
S2 Engine: A Novel Systolic Architecture for
Sparse Convolutional Neural Networks
Jianlei Yang , Senior Member, IEEE, Wenzhi Fu, Xingzhou Cheng , Xucheng Ye,

Pengcheng Dai, Student Member, IEEE, and Weisheng Zhao , Fellow, IEEE

Abstract—Convolutional neural networks (CNNs) have achieved great success in performing cognitive tasks. However, execution of

CNNs requires a large amount of computing resources and generates heavy memory traffic, which imposes a severe challenge on

computing system design. Through optimizing parallel executions and data reuse in convolution, systolic architecture demonstrates

great advantages in accelerating CNN computations. However, regular internal data transmission path in traditional systolic

architecture prevents the systolic architecture from completely leveraging the benefits introduced by neural network sparsity.

Deployment of fine-grained sparsity on the existing systolic architectures is greatly hindered by the incurred computational overheads.

In this work, we propose S2Engine – a novel systolic architecture that can fully exploit the sparsity in CNNs with maximized data reuse.

S2Engine transmits compressed data internally and allows each processing element to dynamically select an aligned data from the

compressed dataflow in convolution. Compared to the naı̈ve systolic array, S2Engine achieves about 3:2� and about 3:0�
improvements on speed and energy efficiency, respectively.

Index Terms—Systolic array, sparsity, convolution neural network, accelerator

Ç

1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) havemade rema-
rkable success in modern artificial intelligence (AI) appli-

cations [1]. The required training data size and model com-
plexity, however, keep increasing for better performance in a
large variety of applications. The incurred high computational
cost and data movement bandwidth are hardly supported by
conventional computing platforms and hence, motivating
recent huge investment on the corresponding accelerators [2].
Among these designs, systolic architecture [3] – a specialized
processing element network designed for massive paralleliza-
tion and extensive data reuse, has been proved efficient in per-
forming CNN computations. In addition to academic research
[4], [5], systolic architectureswere also adopted in some indus-
trial practices of deep neural network (DNN) accelerators [6],
[7], [8], [9].

The highly regularized layout and internal data movement
path of systolic arrays make engineering realization of the
design very efficient. However, such a regularity also prevents
exploiting irregular computation patterns that frequently
appear in sparse CNNs. Sparsity of deep CNNs has been
proven important to minimize computation workloads and

model size [10], [11], [12]. State-of-the-art pruning algorithms
can reduce the model size by > 10� [13] and computational
cost by > 4� [11]with negligible accuracy loss. However, due
to the large variety of the irregularities, the sparsity is not fully
exploited by the existing accelerators and introduces signifi-
cant design overheads. For example, Cambricon-X only con-
siders theweight sparsity [14] while Cnvlutin only deploys the
feature sparsity [15]. Cambricon-S can fully deploy both the
weight and feature sparsity but requires the sparsity pattern to
be coarse-grained, which greatly limits the application scope
[16]. SCNN supports fine-grained sparsity in both feature and
weight but introduces significant computational overhead due
to the required additional coordinates transformation [17].
SparTen [18] also utilizes both feature andweight sparsity, but
the energy efficiency is significantly degraded due to the
required additional logic for inner-join operations.

In this work, we propose S2 Engine – a novel Systolic
architecture for Sparse convolutional neural networks. Dif-
ferent from the existing systolic approaches [4], [6], com-
pressed feature and weight flows are fed into the systolic
array and the aligned pairs can be dynamically selected
from the compressed dataflow by each processing element
(PE). Our approach solves the contradiction between the
regularity of data transmission and the irregularity of spar-
sity such that the sparsity in CNNs can be fully exploited.
Data reuse could be efficiently implemented in S2Engine by
introducing an associated collective element (CE) array for
the PE array to reduce external buffer access. Furthermore,
fine-grained mixed-precision data processing is also sup-
ported by S2Engine to satisfy the varying precision require-
ment of CNNs even within the same kernel [19]. Experimental
results show that S2Engine can achieve about 3:2� speedup
and about 3:0� energy efficiency improvement compared
with the existing systolic approaches.

� Jianlei Yang, Wenzhi Fu, Xingzhou Cheng, and Xucheng Ye are with the
School of Computer Science and Engineering, Beihang University, Beijing
100191, China. E-mail: {jianlei, xingzhou, ZY1806121}@buaa.edu.cn,
minister_f@163.com.

� Pengcheng Dai and Weisheng Zhao are with the School of Integrated
Circuits and Engineering, Beihang University, Beijing 100191, China.
E-mail: dpc_work@163.com, weisheng.zhao@buaa.edu.cn.

Manuscript received 16 Sept. 2020; revised 26 Apr. 2021; accepted 23 May 2021.
Date of publication 9 June 2021; date of current version 10 May 2022.
(Corresponding authors: Jianlei Yang and Weisheng Zhao.)
Recommended for acceptance by H. Matsutani.
Digital Object Identifier no. 10.1109/TC.2021.3087946

1440 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-7623-2033
https://orcid.org/0000-0001-7623-2033
https://orcid.org/0000-0001-7623-2033
https://orcid.org/0000-0001-7623-2033
https://orcid.org/0000-0001-7623-2033
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
mailto:jianlei@buaa.edu.cn
mailto:xingzhou@buaa.edu.cn
mailto:ZY1806121@buaa.edu.cn
mailto:minister_f@163.com
mailto:dpc_work@163.com
mailto:weisheng.zhao@buaa.edu.cn

The main contributions of our work are:

� We propose a novel systolic architecture, namely,
S2Engine. By allowing each PE to select the aligned
data pairs dynamically from the compressed data-
flows, S2Engine could fully exploit the sparsity dur-
ing the execution of CNNs with low overhead.

� We introduce a collective element (CE) array to fur-
ther allow data reuse during convolution proce-
dures. This technique also works for native systolic
array.

� S2Engine solves the contradiction between the regu-
larity of data transmission and the irregularity of
sparsity, showing good robustness for different spar-
sity degrees.

The rest of the paper is organized as follows. Section 2
provides a preliminary on CNN sparsity and a brief intro-
duction of systolic architecture for CNN accelerators. Sec-
tion 3 discusses the motivation of our design by considering
data reuse manner and sparsity irregularities in CNNs. Sec-
tion 4 illustrates the detailed architectures of proposed
S2Engine. Section 5 explains the experimental methodology
and Section 6 presents the experimental results. Several
related works are discussed in Section 7, and concluding
remarks are given in Section 8.

2 PRELIMINARIES

In this section, we give preliminaries of both CNN and sys-
tolic architecture.

2.1 CNN Sparsity and Quantization

The main computation task of CNN algorithms is perform-
ing convolution operations layer by layer. As illustrated in
Fig. 1, convolution procedure is carried out between differ-
ent kernels and input feature maps. Take the convolution of

conv0 as an example, the dimensionality of kernel0 and IF 0

(input feature) could be represented as H � L�D, and
conv0 is defined as

XH�1

i¼0

XL�1

j¼0

XD�1

k¼0
kernel0 i½ � j½ � k½ � � IF 0 i½ � j½ � k½ �; (1)

where i 2 0;H � 1½ �, j 2 0; L� 1½ � and k 2 0;D� 1½ � represent
the indices of three dimensions, respectively. After the convo-
lution operations, nonlinear activation function (such as recti-
fied linear unit, ReLU) is usually applied to obtain the output
featureOF ði0;j0;k0Þ, while i0 2 0;H 0 � 1½ �, j0 2 0; L0 � 1½ � and k0 2
0;D0 � 1½ � represent the indices of three dimensions
H 0 � L0 �D0 for output featuremaps, respectively.

In deep CNNs, sparsity exists both inweights and features
due to the inherent redundancy of the networks. Weights
sparsity denotes the zeros in convolution kernels and is often
obtained by various pruning algorithms. Feature sparsity
denotes the zeros in feature maps and is caused by zero acti-
vation functions. Sparsity levels of weights and features are
defined by the percentages of the zeros existing in kernels
and feature maps, respectively. With negligible loss on accu-
racy, the state-of-the-art pruning algorithms [11], [13] can sig-
nificantly increase the sparsity level of CNNs and lead to
reduction in both model size and computation workloads.
Therefore, the sparsity of CNNs greatly affects the computing
efficiency of the relevant neural network accelerators. How-
ever, due to unstructured pruning and the randomness of
input data, the sparsity is irregular and unpredictable, which
is difficult for accelerators to leverage.

Another strategy to reduce network redundancy is called
quantization, that is, using low-precision fixed-point data
representation instead of using high-precision float-point
one to perform inference [13], [20], [21]. This strategy can also
significantly reduce the model footprint, memory access and
computational overhead of the CNN while maintaining its
accuracy. Many recent designs of neural network accelera-
tors and GPUs already support 8/16-bit fixed-point data
in CNN inference. In addition to the one-precision-fits-all
approaches, mixed-precision quantization algorithms have
been also developed by assigning different precision to dif-
ferent layers of CNNs according to the different sensitivities
of each layer [22]. A fine-granularity quantization approach
is also proposed by [19], where most data is represented with
low precision (i.e., 4-bit) while only a small portion of the
data (i.e., 3 percent) is represented with high precision (i.e.,
16-bit). These mixed-precision approaches further reduce the
CNN computation cost andmemory consumption.

2.2 Systolic Architecture

Systolic array is a specialized network of homogeneous PEs
that is designed for massive parallel computing in a special-
purpose system. Both the structure of PEs and the communi-
cation in the systolic array keep simple and regular, offering
great convenience to practical implementations. In a typical
systolic array design, all the internal PEs can get their input
data from the neighboring PEs and do not need to access the
external memory. Therefore, systolic array becomes an effi-
cient dataflow-driven architecture and can achieve high
throughputwith relatively lowmemory bandwidth.

Fig. 1. Illustration of data reuse manners among convolutions.

YANG ETAL.: S2 ENGINE: A NOVEL SYSTOLIC ARCHITECTURE FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS 1441

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

Several previous works adopt systolic array for CNNs
acceleration with different dataflows. According to the taxon-
omy in [23] and [24], the dataflow adopted by the accelerator
in [4] belongs to output stationary. Under this dataflow, as
demonstrated in Fig. 1, each PE undertakes the computation
of a convolution. The convolution in the same channel are
allocated to the PEs in the same row. Input features and ker-
nels are both reshaped into one-dimensional vectors and then
fed into each row and column of the systolic array, respec-
tively. TPU [6] adopts weight stationary dataflow. The feature
of each convolutional layer is loaded into the systolic array
before the weight is fed into the array. Different from [4], each
PE in TPU does not complete an entire convolution. Instead,
the partial accumulation is transported between adjacent PEs
and the convolution computation is completed by the accu-
mulation in the PEs along the transmission path. Despite the
difference in the dataflow, all of those designs retain the basic
characteristics of the systolic array and obtain significant
advantages of both speed and energy efficiency.

3 MOTIVATION

The efficiency of CNN accelerators is largely determined by
how to exploit the network sparsity and data reuse. In sys-
tolic architecture, however, the regular structure greatly
limits its capability of supporting the network sparsity and
data reuse. In this section, we analyze the potential optimi-
zation space of systolic architecture from the perspectives of
data reuse and sparsity.

3.1 Optimization With Data Reuse

During the computation of deep CNNs, each parameter may
be accessed for many times by MAC operations, as depicted
by the statistics in Table 1. Therefore, repeatedly loading these
data froma separatememory (e.g., aDRAMor a global buffer)
introduces excessive memory accesses. Since the energy con-
sumption of memory accesses can be much larger than that of
normal logic computations [25], [26], reducing memory
accesses, e.g., by improving data reuse, can substantially
reduce the energy consumption ofDNN accelerators.

We can divide the data reuse strategies into three types:
weight reuse, feature reuse and overlap reuse. As illustrated in
Fig. 1, weight reuse is defined as performing convolutions
between the same kernel (weights) and different input feature
maps, e.g., conv0 and conv1 sharing the same kernel0. Corre-
spondingly, feature reuse denotes convolutions between dif-
ferent kernels (weights) and the same feature, such as conv1
and conv2 sharing the same IF1. Overlap reuse also exists
between conv0 and conv1, which denotes convolutions
between the same kernel (weights) and the overlapped input
featuremaps.

As illustrated in Fig. 1, the dataflow in naı̈ve systolic
array can naturally utilize both the weight and feature
reuses by fetching data from adjacent PEs instead of exter-
nal buffers. However, it does not support the overlap reuse
which needs to access the adjacent rows of PE array. There-
fore, the insufficient exploration of overlap reuse leads to
excessive accesses on external buffers and extra buffer
capacity. As a supplement to the naı̈ve design, the proposed
S2Engine can exploit overlap reuse and hence, support all
three types of data reuse strategies.

3.2 Optimization With Sparsity

Sparsity widely exists in modern deep CNNs, including
weight sparsity and feature sparsity. For example, the
intrinsic redundancy of deep CNNs allow us to prune
majority of the weights with negligible accuracy loss by re-
training the models [11], [13]. Moreover, feature sparsity is
introduced during inference by ReLU function that converts
negative inputs to zeros. The average weight sparsity of
three typical CNNs are listed in Table 2. Because feature
sparsity varies with different input images, we randomly
select 50000 images from ImageNet [30] and calculate their
corresponding feature sparsity. Since all the MACs with
zero operand(s) can be skipped without affecting the convo-
lution result, only the MACs on aligned data pairs have to
be computed and defined as must-be-performed MACs as
shown in Fig. 2. The distributions of feature density and
must-be-performed MAC ratios of the three CNNs are
depicted in Fig. 3. According to these statistics, the sparsity
of both weights and features is not trivial and provides a
considerable opportunity to reduce computational cost and
memory footprint.

Although the sparsity of CNNs is not trivial, its irregular-
ity makes it difficult to effectively accelerate the executions
of the sparse CNNs [14]. Fig. 2 demonstrates the fundamen-
tal challenge brought by such irregularity. To eliminate all
the unnecessary MAC operations (with one or two zero
operands), only the aligned data pairs need to be sent to
PEs. As a result, although conv0 and conv1 share the same
kernel, the actual weights they access in the kernel can be
totally different due to the difference between the sparsity
patterns of IF 0 and IF 1. Fig. 1 demonstrates that how such
an irregularity brings challenge to systolic array. The
weights required by PE0 (w1;0) and PE1 (w0;0 and w3;0) for
convolution are different, which breaks the data transmis-
sion path inside the systolic array. This characteristic also
prevents the accelerators with explicitly planned dataflow
[6], [31], [32] from fully leveraging the network sparsity. It
also becomes challenging to optimize both data reuse and
sparsity at the same time.

Table 3 summarizes the sparsity strategies explored by
existing accelerators. For example, TPU does not explore any

TABLE 1
Average Accesses per Parameter by MACs in Various CNNs

AlexNet VGG16 ResNet50

[27] [28] [29]

Total MACs 666M 15.3G 3.86G

Parameters 2.33M 14.7M 23.5M

Avg. Usage of Param. 572 2082 336

TABLE 2
Weight and Feature Sparsity of Different CNNs,

Represented by the Percentage of Zeros

AlexNet VGG16 ResNet50

Average Weight Sparsity 64% 68% 76%
Average Feature Sparsity 61% 72% 66%

1442 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

of the two sparsity strategies in systolic arrays [6], since each
zero would inevitably occupy a PE. Eyeriss only exploits the
feature sparsity [31]. By utilizing feature sparsity, Cnvlutin
achieves performance improvement by skipping the opera-
tions with zero elements in feature maps [15]. Cambricon-X
[14] and [5], however, only exploit weight sparsity within the
network trained by their proposed pruning algorithm. Cam-
bricon-S fully deploys the sparsity of both features and
weights, but only supports them at coarse granularity and
requires additional pruning algorithms [16]. EIE also exploits
these two types of sparsity [33] but is only designed for fully-
connected networks. SCNN exploits these two types of spar-
sity on both convolutional and fully-connected layers [17].
However, SCNN requires lots of coordinate computations
and introduces significant overhead. As an evidence, SCNN
only achieves 79 percent of the speed but consumes 33 percent
more energywhen processing dense CNNs [17] . SparTen [18]
supports sparse vector-vector multiplication and load balance
optimization to improve the hardware utilization, but the
required additional computation resources degrade the
energy efficiency significantly.

4 S2 ENGINE ARCHITECTURE

4.1 Architecture Overview

The top-level architecture of S2Engine and the schematic of
its internal dataflow are shown in Fig. 4. S2Engine consists
of a homogeneous PE array and an associated CE (collective
element) array. Sparse features are compressed and stored
in feature buffer (FB) while sparse weights are compressed
and stored in weight buffer (WB).

As aforementioned, weight stationary dataflow adopted in
TPU [6] prevents it from deploying the sparsity. Therefore,
S2Engine utilizes an output stationary dataflow as shown in
Fig. 4. Similar to Fig. 1, each PE undertakes the computation of
a separate convolution while the compressed feature and
weight flow among the systolic array in twodirections in order
to realize data reuse. The sparse features are fetched by CE
array and sent to PE array. The feature overlap is processed

Fig. 2. A demonstration of two convolutions with sparse feature and
weight. The MAC operation must be performed only when the corre-
sponding positions of the weight and feature are both non-zero, i.e.,
aligned-pair ðw; fÞ.

Fig. 3. The distribution of feature density and must-be-performed MAC
ratio on ImageNet dataset. The feature density is defined as the propor-
tion of non-zero elements in all feature maps, and the must-be-per-
formed MAC ratio is defined as the proportion of MAC operations with
two non-zero operands (the aligned data pairs) in all convolutions.

TABLE 3
Comparison of Sparsity Considerations on

Different CNN Accelerators

Accelerator Gate MAC Skip
MAC

Skip Buffer or DRAM
Accesses

TPU [6] Unmentioned - Unmentioned

Eyeriss [31] F - F
Cnvlutin [15] F F F
Cambricon-X
[14]

W W W

[5] W W W
Cambricon-S
[16]

F þW F þW F þW

EIE [33] F þW F þW F þW
SCNN [17] F þW F þW F þW
SparTen [18] F þW F þW F þW
S2Engine F þW F þW F þW
Here F means only feature sparsity is considered and W means only weight
sparsity is considered.

Fig. 4. Architecture overview of S2Engine and demonstration of internal
dataflow.

YANG ETAL.: S2 ENGINE: A NOVEL SYSTOLIC ARCHITECTURE FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS 1443

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

between different PE rows to achieve overlap reuse. The data
transmission path shown in Fig. 4 allows theS2Engine to trans-
mit the convolution results out of the systolic array faster com-
pared to the naı̈ve design adopted in [4].

In this work, we enhance the PE design from the naı̈ve
design [4], [6] to exploit the sparsity of both weight and fea-
ture. Our PE can dynamically select the aligned data pairs
from the two dataflows that passing across it for sparse con-
volution. As shown in Fig. 4, each PE can be decomposed
into three components: Dynamic Selection (DS), Multiplica-
tion and ACcumulation (MAC), Result Forwarding (RF). DS
component performs dynamic selection and then sends
aligned feature-weight pair to MACs. The design of MAC
component is trivial as it just simply achieves the multipli-
cation and accumulation. The function of RF component is
illustrated with PE0 and PE1 marked in Fig. 4. Due to the
irregularity of sparsity, the workload allocated to each PE
might not be equal. For example, PE1 might generate the
convolution results before PE0. To guarantee the convolu-
tion results are transmitted out from the systolic array
sequentially, in addition to the naı̈ve design, the RF compo-
nent in PE1 needs to stall and wait until the convolution
results from PE1 have been forwarded.

Similar to the naı̈ve design shown in Fig. 1, the convolu-
tion process would be projected to GEMM (general purpose
matrix multiplication) operation for the PE array to process.
However, different from the naı̈ve im2col() operation
provided in Caffe [34], the three dimensional input feature
map is divided into groups and then reshaped into one-
dimensional vector at this granularity. Such a reshaping
manner is adopted for the convenience of deploying overlap
reuse which would be detailed illustrated in Section 4.4.
After being reshaped into one-dimensional data (illustrated
in Fig. 1), the sparse data are further compressed before
feeding into PE array as demonstrated in Fig. 4.

4.2 Dataflow Compression

To select all the aligned data pairs, e.g., ðf0;1; w1;0Þ in Fig. 1,
from the compressed feature and weight flow, the indices of
non-zero feature and weight need to be extracted and com-
pared with each other in PEs. However, several popular
sparse formats are not suitable for this purpose because
they usually introduce additional overheads. COO [35] for-
mat encodes two absolute indexes for each element, which
contains redundant information and cannot represent an
arbitrary large matrix with limited bit width for offset. The
CSC format [33] stores the number of zeros between two
non-zeros, therefore non-zeros accessing has to perform
coordinate transformation from the compressed format. In
this work, as a variation of COO, Enhanced COO format
(ECOO) is introduced to overcome these limitations. Instead
of achieving a higher compression ratio, the primary goal of
adopting ECOO format is to simplify the design of DS.

As described before, since the input data is reshaped at
the granularity of groups, the one-dimensional vectors fed
into the systolic array (feature or weight) have been natu-
rally divided into groups as shown in Fig. 5, where the
group length is fixed at 6 in this example. The absolute posi-
tion of each element inside each group is stored as offset.
To avoid the mismatch of feature and weight elements

between different groups, an extra EOG (end-of-group) flag
is defined at the last element of each group. If all elements
in a group are zeros, one zero is kept and marked as EOG as
a placeholder. Hence, ECOO format could be denoted as
triplets (value, offset, EOG). As we have observed that 4
bits are enough to represent offset which is also used in
several previous works [13], [33], the group length is set to
16 in this work. Additional 1 bit is required for EOG and
each nonzero feature would be represented by 13 bits in
total. Another 1 bit is required to encode nonzero weight
(14 bits in total) to represent the end-of-kernel. As shown
from Fig. 5, the aligned weight-feature pair, e.g., ðw1;0; f0;1Þ,
would have the same offset after being compressed. In
Section 4.3, we will show that this property makes it easier
for the DS component to select all the aligned weight-fea-
ture pairs from the compressed dataflow.

4.3 Dynamic Selection Component

By adopting the ECOO format described above, DS compo-
nent only needs to select all weight-feature pairs with the
same offset and feed them into MACs. The selecting process
is scheduled by the controller to find the weight-feature
pairs with the same offset. As illustrated in Fig. 6, weight
and feature flows are first buffered in W-FIFO and F-FIFO,
respectively. Then the controller could select the aligned
weight-feature pairs (stored in wvalue and fvalue respectively)
according to their offset (stored in woffset and foffset respec-
tively) and EOG (stored in wEOG and fEOG respectively), and
store them into WF-FIFO. After that, the weight and feature
flows are exported to the adjacent PEs for data reuse among
the entire systolic array, as demonstrated in Fig. 4.

A detailed illustration of this dynamical selection process
with the toy example in Fig. 5 is shown in Fig. 7. In this
example, utilizing the ECOO format can significantly sim-
plify the selection process. For the convenience of the fol-
lowing description, we define the push of dataflow as an
action that transmitting one data from FIFO to both the
registers and the succeed PE in its transmission path. For
example, weight flow is pushed in cycle0 while feature
flow is pushed in cycle2. In cycle0, feature flow is pushed
since woffset < foffset. Then in cycle1, because of woffset ¼
foffset, the weight-feature pair stored in registers is aligned
and is sent to MAC. Meanwhile, both weight and feature
flow are pushed to process the subsequent data. In cycle3,

Fig. 5. A toy example to illustrate the dataflow compression.

1444 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

weight meets EOG but feature does not. Therefore, feature
flow is pushed until its meets EOG too in cycle4. After that,
DS begins to process the next group of data in cycle5.

This toy example also illustrates how S2Engine achieves
speedup by deploying network sparsity. As demonstrated
in Fig. 7, the processing of one group (groupn) is completed
in five cycles while the two groups (groupn and groupnþ1)
is processed in seven cycles. It can be seen that more cycles
(six cycles for each group) would be required to process
them in a naı̈ve design [4], [6]. Moreover, because there is
only one aligned weight-feature pair is selected in this pro-
cess, the MAC component would be idle for most of time if
it runs at the same frequency as DS component. It can be
further inferred that a higher utilization of MAC component
and a higher throughput can be achieved when DS runs at a
higher frequency than MAC component. The impact of the
frequency ratio between these two components on through-
put is thoroughly evaluated in Section 6.

On the other hand, as demonstrated in Fig. 7, such a
dynamical selection process can also result in noncontinu-
ous movement of both feature and weight flows. The perfor-
mance of the succeed PE on data transmission path will be
degraded. Hence, the FIFOs inserted in DS component can
provide such a discontinuity in order to make the whole
systolic array run smoothly. Based on our observations, sev-
eral tens of bits are enough to implement the required FIFOs

(represented by registers). The impact of FIFO size on total
performance will be evaluated in Section 6.

4.4 Collective Element

CE array is designed to exploit the overlap reuse in adjacent
rows of PE array as shown in Fig. 1. The compressed data
groups are fed into CE array and broadcasted according to
the internal data transmission path as shown in Fig. 8. The
input three-dimensional data (both feature and weight) are
divided into groups along the channels (cubes in Fig. 8),
and each group contains up to 16 elements. After that, they
are reshaped as one-dimensional dataflow and fed into dif-
ferent rows of PE array.

Considering a convolutional layer with a kernel size of
3� 3 and a stride of 1, as shown in Fig. 8, the feature maps
required for the three convolutions, IF0, IF1 and IF2 is
overlapped with each other. When this layer is processed
on a naı̈ve design shown in Fig. 1, the overlapped part of
these three feature maps would be stored in three separate
FBs as three copies, resulting in a waste of memory storage.
On the other hand, since the same group of data would be
loaded from the three FBs separately, unnecessary power
overheads are introduced by these repeated buffer accesses.

The working mechanism of CE array is illustrated in
Fig. 8. The data transmission procedure is divided into three
periods, where data movement path and data groups are
highlighted. In period0, CE2 loads group4 from FB and
then send this group to PE array while holding a copy of
the group in its internal FIFO. During the same period,
group2 is sent to PE array by CE1 in the same manner. In
the next period, group4 is loaded from the internal FIFO in
CE2 and sent to PE array by CE1. Fig. 8 shows that each CE
only holds one group of data at a time. Since the input fea-
ture map are divided into groups along channels, the above
dataflow generation manner could guarantee that such a CE
array could process all scales of CNNs by using internal
FIFOs with fixed depth.

In such an approach, CE array mainly involves lots of
internal FIFO accessing (small register files) instead of fre-
quently FB accessing (large SRAM) so that its energy effi-
ciency could be improved accordingly. Meanwhile, each CE
only stores one group of data as shown in Fig. 8, i.e., CE2

Fig. 6. Datapath and functional components of DS design, where w-f

represents weight-feature.

Fig. 7. Demonstration of the dynamical selection process (from cycle0 to
cycle5) using a toy example in PE(0,0).

Fig. 8. Internal data transmission of CE array.

YANG ETAL.: S2 ENGINE: A NOVEL SYSTOLIC ARCHITECTURE FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS 1445

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

only stores group4 in its internal FIFO, so that the deployed
CE array could make S2Engine very memory efficient.

The CE array runs at the same frequency as DS compo-
nent and the evaluation in Section 6 shows that it does not
cause a performance bottleneck of S2Engine. Different from
the strategy adopted in [36] which introduces auxiliary
structure in each PE, the CE array adopted in this design
can deploy the overlap reuse with negligible extra resour-
ces. Without loss of generality, our CE array can be also
applied to naı̈ve systolic array shown in Fig. 1.

4.5 Mixed-Precision Data Processing

S2Engine can further support mixed-precision computing at a
fine-grained manner. The work in [37] introduces extra data
path to process higher precision data. However, our PE is
only designed with an 8-bit data path. During the dataflow
compression procedure, datawill be divided into two regions,
8-bit and 16-bit ones, according to the given threshold. Then a
8-bit data will be marked with tag 0, and a 16-bit data value1

has to be split into two 8-bit data and marked with tag 1, as
shown in Fig. 9a. After that, the two 8-bit data could be fed
into PEs for normal processing. Fig. 9b also demonstrates a
special situation when two 16-bit data meet at the same PE.
This situation could be solved by dividing the data into four
pairs and feeding the pairs into the PEs. It is obvious that the
mixed-precision data processing in our approach will not
degrade the throughput of PE array, as validated by the exper-
imental results in Section 6.

5 EXPERIMENTAL METHODOLOGY

The kernel parts of S2Engine, including PE, CE and FIFO,
are implemented as Verilog RTL and synthesized by Syn-
opsys DC with Global Foundry 14nm LP FinFET technol-
ogy. Gate level simulations are performed by Synopsys VCS
simulator by setting the frequency of MAC component as
500MHz. The area cost and energy consumption of PE, CE
and FIFO are analyzed by PrimeTime. The area and energy
consumption of buffers (both WB and FB) are estimated by
PCACTI [38] while the energy consumption of off-chip
DRAM is estimated by CACTI [39].

5.1 Performance Evaluation

The utilized sparse CNN models are trained by the pruning
algorithm proposed in [11]. An in-house compiler is
designed with C++ language to translate the sparse CNN

models into compressed dataflow for S2Engine simulations.
Meanwhile, the required buffer capacity and the total
amount of buffer accessing is evaluated by analyzing the
generated compressed dataflow. A cycle-by-cycle accurate
simulator is implemented with C++ language, which is
practical to evaluate the performance of S2Engine under
various configurations. Our simulator models the cycle-by-
cycle behaviors of each atomic component, including (1)
RF/FIFO in PE and CE, (2) MAC in PE, (3) DS in PE, (4) WB
and FB, etc. The generated dataflow is fed into the simulator
to obtain the involved execution cycles as well as the statis-
tics on the behaviors of the atomic components for latency
and energy efficiency estimation.

5.2 Architecture Configurations

Several kinds of configurable parameters are explored to
comprehensively evaluate the performance of S2Engine.
First, inheriting the modularity and expandability of sys-
tolic architecture, S2Engine can be configured as different
scales for various throughput requirements. Moreover, both
the size of FIFOs and frequency ratio of DS-MAC compo-
nent in each PE can be also configured as mentioned in Sec-
tion 4. The naı̈ve systolic array with output stationary
dataflow demonstrated in Fig. 1 is adopted as a baseline,
which can be also basically regarded as the performance of
TPU. Similar to SCNN [17], the naı̈ve systolic array is con-
figured with total 2MB SRAM for FB and WB. This capacity
is sufficient to hold 66 out of 71 convolution layers we eval-
uated. Since both feature and weight are compressed while
the required buffer capacity can be further reduced by CE
array, 1MB SRAM is sufficient for S2Engine to hold 68 out
of 71 layers. With a similar conclusion in [17], the DRAM
bandwidth is configured as 50GB/s which will not become
as a performance bottleneck. Aiming to estimate the speed-
ups brought by sparsity, the naı̈ve systolic array runs at the
same frequency as the MAC component in S2Engine.
Besides, the naı̈ve design adopts the same convolution map-
ping strategy as S2Engine, which provides a fair compari-
son. In order to evaluate the performance degradation
incurred by the blocking behaviors of finite-depth FIFO in
PE, an infinite-depth FIFO is adopted as an ideal situation
which is corresponding to the upper bound of performance.

5.3 Benchmarks

S2Engine is evaluated on both synthetic and actual CNN
models. Synthetic models are utilized to analyze some typical
characteristics of S2Engine while actual models are adopted
to evaluate the realistic impacts of different design aspects. A
series of CNNmodels are synthesized by different designated
sparsity levels both on features and weights to evaluate the
sensitivity of our design as the sparsity changes. Similar to
[11], actual sparse CNN models are generated by training on
ImageNet [30] and pruning with a neural network distiller
[40]. Since the feature maps are resulted from input images,
their sparsity can vary significantly with different input
images and greatly affect the evaluation results. The Image-
Net is divided into three subsets according to their resulted
different feature sparsity (maximum, average and minimum)
for comprehensive evaluation. If notmentioned, the following
evaluation results are obtained by average feature sparsity.

Fig. 9. (a) the unified representation for both 8-bit and 16-bit data with an
extra flag bit. (b) disassembling 16-bit multiplication into four 8-bit
multiplications.

1446 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

6 EVALUATION RESULTS

This section first evaluates the characteristics of PE array in
S2Engine separately, including speedup under different con-
figurations, and sensitivity to different sparsity levels. Then,
the benefits brought by adoptedCE array in S2Engine are sep-
arately measured on actual models. At last, the complete
S2Engine is evaluated on different actual sparse CNNmodels
to demonstrate the performance improvement in speedup,
energy and area efficiency versus the naı̈ve systolic array.

6.1 Design Space Exploration

As discussed before, both FIFOs depth and frequency of DS
component can largely affect the throughput of S2Engine.
These impacts are evaluated on actual sparse models by fix-
ing the scale of PE array as 16� 16. The evaluation results
also provide guidance for parameters selection in the fol-
lowing experiments.

Fig. 10 illustrates the average speedups of PE array when
evaluating AlexNet/VGG16/ResNet50 under different con-
figurations: FIFOs depth and frequency ratio ofDS:MAC. Sev-
eral typical combinations of FIFOs depth are selected and
evaluated while the performance of other settings can be
inferred from these results. Corresponding to the symbols in
Fig. 6, the FIFOs depth are denoted as (Wdep, Fdep, WFdep) in
Fig. 10. Also, the infinite depth of FIFOs are denoted as
ð1;1;1Þ.

The results in Fig. 10 show that the benefits brought by
higher DS frequency and deeper FIFOs diminish on mar-
ginal. When FIFOs depth is increased from (2,2,2) to (4,4,4),
there are about 1:2� speedups achieved. When FIFOs depth
is further increased to (8,8,8), only about 1:1� additional
speedups are obtained. As a result, relatively small FIFOs
with affordable area overhead are sufficient for data buffer-
ing. The similar situation could be found when varying DS:
MAC frequency ratio. There are about 1:5� speedups
achieved when DS:MAC frequency ratio is doubled from
2:1 to 4:1. If the ratio is further doubled to 8:1, only about
1:1� additional speedups could be obtained. Since the
speedups are almost saturated when frequency ratio
reaches to 4:1, i.e., DS component runs at 2000MHz, DS:
MAC frequency ratio is set as 4:1 in the following experi-
ments. Meanwhile, such a frequency ratio can be certainly
realized by frequency division with a single clock domain.

6.2 Sensitivity to CNN Sparsity

Since sparsity levels usually affect the performance of CNN
accelerators, we also evaluate different sparsity levels in

actual CNN models. Aiming to compare with SCNN, our
PE array is fixed as 32� 32. As shown in Fig. 11, a series of
synthetic AlexNet models are evaluated by varying the
sparsity levels both on features and weights from 10 to 100
percent. The sparsity level is defined as density, i.e., the
percentage of non-zeros in features or weights. In general,
our approach could obtain significant speedups compared
with the naı̈ve design because of the benefits from sparsity.
Additionally, we could achieve better performance or effi-
ciency than SCNN in most scenarios.

On-chip energy is evaluated separately under different
configurations as shown in Fig. 11. Our proposed PE array
achieves better on-chip energy efficiency versus the naı̈ve
design when the density is lower than 0.5/0.5. Additionally,
the energy efficiency would be further improved by intro-
ducing CE array which will be illustrated in Section 6.5. For
area efficiency, a metric of area/ops, i.e., the required chip
area per operation, is defined to evaluate the area overhead
introduced by DS component. Considering that smaller
SRAM is required by S2Engine, its area consumption will
be even smaller than the naı̈ve design (see the area break-
down in Table 5) which leads to a significant improvement
in area efficiency as shown in Fig. 11. Since a large portion
of resources are required by the involved crossbar and accu-
mulator buffers in SCNN, our proposed PE array could
have much more benefits on area efficiency than SCNN.

In conclusion, our adopted PE array behaves better than
SCNN and the naı̈ve design under most of the configura-
tions when feature/weight density is lower than 0:5=0:5.
Such a density can be easily satisfied by actual CNNs
according to the statistics in Table 2 and Fig. 3. However,
the utilized non-zero patterns of features and weights are
uniformly distributed, which is different from the actual sit-
uation where the large data tends to concentrate [16]. In the
following experiments, we will evaluate S2Engine by using
actual sparse CNNmodels.

6.3 Sensitivity to 16-Bit Data Ratio

Similar to the sensitivity to sparsity, the proposed mixed-
precision data processing strategy is evaluated on a series of
generated dense AlexNet models with 16-bit data ratio
growing from 10 to 100 percent where the remaining data
are 8-bit. Since 8-bit and 16-bit data are processed in the
same datapath, the results in Fig. 12 show that our strategy
is robust to various 16-bit data ratio. The evaluation in
Table 4 shows that our strategy can process mixed precision
data more efficiently than the work in [37].

6.4 Memory Efficiency

Memory efficiency is demonstrated by evaluating the reduc-
tion of required buffer capacity and accessing when overlap
reuse is introduced, which is exploited by CE array. The
average reduction ratios of all convolution layers in differ-
ent CNN models are illustrated in Fig. 13. A significant
reduction on buffer capacity and accessing is achieved on
AlexNet and VGG16 where 3� 3 kernels are widely
adopted. However, CE array cannot achieve such a signifi-
cant reduction on ResNet50 due to the widely adopted 1� 1
kernel. Experimental results also show that S2Engine with
larger scale of PE array could obtain a slightly higher

Fig. 10. Speedupswith different FIFOs depth andDS:MAC frequency ratio.

YANG ETAL.: S2 ENGINE: A NOVEL SYSTOLIC ARCHITECTURE FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS 1447

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

reduction both on buffer capacity and buffer accessing,
which is reasonable because the inner data transmission
between CEs are easier broken in smaller scale of PE array.
The following evaluation will show that such a reduction
on memory accessing could largely improve its on-chip
energy efficiency.

6.5 Speed, Energy and Area Efficiency

At last, actual sparse CNNmodels are evaluated on S2Engine
with different scales of PE array to identify the speedups and
energy/area efficiency improvements.

Fig. 14 illustrates the speedups of S2Engine with different
scale of PE array compared with naı̈ve design. S2Engine with
larger scale of PE arraywill degrade the speedups because the
dataflow usually becomes discontinuous after the DS proce-
dure (as demonstrated in Fig. 7) and have to be accumulated
PE by PE. Comparedwith VGG16 andResNet50, AlexNet has
a larger upper bound of speedups than average speedups
because it has a larger variance in feature density distribution
according to the statistics in Fig. 3. In summary, S2Engine
achieves about 3.2� speedups on average versus the naı̈ve
design for all configurations andmodels. The largest speedup
(3:6�) is achieved when the FIFOs depth is (8,8,8). Such a

speedup has almost reached the upper bound which is
obtainedwith the FIFOs depth of ð1;1;1Þ. Themain bottle-
neck left in this case is the frequency of DS component as eval-
uated in Fig. 10.

The energy consumption of DRAM access can be simply
reduced by utilizing compressed dataflow, however, such
an improvement is not very relevant to our proposed archi-
tectures. Therefore, without considering the energy con-
sumed by DRAM, the on-chip energy breakdown of
S2Engine with 16� 16 PE array across various CNNmodels
is illustrated in Fig. 15. It shows that the utilized CE array
could significantly reduce the energy consumption, and the
reduction on energy consumption mainly comes from MAC
and SRAM (FBs and WBs). A large part of computations
involved in MACs have been skipped which reduces the
energy consumption significantly. The energy consumption
of SRAM access is reduced by utilizing the compressed
dataflow while the energy consumption of FB could be fur-
ther reduced by CE array. It can be seen that the energy
reduction achieved by these two aspects is much larger
than the overhead introduced by FIFOs and therefore leads
to better on-chip energy efficiency. Fig. 16 further evaluates
the benefits on energy consumption brought by S2Engine in
different scales of PE array and different FIFOs depth across
various CNN models when compared with naı̈ve design.

Fig. 11. Normalized latency, energy and area efficiency with different sparsity levels (density) and different FIFOs depth.

Fig. 12. Normalized latency versus 16-bit data ratio for different FIFOs
depth.

TABLE 4
Required Additional Running Cycles of Mixed-Precision Data
Processing Compared With 8-Bit Only Strategy for Different
FIFOs Depth, Which are Evaluated on the Generated Model

16-bit Ratio (2,2,2) (4,4,4) (8,8,8) (16,16,16) [37]

3:5% 16:3% 9:1% 8:4% 8:2% 10%

5% 24:1% 13:1% 11:9% 11:7% � 20%
Fig. 13. Analysis of reduction on buffer accessing and buffer capacity.

1448 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

Actually, S2Engine with CE array could achieve about 1:8�
improvement on average in energy efficiency than naı̈ve
design, and such an improvement has a good scalability as
the PE array scales up. CE array contributes about 1:3� to
the improvement and it is more significant for smaller PE
array because a large proportion of energy is consumed by
FBs access. The largest improvement (1:9�) is achieved
when FIFOs depth is set as (2,2,2). If further taking DRAM
into consideration, S2Engine could achieve about 3.0�
improvement of on-chip energy efficiency on average for differ-
ent configurations and models.

The area efficiency improvement brought by S2Engine in
different scale is shown in Fig. 17. The introduced CE array
brings little impact on chip area since a small CE array is only
enough. The working manner of PE array as illustrated in
Fig. 8 shows that it would not introduce additional latency.
S2Engine achieves significant area efficiency improvement
especially for the case with smaller PE array in the same rea-
son as analyzed in Section 6.2. Consistent with the evaluation
illustrated in Fig. 13, Fig. 17 also shows S2Engine can achieve
better area efficiency compared to SCNNon actual sparse net-
works. However, as PE array scales up, the proportion of area

occupied by PE array is gradually increasedwhich diminishes
the benefit brought by smaller SRAMandmakes the overhead
introduced by FIFOs more significant. Therefore, S2Engine
achieves about 2:9� area efficiency improvement on average
for different PE array scales but only achieves about 1:2� at
the scale of 128� 128. As a tradeoff between speedup and
area efficiency, the largest area efficiency (3:1�) can be
achievedwhen FIFOs depth of is set as (4,4,4).

As a conclusion of the above evaluations, with different
FIFOs depth, the average speedup (across different scales
and networks) achieved by S2Engine ranges from 2.7� to

Fig. 14. Speedups of S2Engine with different scale of PE array and differ-
ent FIFOs depth, when compared with naı̈ve design across various CNN
models. The histograms represent the speedups with average feature
sparsity. The upper bound and lower bound for each histogram repre-
sents the speedup with maximum feature sparsity and minimum feature
sparsity, respectively.

Fig. 15. On-chip energy breakdown of S2Engine with 16� 16 PE array
across various CNN models, where w means S2Engine with CE array,
w/omeans S2Engine without CE array.

Fig. 16. On-chip energy efficiency improvement (E.E. imp.) of S2Engine
with different scale of PE array and different FIFOs depth across various
CNN models.

Fig. 17. Area efficiency improvement (A.E. imp.) of S2Engine with differ-
ent scale of PE array and different FIFOs depth across various CNN
models.

YANG ETAL.: S2 ENGINE: A NOVEL SYSTOLIC ARCHITECTURE FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS 1449

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

3.6�, on-chip energy efficiency improvement ranges from
1.5� to 1.9�, area efficiency improvement ranges from 2.6�
to 3.1�. Therefore, it can be inferred that the performance
would roughly fall into these intervals with various FIFOs
depth, which shows the robustness of our approach.

Since SCNN and SparTen only report their improvement
on speedup and energy efficiency versus their correspond-
ing versions for processing dense networks, we can only
provide a rough comparison here as presented in Table 5.
The scale of S2Engine is set to 32� 32 since it has the same
number of multipliers as SCNN and SparTen. Meanwhile,
only AlexNet and VGG16 are considered since they are
evaluated for all designs. With different configurations,
S2Engine could achieve 3.29� speedup or 2.70� energy effi-
ciency improvement compared with the naı̈ve design while
SCNN could achieve up to 2.94� speedup and 2.21� energy
efficiency improvement compared with its dense version.
Although S2Engine’s speedup is not as good as that of
SparTen (5:60�), S2Engine’s energy efficiency improvement
is much higher than SparTen’s. Table 5 shows that our
design can deploy the sparsity more efficiently and outper-
form SCNN under most of configurations, and is more
energy efficient than SparTen. It can be also seen that our
work is a kind of lightweight design from the area break-
down. It is obtained by utilizing the sparsity, e.g., dynamic
selection and output-stationary dataflow. Our design is
much more hardware friendly without introducing compo-
nents with large overhead, compared with SCNN (involved
scatter network and accumulator buffers) and SparTen
(involved prefix-sum circuit and permute network).

7 RELATED WORKS

Before the beginning of the era of machine learning, several
systolic architecture-based accelerators were proposed for
different algorithms [3], [41]. After the era of deep learning
begins by [27], many accelerators have been proposed for
deep neural networks. ShiDianNao [42] utilized a systolic
array with kernel elements broadcast for convolutions. The
work in [43] implemented AlexNet [27] with a 1-D systolic

array. UCLA [4] proposed an end-to-end automation flow
from high level C code to a 2-D systolic array-based FPGA
implementation. Google’s TPU [6] implemented an unprec-
edented 256� 256 systolic architecture and achieved a great
success in industry. The work in [5] deployed the feature
sparsity on a 2-D systolic array through column combining
but the network could be only trained by their own pruning
method. Sparse-TPU [44] was similar to [5] and could
exploit the feature sparsity as well as the weight sparsity,
but its dataflow was not optimized for DNN applications.
Although these works have taken many explorations on
some aspects, none of them could provide a fully support-
ing for sparse neural networks.

Eyeriss [31] only optimized energy efficiency for memory
access with the consideration of feature sparsity and was
enhanced in [45] to process sparse and compact networks.
Furthermore, Cnvlutin [15] only utilized feature sparsity and
Cambricon-X [14] only considered weight sparsity. As some-
what an extension of Eyeriss, ZeNA [46] skipped all of the
unnecessary computations but did not optimize the memory
access. SCNN [17] indeed fully exploited the sparsity with
general pattern in both feature andweight, but required addi-
tional output coordinates transformation. Cambricon-S [16]
also fully deployed the feature and weight sparsity but was
only applicable for coarse-grained sparsity pattern. DUET
[47] could utilize both input and output feature sparsity
through output speculation, but cannot support weight spar-
sity. SparTen [18] could support sparse vector-vectormultipli-
cation and improve the hardware utilization, but its energy
efficiency was significantly degraded due to the existed addi-
tional computation resources. Eyeriss-V2 [45] was also capa-
ble of processing compressed sparse data of both weight and
feature, but its NoC consumed a large number of routers and
the data transmission or dispatching mechanism was much
complicated, whichwas a burden on performance and energy
consumption. In summary, none of these works could fully
utilize the fine-grained sparsity both in feature andweight.

In regard to the mixed-precision quantization, Stripes
[48] only supported one kind of precision for each layer and
TPU [6] could support 8/16-bit processing in a very coarse
granularity. The work in [37] introduced additional data-
path for higher precision processing rather than reusing the
computation logic resources, which significantly degraded
the performance for processing higher precision cases.

8 CONCLUSION

In this paper, S2Engine is proposed as a novel systolic architec-
ture for sparse CNNs acceleration. By allowing each PE to
select the aligned weight-feature pairs from the passing cross
compressed dataflow dynamically, S2Engine solves the con-
tradiction between the regularity of data transmission path
and the irregularity of the sparsity. Consequently, full exploi-
tation of the sparsity is achieved without restriction on sparse
patterns. Furthermore, a CE array is exploited for efficient data
reuse in systolic array as well as the extension of PEs for sup-
porting fine-grained mixed-precision processing. S2Engine is
evaluated on ImageNet with real sparse CNN models. The
experimental results have shown that it could achieve about
3:2� speedup and about 3:0� energy-efficiency improvement
comparedwith the naı̈ve systolic array.

TABLE 5
Comparison of Resources, Area Breakdown (mm2), Speedup,
Energy Efficiency (E.E.) and Area Efficiency (A.E.) Improvement

(imp.) Among S2Engine, Naı̈ve Design, SCNN and SparTen

� means 1:4� and 0:5� is E.E. imp. for partially memory and computation
respectively.

1450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foun-
dation of China under Grants 62072019 and 61602022.
The source code of this paper is publicly available on: https://
github.com/BUAA-CI-Lab/S2EngineCompiler https://
github.com/BUAA-CI-Lab/S2EngineSimulator.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2016, pp. 779–788.

[2] “NVIDIA deep learning accelerator,” 2018. [Online]. Available:
http://nvdla.org/

[3] J.-N. Hwang, J. A. Vlontzos, and S.-Y. Kung, “A systolic neural
network architecture for hidden Markov models,” IEEE Trans.
Acoustics, Speech, Signal Process., vol. 37, no. 12, pp. 1967–1979,
Dec. 1989.

[4] X. Wei, et al., “Automated systolic array architecture synthesis for
high throughput CNN inference on FPGAs,” in Proc. ACM/IEEE
Des. Automat. Conf., 2017, p. 29.

[5] H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolu-
tional neural networks for efficient systolic array implementa-
tions: Column combining under joint optimization,” in Proc. Int.
Conf. Architectural Support Program. Lang. Operat. Syst., 2019,
pp. 821–834.

[6] N. P. Jouppi, et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE Int. Symp. Comput. Architec-
ture, 2017, pp. 1–12.

[7] “Google TPU v2,” 2018. [Online]. Available: https://cloud.google.
com/tpu/

[8] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-spe-
cific architecture for deep neural networks,” Commun. ACM,
vol. 61, pp. 50–59, 2018.

[9] “White paper: Accelerating DNNs with Xilinx Alveo accelerator
cards,” Xilinx, Inc., Tech. Rep., White Paper, 2018. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/white_
papers/wp504-accel-dnns.pdf

[10] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning struc-
tured sparsity in deep neural networks,” in Proc. Neural Inf. Pro-
cess. Syst., 2016, pp. 2074–2082.

[11] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Neural Inf. Pro-
cess. Syst., 2015, pp. 1135–1143.

[12] H. Mao et al. “Exploring the regularity of sparse structure in con-
volutional neural networks,” 2017, arXiv: 1705.08922.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
Huffman coding,” 2015, arXiv:1510.00149.

[14] S. Zhang, et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. IEEE/ACM Int. Symp. Microarchitecture, 2016,
p. 20.

[15] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural net-
work computing,” in Proc. ACM SIGARCH Comput. Architecture
News, 2016, pp. 1–13.

[16] X. Zhou, et al., “Cambricon-S: Addressing irregularity in sparse
neural networks through a cooperative software/hardware
approach,” in Proc. IEEE/ACM Int. Symp. Microarchitecture, 2018,
pp. 15–28.

[17] A. Parashar, et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ACM SIGARCH Comput.
Architecture News, 2017, pp. 27–40.

[18] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural
networks,” in Proc. IEEE/ACM Int. Symp. Microarchitecture, 2019,
pp. 151–165.

[19] E. Park, S. Yoo, and P. Vajda, “Value-aware quantization for train-
ing and inference of neural networks,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 580–595.

[20] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
Net: Training low bitwidth convolutional neural networks with
low bitwidth gradients,” 2016, arXiv:1606.06160.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” J. Mach. Learn. Res., vol. 18,
no. 1, pp. 6869–6898, 2017.

[22] P. Judd et al. “Reduced-precision strategies for bounded memory
in deep neural nets,” 2015, arXiv:1511.05236.

[23] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to optimize
energy efficiency of deep neural network accelerators,” IEEE
Micro, vol. 37, no. 3, pp. 12–21, Jun. 2017.

[24] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-Sim: Systolic CNN accelerator,” 2018, arXiv: 1811.02883.

[25] R. Hameed, et al., “Understanding sources of inefficiency in gen-
eral-purpose chips,” in Proc. ACM SIGARCH Comput. Architecture
News, 2010, pp. 37–47.

[26] M. Horowitz, “Computing’s energy problem (and what we can do
about it),” inProc. IEEE Int. Solid-State Circuits Conf., 2014, pp. 10–14.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Neural
Inf. Process. Syst., 2012, pp. 1097–1105.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[31] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1,
pp. 127–138, Jan. 2017.

[32] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convo-
lutional neural network architecture with reconfigurable compu-
tation patterns,” IEEE Trans. Very Large Scale Integration Syst.,
vol. 25, no. 8, pp. 2220–2233, Aug. 2017.

[33] S. Han, et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Com-
put. Architecture, 2016, pp. 243–254.

[34] Y. Jia et al. “Caffe: Convolutional architecture for fast feature
embedding,” 2014, arXiv:1408.5093.

[35] R. Vuduc, “Automatic performance tuning of sparse matrix ker-
nels,” Ph.D. dissertation, Univ. California, Berkeley, CA, USA, 2003.

[36] C. Xin, et al., “COSY: An energy-efficient hardware architecture
for deep convolutional neural networks based on systolic array,”
in Proc. IEEE Int. Conf. Parallel Distrib. Syst., 2017, pp. 180–189.

[37] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network accel-
erator based on outlier-aware low-precision computation,” in Proc.
ACM/IEEE Int. Symp. Comput. Architecture, 2018, pp. 688–698.

[38] A. Shafaei, Y. Wang, X. Lin, and M. Pedram, “FinCACTI: Architec-
tural analysis and modeling of caches with deeply-scaled FinFET
devices,” in Proc. IEEE Comput. Soc. Annu. Symp., 2014, pp. 290–295.

[39] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” Hewlett-Packard Lab.,
School Comput., Univ. Utah, Tech. Rep. TR-HPL-2009–85, 2009,
pp. 22–31.

[40] N. Zmora, G. Jacob, and G. Novik, “Neural network distiller,” 2018.
[Online]. Available: https://doi.org/10.5281/zenodo.1297430

[41] H. Asgari, Y. S. Kavian, and A. Mahani, “A systolic architecture for
Hopfield neural networks,” Procedia Technol., vol. 17, pp. 736–741,
2014.

[42] Z. Du, et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. ACM SIGARCH Comput. Architecture News, 2015,
pp. 92–104.

[43] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An OpenCLTM deep learning accelerator on Arria 10,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017, pp. 55–64.

[44] X. He, et al., “Sparse-TPU: Adapting systolic arrays for sparse
matrices,” in Proc. ACM Int. Conf. Supercomput., 2020, pp. 1–12.

[45] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE J. Emerg. Selected Top. Circuits Syst., 2019, pp. 292–308.

[46] D. Kim, J. Ahn, and S. Yoo, “ZeNA: Zero-aware neural network
accelerator,” IEEEDesign and Test, vol. 35, no. 1, pp. 39–46, Feb. 2018.

[47] L. Liu, et al., “DUET: Boosting deep neural network efficiency on
dual-module architecture,” in Proc. IEEE/ACM Int. Symp. Micro-
architecture, 2020, pp. 738–750.

YANG ETAL.: S2 ENGINE: A NOVEL SYSTOLIC ARCHITECTURE FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS 1451

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

https://github.com/BUAA-CI-Lab/S2EngineCompiler
https://github.com/BUAA-CI-Lab/S2EngineCompiler
https://github.com/BUAA-CI-Lab/S2EngineSimulator
https://github.com/BUAA-CI-Lab/S2EngineSimulator
http://nvdla.org/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://www.xilinx.com/support/documentation/white_ papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_ papers/wp504-accel-dnns.pdf
https://doi.org/10.5281/zenodo.1297430

[48] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A.
Moshovos, “Stripes: Bit-serial deep neural network computing,”
in Proc. IEEE/ACM Int. Symp. Microarchitecture, 2016, pp. 1–12.

Jianlei Yang (Senior Member, IEEE) received
the BS degree in microelectronics from Xidian
University, Xi’an, China, in 2009, and the PhD
degree in computer science and technology from
Tsinghua University, Beijing, China, in 2014. He is
currently an associate professor with the School
of Computer Science and Engineering, Beihang
University, Beijing, China. From 2014 to 2016, he
was a postdoctoral researcher with the Depart-
ment of ECE, University of Pittsburgh, PA, USA.
His research interests include computer architec-

tures and neuromorphic computing systems. Dr. Yang was the recipient
of the First/Second place on ACM TAU Power Grid Simulation Contest in
2011/2012. He was also a recipient of IEEE ICCD Best Paper Award in
2013, ACM GLSVLSI Best Paper Nomination in 2015, IEEE ICESS Best
Paper Award in 2017, and ACM SIGKDD Best Student Paper Award in
2020.

Wenzhi Fu received the BS degree in computer
science from Beihang University, Beijing, China,
in 2019. He is currently working toward the PhD
degree with the School of Informatics, University
of Edinburgh, Edinburgh, U.K. His research inter-
ests include computing architectures, database
theory, and systems.

Xingzhou Cheng received the BS degree in
computer science from Beihang University, Bei-
jing, China, in 2019. He is currently working
toward the graduation degree with the School of
Computer Science and Engineering, Beihang
University, Beijing. His research interests include
computing architectures for deep learning and
machine vision.

Xucheng Ye received the BS degree in computer
science in 2018 from Beihang University, Beijing,
China, where he is currently working toward the
graduation degree with the School of Computer
Science and Engineering. His research interests
include deep learning algorithms and systems.

Pengcheng Dai (Student Member, IEEE) received
the BS and MS degrees in electronic engineering
from Beihang University, Beijing, China, in 2017
and 2020, respectively. He is currently a software
development engineer with ByteDance Ltd. Inc.,
Beijing, China. His research interests include com-
puting architectures for deep learning and machine
vision.

Weisheng Zhao (Fellow, IEEE) received the PhD
degree in physics from the University of Paris Sud,
Paris, France, in 2007. He is currently the professor
with theSchool ofMicroelectronics, BeihangUniver-
sity, Beijing, China. In 2009, he joined the French
National Research Center(CNRS), as a Tenured
Research Scientist. Since 2014, he has been a dis-
tinguished professor with Beihang University, Bei-
jing, China. He has authored or coauthored more
than 200 scientific articles in leading journals and
conferences, such as Nature Electronics, Nature

Communications, AdvancedMaterials, IEEE Transactions, ISCA, and DAC.
His research interests include the hybrid integration of nano-devices with
CMOS circuit and new nonvolatile memory (40-nm technology node and
below) like MRAM circuit and architecture design. Dr. Zhao is currently the
editor-in-chief for the IEEE Transactions on Circuits and Systems I: Regular
Paper. He is an IEEEFellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1452 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:03:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

