5.3×, and 3.6×, all while maintaining
the same accuracy as DGCNN on the four edge devices. With a
permissible 1% accuracy loss, the Device_Fast GNNs designed
by HGNAS achieve speedups of up to 10.6×, 10.2×, 7.5×, and
7.4×. This superior performance is attributed to the accurate
latency predictions during the model search process. In prac-
tice, only achieving latency awareness is insufficient to meet
edge application requirements, and peak memory awareness is
important for memory-constrained scenarios. Therefore, based
on our previously published work [10], we propose two new ap-
proaches in this paper: one for peak memory prediction and an-
other for peak memory estimation, to guide the exploration. By
incorporating peak memory metrics into the multi-objective op-
timization process, the Device_Small architecture is explored to
achieve lower peak memory usage on each device. As shown in
Table III, the Device_Small architectures achieve peak memory
reductions of 82.5%, 38.0%, 81.4%, 43.7% across the four edge
devices, outperforms other competitors and the Device_Fast ar-
chitectures. This substantially enhances the viability of deploy-
ing GNNs on edge devices with limited resources. Furthermore,
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TABLE III
COMPARISON OF HGNAS AND EXISTING METHODS, WHERE OA

AND MACC DENOTE OVERALL ACCURACY AND BALANCED

ACCURACY, RESPECTIVELY

Device Network Size [MB] OA mAcc Latency [ms] PM [MB]

RTX

DGCNN 1.81 92.9 88.9 51.8 174.9

[5] - 92.6 89.6 (2.0×↑) (51.9%↓)

[11] - 93.2 90.6 (2.5×↑) -

RTX_Acc 1.61 92.8 90.1 8.6 (6.0×↑) 60.5 (65.4%↓)

RTX-Fast 1.46 92.1 88.5 4.9 (10.6×↑) 53.8 (69.2%↓)

RTX_Small 1.49 92.4 89.3 4.9 (10.6×↑) 30.7 (82.5%↓)

Intel

DGCNN 1.81 92.9 88.9 234.2 643.0

[5] 2.33 92.6 89.6 217.4 (1.1×↑) 581.3 (9.6%↓)

[11] 1.80 93.2 90.6 92.4 (2.5×↑) 454.6 (29.3%↓)

Intel_Acc 1.61 92.8 90.1 52.2 (4.5×↑) 426.8(33.6%↓)

Intel_Fast 1.47 92.5 88.8 23.1 (10.2×↑) 439.2 (31.6%↓)

Intel_Small 1.37 92.2 89.6 41.6 (5.6×↑) 398.8 (38.0%↓)

TX2

DGCNN 1.81 92.9 88.9 270.4 174.9

[5] 2.33 92.6 89.6 109.9 (2.5×↑) 121.2 (30.7%↓)

[11] 1.81 93.2 90.6 206.4 (1.3×↑) 34.5 (80.3%↓)

TX2_Acc 1.60 92.9 89.7 50.5 (5.3×↑) 60.5 (65.4%↓)

TX2_Fast 1.48 92.2 88.7 36.3 (7.5×↑) 57.6 (67.1%↓)

TX2_Small 1.34 92.5 89.0 88.4 (3.1×↑) 32.6 (81.4%↓)

Pi

DGCNN 1.81 92.9 88.9 4139.1 457.8

[5] 2.33 92.6 89.6 3466.0 (1.2×↑) 354.3 (22.6%↓)

[11] 1.81 93.2 90.6 1961.7 (2.1×↑) 271.1 (40.8%↓)

Pi_Acc 1.47 92.8 89.3 1165.3 (3.6×↑) 270.2 (41.0%↓)

Pi_Fast 1.36 92.1 88.3 557.6 (7.4×↑) 257.8 (43.7%↓)

Pi_Small 1.40 92.1 88.7 683.4 (6.1×↑) 257.8 (43.7%↓)

HGNAS realizes a more pronounced reduction in peak memory
usage on GPU platforms, like RTX3080 and TX2, primarily due
to enhanced evaluation stability gained from the combination
of predictor outputs and estimation results. Compared to the
latency-aware design of Device_Fast, Device_Small reduces
peak memory usage by up to 43%, highlighting the effec-
tiveness of the proposed peak memory awareness approach.
Meanwhile, as shown in Table III, GNNs designed by HGNAS
aiming for lower latency also exhibit reduced peak memory
usage, and vice versa. This exposes some correlation between
the two metrics, which we will analyze in detail in Sec. IV-E.
Moreover, despite the numerous candidates introduced by the
fine-grained design space, HGNAS achieves search efficiency
comparable to other hardware-aware GNN search frameworks
by leveraging an efficient multi-stage search strategy. Specif-
ically, G-CoS [24], with 109 candidate architectures, requires
4 GPU hours to complete a search. In contrast, HGNAS, with
1012 candidate architectures, requires only 3 GPU hours.

C. Evaluation on MR

To demonstrate the scalability of HGNAS, we conducted
additional experiments using the text analysis dataset MR. This
dataset is also used for graph classification tasks, featuring

unique data characteristics, varying numbers of nodes, and
different hardware sensitivities compared to the point cloud
dataset ModelNet40. Fig. 11 presents the experimental results,
with some data scaled to improve readability due to their large
variance. Compared to DGCNN and PAS, our model achieves
similar or superior task accuracy, along with improvements
in inference efficiency by factors of 4.2×, 12.6×, 6.9×, and
42× on four edge platforms, respectively. Additionally, we
achieved a 98% reduction in peak memory usage on both the
RTX3080 and Jetson TX2 platforms, which are equipped with
GPU resources. Moreover, given the resource limitations of the
Raspberry Pi, we relaxed hardware constraints during the search
process. This resulted in a substantial accuracy improvement,
demonstrating HGNAS’s ability to balance accuracy and effi-
ciency. The substantial performance improvement demonstrates
HGNAS’s advantages in designing efficient GNN models.

As a pioneering solution for deploying GNNs on edge de-
vices, HGNAS excels in various tasks and easily scales to
optimize diverse hardware performance metrics. In addressing
the crucial energy consumption metrics for edge deployments,
HGNAS can scale effectively via incremental predictor train-
ing. By integrating energy metrics into the objective function,
HGNAS can automatically design energy-efficient GNN mod-
els, tailored to various application scenarios. We conducted an
energy-efficient GNN architecture search experiment using the
Jetson TX2 platform, and the results are shown in Fig. 12.
Specifically, energy consumption was estimated by measuring
the average power during model inference with the Jtop tool
and multiplying it by the inference time. Compared to DGCNN,
which consumes 79.9 mJ per inference, the GNN designed by
HGNAS offers substantial energy savings of 86.3%, requiring
only 10.93 mJ per inference, while maintaining similar accu-
racy. Compared to PAS, which consumes 90.2 mJ, HGNAS
achieves an 87.9% reduction in energy consumption along with
a 6.9× speedup. In practice, we have observed that models with
lower latency typically exhibit lower energy consumption, as
also mentioned in [18]. By analyzing 1000 GNN candidates, we
established a strong correlation between energy consumption
and latency, evidenced by a correlation coefficient of 0.76.
Based on the principle that energy = power × latency and
given minimal power fluctuations for the same inference task,
energy consumption is highly dependent on latency. Conse-
quently, our latency-centered search process results in optimal
GNNs with correspondingly lower energy consumption.

D. Trade-Off via scaling factors

In this set of experiments, we perform multiple explorations
with various scaling factors on ModelNet40 using an Nvidia
RTX3080 to demonstrate the effectiveness of the proposed
hardware-aware GNN NAS method. The results are presented
in Fig. 13, where we use the ratio of α and β to represent the
different search orientations. Specifically, when α/β is smaller,
the search results are more in favor of lower latency than
higher accuracy. Conversely, when α/β is larger, the search
results tend to emphasize more on accuracy. This indicates that
the scaling factors α and β can adeptly balance accuracy and
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Fig. 11. Comparison of HGNAS and other methods on the MR dataset.

Fig. 12. Evaluation of HGNAS and baselines for inference energy consump-
tion on Jetson TX2.

Fig. 13. The trade-off between accuracy and efficiency by scaling factor α
and β. Efficiency is represented by the speedup when comparing to DGCNN.

latency, demonstrating the efficacy of the suggested hardware-
aware architecture search. In practical applications, this ap-
proach offers significant flexibility, as we can dynamically steer
the search process towards either accuracy or efficiency by
adjusting α and β according to the demands of specific tasks.

E. Correlation Between the Measured Latency and Peak
Memory Usage

As mentioned before, in HGNAS, we aim to search for
resource-efficient GNNs with minimal inference latency and
peak memory usage on specific target platforms. In practice,
we observe a strong correlation between these two metrics, in
which architectures with lower latency also have smaller peak
memory usage. To illustrate this point, we randomly sample
1000 GNN architectures in the fine-grained GNN design space
and subsequently measure their latency and peak memory usage
on four edge devices. As depicted in Fig. 14, the correlation
coefficient between the measured latency and peak memory

Fig. 14. Illustration of the correlation relationships between the latency and
the peak memory usage.

usage reaches 0.83, suggesting a strong correlation. This obser-
vation suggests that GNNs exhibiting low latency also tend to
be memory-efficient, especially on edge devices (i.e. Raspberry
Pi) with limited computational and memory resources. As such,
we initialise the peak memory predictor using the weights from
the latency predictor, leading to a substantial reduction in train-
ing time. Furthermore, a consistent correlation between these
metrics is observed across various devices. This suggests that
GNN models optimized by HGNAS for one device are unlikely
to exhibit significantly sub-optimal performance on others. This
observation offers a valuable trade-off: designers can aim for
sub-optimal performance based on predictions from similar
devices without incurring the overheads of seeking extreme
optimization for each new platform.

F. Prediction Results

In this set of experiments, we evaluate the effectiveness of
the proposed GNN hardware performance prediction approach.
As illustrated in Fig. 15, our predictor exhibits high accuracy in
predicting hardware efficiency for GNNs across various devices
on ModelNet40 dataset. Specifically, the MAPE for latency
predictions is approximately 6% on the RTX3080, Intel i7-
8700K, and Jetson TX2. However, it rises to around 19% on the
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Fig. 15. Predictor’s accuracy evaluation on various edge devices. The measured latency and PM denote the actual results collected from real devices.
The distance between each blue point and the red dash line reflects the predictor’s accuracy.

TABLE IV
PERFORMANCE OF THE PROPOSED PREDICTOR

Error

Bound

Latency Accuracy [%] PM Accuracy [%]

RTX Intel TX2 Pi RTX Intel TX2 Pi

±1% 10.3 17.2 11.1 61.4 28.5 37.8 23.7 32.9

±5% 49.6 66.4 48.9 69.2 89.1 96.0 80.2 90.1

±10% 79.3 87.2 79.5 77.6 95.8 99.9 93.8 99.6

Raspberry Pi due to latency measurement fluctuations. Mean-
while, the MAPE for peak memory predictions is approximately
4% on the RTX3080 and Jetson TX2, compared to about 2% on
the remaining devices. Table IV details the prediction results on
ModelNet40, showing the percentage of predictions within the
stipulated error bounds compared to on-device measurements.
Across diverse devices, the latency prediction method achieves
an approximate 80% accuracy with a 10% error bound, while
the peak memory usage prediction method consistently sur-
passes 90% accuracy. Meanwhile, the peak memory estimation
approach achieves a comparable accuracy of more than 90%
with a 10% error bound on GPU devices. Furthermore, the in-
tegration of predictor outputs and estimation results fortifies the
evaluation robustness, as evidenced by the substantial decrease
in peak memory usage for the RTX_Small and TX2_Small.
In practice, the GNN predictor performs better for GNNs that
have faster inference speeds, thereby aiding HGNAS in search-
ing more efficient GNN designs. For hardware performance
prediction on the MR dataset, HGNAS achieves higher accu-
racy. The predictor attains an average accuracy of 88.25% for
latency prediction with a 5% error bound across four devices.
Additionally, the prediction accuracy for peak memory usage
is approximately 99%.

G. Ablation Studies

In this set of experiments, we evaluate both the pro-
posed GNN hardware performance prediction method and the
multi-stage search strategy for their efficacy in optimizing

Fig. 16. (a) Performance comparison between real-time measured and
prediction-based search. (b) Search time reduction with the multi-stage
strategy.

the exploration of GNN architectures within a fine-grained
design space.

Prediction vs. real-time measurement. Excessive deploy-
ment and communication overheads make real-time measure-
ments of candidate GNNs impractical on most edge devices,
whereas our prediction approach assesses them in millisec-
onds without compromising results. Fig. 16(a) illustrates that
our GNN prediction approach effectively enhances search ef-
ficiency, as the models searched using both methods yield
comparable performance. In particular, our prediction method
becomes indispensable when real-time measurements are un-
feasible, such as on Raspberry Pi.

Multi-stage vs. one-stage search strategy. In practice, the
expansive fine-grained design space presents formidable chal-
lenges for efficient exploration; traditional single-stage search
strategies often become mired in a myriad of candidate so-
lutions. On the other hand, Fig. 16(b) shows that our multi-
stage hierarchical search strategy significantly speeds up the
exploration, capable of identifying an optimal GNN architec-
ture within a matter of GPU hours. Specifically, by leveraging
the multi-stage search strategy, HGNAS completes a single
exploration in approximately 3 hours.

H. Insight From GNNs Designed by HGNAS

As demonstrated before, the same GNN model may perform
differently across diverse edge computing platforms, which
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Fig. 17. Visualization of GNN models designed by HGNAS.

implies that the optimization needed is also device-specific. By
leveraging the proposed GNN hardware performance predictor,
HGNAS effectively identifies device-specific characteristics to
successfully determine the optimal GNN architectures. Fig. 17
visualizes the GNN architectures designed by HGNAS for
ModelNet40 dataset. Note that adjacent KNN operations are
merged during execution to avoid invalid graph construction.
The results clearly show that the hardware-efficient architec-
tures designed by HGNAS closely align with the characteris-
tics of the target device, corroborating the GNN computational
patterns highlighted in Observation 3. For example, given
that KNN constitutes a significant portion of execution time
on RTX3080 and Jetson TX2, GNN models tailored for these
platforms incorporate fewer valid KNN operations. Moreover,
the optimal GNNs for Intel CPU involves fewer aggregate op-
erations, while those tailored for the Raspberry Pi prioritize
simplifying each operations.

V. RELATED WORKS

With the success of GNNs in various edge applications [3],
[4], [16], there is growing attention in the research commu-
nity on enhancing inference efficiency in environments with
limited resources [6], [11], [25]. [11] performed a thorough
analysis of the computational process of GNNs, finding that
the initial layers contribute most significantly to task accuracy,
with diminishing returns observed in later layers. They pro-
posed enhancing inference efficiency by integrating a stronger
feature extractor in the early stages and simplifying the later
stages. Additionally, [5] noted that sampling constitutes the
major overhead in GNNs, with frequent duplication of results
in later layers from the initial layer. They suggested that reusing
sampling results from the first layer could significantly acceler-
ate inference. Nevertheless, manually designing such efficient
GNNs requires substantial trial-and-errors, inevitably resulting
in significant computational overhead as it necessitates training
GNNs from scratch and conducting real-time device measure-
ments to assess metrics such as accuracy and efficiency.

To automate model design and optimization, neural architec-
ture search (NAS) was introduced as an AutoML technique,
first applied to GNNs design by GraphNAS [14]. However,
their focus on optimizing only accuracy fails to address the
needs of real-time applications. Recent efforts have addressed

this by introducing hardware-aware NAS methods that aim to
optimize both accuracy and efficiency. For instance, G-CoS
[24] leverage a hardware estimation approach within a GNN-
Accelerator co-search framework to balance hardware effi-
ciency and model accuracy for customized hardware platforms.
Additionally, MaGNAS [25] utilizes a lookup table (LUT)
method to simultaneously search for optimal GNN architec-
tures and mapping schemes for the MPSoC platform. However,
these hardware-aware NAS solutions are typically tailored for
specific hardware designs and may not be easily adaptable
to general-purpose computing platforms. Conversely, HGNAS
uses a predictor approach that can be extended to various
platforms, including hardware accelerators such as FlowGNN
[38] and GCNAX [39]. This extension is made possible by
incremental data collection and training for the predictor.

On the other hand, some studies have explored optimization
techniques to handle large-scale graph training problems on dis-
tributed edge platforms. For example, SUGAR [40] leverages
graph partitioning and subgraph-level training to enhance the
training efficiency of GNNs on large-scale graphs, achieving
notable results. This method primarily targets the optimiza-
tion of training processes rather than the design of hardware-
efficient architectures. Unlike SUGAR, this paper focuses on
exploring methods to automatically design efficient GNN mod-
els for real-time inference, specifically for edge devices. More
specifically, we aim to design GNNs that are not only accurate
but also tailored to the limited computational resources typically
available on edge devices.

VI. CONCLUSION

In this work, we propose HGNAS, the first hardware-
aware framework to automatically explore efficient GNNs for
resource-constrained edge devices. Our objective is to effi-
ciently search the GNN architecture with the optimal hard-
ware efficiency on target platforms, while satisfying the task
accuracy. Specifically, HGNAS adopts a fine-grained design
space to facilitate the exploration of high-performance archi-
tectures. Additionally, HGNAS integrates a novel GNN hard-
ware performance prediction method to perceive the hardware
efficiency of candidate architectures. To further streamline the
exploration process, HGNAS incorporates the multi-stage hier-
archical search strategy, which reduces a single exploration to a
few GPU hours. Extensive experiments show that architectures
generated by HGNAS consistently outperform SOTA GNNs,
achieving about 10.6× speedup and 82.5% peak memory re-
duction across edge devices. We believe that HGNAS has made
pivotal progress in bringing GNNs to real-life edge applications.
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