2462

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

Triangle Counting Accelerations: From Algorithm

Xueyan Wang

to In-Memory Computing Architecture

, Member, IEEE, Jianlei Yang™, Senior Member, IEEE, Yinglin Zhao", Xiaotao Jia™,

Rong Yin™, Xuhang Chen, Gang Qu", Fellow, IEEE, and Weisheng Zhao", Fellow, IEEE

Abstract—Triangles are the basic substructure of networks and triangle counting (TC) has been a fundamental graph computing problem in
numerous fields such as social network analysis. Nevertheless, like other graph computing problems, due to the high memory-computation
ratio and random memory access pattern, TC involves a large amount of data transfers thus suffers from the bandwidth bottleneck in the
traditional Von-Neumann architecture. To overcome this challenge, in this paper, we propose to accelerate TC with the emerging processing-

in-memory (PIM) architecture through an algorithm-architecture co-optimization manner. To enable the efficient

in-memory implementations, we come up to reformulate TC with bitwise logic operations (such as AND), and develop customized graph
compression and mapping techniques for efficient data flow management. With the emerging computational Spin-Transfer Torque Magnetic
RAM (STT-MRAM) array, which is one of the most promising PIM enabling techniques, the device-to-architecture co-simulation results
demonstrate that the proposed TC in-memory accelerator outperforms the state-of-the-art GPU and FPGA accelerations by

12.2x and 31.8 %, respectively, and achieves a 34 x energy efficiency improvement over the FPGA accelerator.

Index Terms—Triangle counting acceleration, processing-in-memory, algorithm-architecture co-design, graph computing

1 INTRODUCTION

RIANGLE counting (TC) counts the number of triangles in a
Tgiven graph and it is an basic problem in graph computing.
TC problem is not hard but it is memory bandwidth intensive
thus time-consuming. As a result, researchers from both acade-
mia and industry have proposed many TC acceleration meth-
ods ranging from sequential to parallel, single-machine to
distributed, and exact to approximate. From the compu-
ting hardware perspective, these acceleration strategies are

o Xueyan Wang, Yinglin Zhao, Xiaotao [ia, Xuhang Chen, and Weisheng
Zhao are with the MIIT Key Laboratory of Spintronics, School of Inte-
grated Circuit Science and Engineering, Beihang University, Beijing
100191, China. E-mail: {wangxueyan, jiaxt, weisheng.zhao)@buaa.edu.cn,
wssdzyl@sina.com, 605003522@qq.com.

o Jianlei Yang is with the School of Computer Science and Engineering,
BDBC, State Key Laboratory of Software Development Environment
(NLSDE), Beihang University, Beijing 100191, China.

E-mail: jianlei@buaa.edu.cn.

e Rong Yin is with the Institute of Information Engineering, Chinese Acad-
emy of Sciences, Beijing 100049, China. E-mail: yinrong@iie.ac.cn.

o Gang Qu is with the Department of Electrical and Computer Engineering
and Institute for Systems Research, University of Maryland, College Park,
MD 20742 USA. E-mail: gangqu@umd.edu.

Manuscript received 26 Mar. 2021; revised 22 July 2021; accepted 22 Sept. 2021.
Date of publication 26 Nov. 2021; date of current version 8 Sept. 2022.

This work of Xueyan Wang was supported in part by the National Natural Sci-
ence Foundation of China under Grant 62004011 and in part by the State Key
Laboratory of Computer Architecture under Grant CARCH201917. The work of
Jianlei Yang was supported by the National Natural Science Foundation of China
under Grant 62072019. The work of Xiaotao [ia was supported by the Joint Funds
of the National Natural Science Foundation of China under Grant U20A20204.
The work of Rong Yin was supported in part by the Special Research Assistant
Project of CAS under Grant EOYY221-2020000702 and in part by the National
Natural Science Foundation of China under Grant 62106259.

(Corresponding author: Jianlei Yang and Weisheng Zhao.)

Recommended for acceptance by A. Coskun.

Digital Object Identifier no. 10.1109/TC.2021.3131049

generally executed on CPU, GPU or FPGA, and are based on
Von-Neumann architecture [1], [2], [3]. However, due to the
fact that most graph processing algorithms have low computa-
tion-memory ratio and high random data access patterns, there
are frequent data transfers between the computational unit and
memory components which consumes a large amount of time
and energy, the existing acceleration approaches can only alle-
viate by parallelism while cannot resolve the bottleneck of data
transfers.

Through performing computation where the data resides,
in-memory computing paradigm can save most of the off-chip
data communication energy and latency by exploiting the
large internal memory inherent bandwidth and inherent paral-
lelism [4], [5]. As a result, in-memory computing has appeared
as a viable way to carry out the computationally-expensive
and memory-intensive tasks [6], [7]. This becomes even more
promising when being integrated with the emerging non-vola-
tile Spin-Transfer Torque Magnetic RAM (STT-MRAM) mem-
ory technologies. This integration offers fast write speed, low
write energy, and high write endurance among many other
benefits [8], [9].

However, compared to the traditional Von-Neumann com-
puting architecture, in which the CPU has very powerful and
complex computing capabilities and control capabilities, the
relatively dispersed in-memory processing cores in the spin-
based in-memory computing architecture are more suitable
for processing tasks that has relatively simple types of calcula-
tions and simple control logic. Due to such data transmission
mode and computing characteristics of the in-memory com-
puting architecture, traditional graph algorithms are often not
well applied to in-memory computing. In the literature, there
have been some explorations on in-memory graph algorithm
accelerations [10], [11], [12], [13]. As analyzed above, existing
TC algorithms cannot be efficiently implemented in memory.

0018-9340 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0080-4730
https://orcid.org/0000-0003-0080-4730
https://orcid.org/0000-0003-0080-4730
https://orcid.org/0000-0003-0080-4730
https://orcid.org/0000-0003-0080-4730
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0001-8424-7040
https://orcid.org/0000-0003-1731-9459
https://orcid.org/0000-0003-1731-9459
https://orcid.org/0000-0003-1731-9459
https://orcid.org/0000-0003-1731-9459
https://orcid.org/0000-0003-1731-9459
https://orcid.org/0000-0003-2207-6092
https://orcid.org/0000-0003-2207-6092
https://orcid.org/0000-0003-2207-6092
https://orcid.org/0000-0003-2207-6092
https://orcid.org/0000-0003-2207-6092
https://orcid.org/0000-0003-1894-7561
https://orcid.org/0000-0003-1894-7561
https://orcid.org/0000-0003-1894-7561
https://orcid.org/0000-0003-1894-7561
https://orcid.org/0000-0003-1894-7561
https://orcid.org/0000-0001-6759-8949
https://orcid.org/0000-0001-6759-8949
https://orcid.org/0000-0001-6759-8949
https://orcid.org/0000-0001-6759-8949
https://orcid.org/0000-0001-6759-8949
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
https://orcid.org/0000-0001-8088-0404
mailto:wangxueyan@buaa.edu.cn
mailto:jiaxt@buaa.edu.cn
mailto:weisheng.zhao@buaa.edu.cn
mailto:wssdzyl@sina.com
mailto:605003522@qq.com
mailto:jianlei@buaa.edu.cn
mailto:yinrong@iie.ac.cn
mailto:gangqu@umd.edu

WANG ETAL.: TRIANGLE COUNTING ACCELERATIONS: FROM ALGORITHM TO IN-MEMORY COMPUTING ARCHITECTURE

For example, the intersection-based ones cannot be directly
implemented in memory, and the matrix multiplication-based
ones involve complex arithmetic computations which require
non-trivial design overheads while implemented in-memory.
In addition, for large sparse graphs, efficient graph data com-
pression and data mapping mechanisms are all critical for PIM
accelerations. The existing data compression methods for
sparse graph, such as compressed sparse column (CSC), com-
pressed sparse row (CSR), and coordinate list (COO) [10], can-
not be directly applied to in-memory computation either.

In this paper, we propose and design the first triangle
counting in-memory accelerator, called TCIM, that overcomes
the above barriers through an algorithm-architecture co-opti-
mization approach. We find that the number of triangles in a
given graph can be computed using only AND and BitCount
operations. Once the problem has been framed in this form, it
can be efficiently implemented in an in-memory manner. The
contributions of this paper can be summarized as follows.

e A hardware-friendly triangle counting method is
proposed using bitwise logic operations. Such refor-
mulation of triangle counting is amenable to in-
memory implementations.

e We propose customized data slicing for efficient
graph data compression, and graph data flow man-
agement strategies for mapping onto in-memory
computation architectures.

e To support in-memory TC accelerations, a sparsity-
aware processing-in-memory architecture is proposed
utilizing state-of-the-art STT-MRAM technology. We
also develop a device-to-architecture co-simulation
framework for validating the proposed strategies.

The rest of the paper is organized as follows. Section 2 pro-
vides some preliminary knowledge of triangle counting and
in-memory computing. Section 3 introduces the proposed TC
method with bitwise operations, and Section 4 elaborates
sparsity-aware data management strategies. Section 5 intro-
duces the overall PIM architecture. Section 6 demonstrates
the experimental results and Section 7 concludes the paper.

2 PRELIMINARY

2.1 Triangle Counting
Triangle counting problem seeks to determine the number
of triangles in a given graph. It is essential for analyzing net-
works and generally considered as the first fundamental
step in calculating metrics such as clustering coefficient and
transitivity ratio, as well as other tasks such as community
discovery, link prediction, and Spam filtering [1]. For exam-
ple, the commonly used social analysis algorithm, commu-
nity discovery, gives the number of triangles in a social
network to analyze which circles are more stable and have
closer relationships. For a person’s social circle, the more tri-
angles there are, the stronger and closer his social relation-
ship is. For network science in biology and neuroscience, it
is also found useful to demonstrate the self-optimization
phenomenon in brain’s neuronal networks [14] and to con-
trol biological network [15]. The sequential algorithms for
TC can be classified into two groups.

In the matrix multiplication based algorithms, a triangle
is a closed path of length three, namely a path of three

2463

vertices begins and ends at the same vertex. If A is the adja-
cency matrix of graph G, A®[i][i] represents the number of
paths of length three beginning and ending with vertex «.
Given that a triangle has three vertices and will be counted
for each vertex, and the graph is undirected (that is, a trian-
gle i —p— g — i will be also counted as i — g — p — 7), the
number of triangles in G' can be obtained as trace(A*)/6,
where trace is the sum of elements on the main diagonal of
a matrix.

In the set intersection based algorithmes, it iterates over each
edge and finds common elements from adjacency lists of head
and tail nodes. A lot of CPU, GPU and FPGA based optimiza-
tion techniques have been proposed [1], [2], [3]. These works
show promising results of accelerating TC, however, these
strategies all suffer from the performance and energy bottle-
necks brought by the significant amount of data transfers in TC.

2.2 In-Memory Computing With STT-MRAM
In-Memory Computing efforts can be classified into two cat-
egories according to whether they target at application-spe-
cific computations [16], [17], [18] or general-purpose
computations [5], [9], [19], [20], [21], [22], [23]. ReRAM has
been extensively explored and used to implement matrix-
vector multiplication for neural network accelerations, with
the multi-bit storage property. Comparatively, STT-MRAM
has higher write endurance, faster write speed, lower write
energy, while it only has limited resistance difference
between the distinct resistance states of MT] [8]. In particu-
lar, prototype STT-MRAM chip demonstrations and com-
mercial MRAM products have been available by companies
such as Everspin and TSMC. As a result, STT-MRAM is
widely used to implement bit-wise boolean operations for
general-purpose in-memory computing paradigm [9], [24].
In this paper, we focus on such general-purpose PIM, which
can be widely used in various categories of applications.
STT-MRAM stores data with magnetic-resistances instead
of conventional charge based store and access. Due to this cur-
rent sensing mechanism in STT-MRAM and the fact that cur-
rent can be accumulated, STT-MRAM is able to realize logic
functions conveniently. This enables MRAM to provide inher-
ent computing capabilities for bitwise logic with the core bit-
cell and array structure of STT-MRAM remain unchanged,
and only needs minor changes to peripheral circuitry (such as
sensing circuitry to generate required sensing current) [9][25].
As Fig. 1a shows, a typical STT-MRAM bit-cell consists of
an access transistor and a Magnetic Tunnel Junction (MT]),
which is controlled by bit-line (BL), word-line (WL) and
source-line (SL). The relative magnetic orientations of pinned
ferromagnetic layer (PL) and free ferromagnetic layer (FL)
can be stable in parallel (P state) or anti-parallel (AP state), cor-
responding to a low resistance (Rp) or a high resistance (R4 p),
respectively. The READ operation is done by enabling WL sig-
nal, applying a voltage V;cqq across BL and SL, and sensing the
current (Ip or 14p) that flows through the MTJ. By comparing
the sense current with a reference current (I..s,), the data
stored in a MT]J cell (logic ‘0" or logic ‘1") could be readout.
The WRITE operation can be performed by enabling WL, then
applying an appropriate voltage (Vii+.) across BL and SL to
pass a current that is greater than the critical MT] switching
current. To perform bitwise logic operation, by simulta-
neously enabling WL; and WLj;, then applying V..q across

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

2464

SL BL Iret
Bit Line (BL)
Li
e Free Layer ﬂl— Ri
Tunnel Barrier| J_% >
° Pinned Layer Inp+] l I o+l ”
np+Inp np+Ip Ptip
£ —ii
384 _ (©)
= WL ¢
Source Line (SL) 1 R Input L+l Output
(Ri, R) R B U e el
; Rup Ryp (0.0) | Lyptlyp 0
Iref
ref " Rup Ry (0,1) Tpptlp 0
Rp Ry (1,0) Iptlap 0
Rp Ry (L1) It 1
Output
(a) (c)

Fig. 1. An overview of performing Boolean AND operation with STT-
MRAM. (a) Typical STT-MRAM bit-cells and computing paradigm. (b)
The reference current. (c) Truth table.

BL and SL, the current that feeds into the sense amplifier (SA)
is a summation of [; + /;. With different reference sensing
current, various logic functions of the enabled word line can
be implemented. For example, as shown in Fig. 1b, when
Iy € (Iap + Ip, Iy + Ip), the truth table is demonstrated in
Fig. 1c, corresponds to AND logic.

Fig. 2 demonstrates the STT-MRAM arrays that support
in-memory logic computations. By simultaneously enabling
word-line WL; and WL;, then applying Vi..q across BL;
and SLj (k € [0,n — 1]), the current that feeds into the kth
SA is a summation of the currents flowing through M7V,
and MTJ;, namely I, + I; . With different reference sens-
ing current, the sense amplifier will have different outputs
under given input patterns (corresponds to the high/low
resistive state of the MTJs), then different logic functions of
the enabled word line can be implemented.

3 REFORMULATION OF TRIANGLE COUNTING

In this section, we seek to perform TC with massive bitwise
operations, which is the enabling technology for in-memory
TC accelerator.

3.1 Triangle Counting With Bitwise Operations

Let A be the adjacency matrix representation of an undirected
graph G(V, E), where A[i][j] € {0, 1} indicates whether there
is an edge between vertices i and j. If we compute A? =
A x A, then the value of A?[i][j] represents the number of dis-
tinct paths of length two between vertices 7 and .

In the case that there is an edge between vertex i and ver-
tex j (A[i][j] # 0), at the same time i can also reach j through
a path of length two (A?[i][j] # 0), where the intermediate
vertex is k, then vertices i, j, and k form a triangle. As a
result, the number of triangles in G is equal to the number
of non-zero elements (nnz) in A o A? (the symbol ‘o’ defines
element-wise product), namely

TO(G) = nnz(A o A?). (1)

Since A[i][;] is either zero or one, we have

0, if Al#][j] = 0;
1

(A oAz)[i]] = {AZ[i] [7], if A[i][j] = @

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

SLn-1 BLn-1 SLn-2 BLn-2 SLo BLo

WLi

L T
fi,n-1 /\,n—ZJM 1.0 J;L%
WL T T
A e

FES

fin-1 fjn-2

Iref

[lin-1+n-1 [lin2+lin-2 y li,0+1,0
On-1 On-2 0o

Fig. 2. Computational STT-MRAM array.

According to Equation (2),

nnz(AoA%) = AZ[4][4]. 3)
Alil=1

Because the element in A is either zero or one, the bitwise
Boolean AND result is equal to that of the mathematical mul-
tiplication, thus

AL = " ALK « AR = 3 AND(AT]H, AR
k=0

k=0
= BitCount(AND(A[i][+], Al+][j]")),
1)

in which BitCount returns the number of ‘1’s in a vector
consisting of ‘0" and ‘1’, for example, BitCount(0110) = 2.
Combining equations (1), (3) and (4), we have

TC(G) = BitCount(AND(A[i][*], A[][j]")), ©
st Alilly] = 1.

Therefore, TC can be completed by only AND and Bit-
Count operations (massive for large graphs). For each non-
zero entry in the adjacency matrix, the corresponding row
and column are loaded into STT-MRAM computational
memory where each cell consists of one transistor and one
MT]J. Consequently, the AND computations are carried out
within the STT-MRAM memory, and the bit counter is
incremented by the number of 1s in the result of the AND
computations. The bit counter will eventually store the total
number of triangles in the graph.

3.2 Anlllustrative Example

With the reformulated triangle counting method in Sec-
tion 3.1, for each non-zero element A[i][j] = 1, the ith row
(R; = Ali][¥]) and the jth column (C; = A[+][j]") are exe-
cuted AND operation, then the AND result is sent to a bit
counter module for accumulation. Once all the non-zero ele-
ments are processed, the value in the accumulated Bit-
Count is the number of triangles in the graph. Fig. 3
demonstrates an illustrative example. The graph has four
vertices and five edges, and the adjacency matrix is given.
The non-zero elements in the adjacency matrix A are
Al0][1], A[0)[2], A[1][2], A[1][3), and A[2][3].

1) For A[0][1], row Ry =’0110" and column C; = ‘1000’
are executed with AND operation, then the AND result
‘0000’ is sent to the bit counter and gets a result of zero;

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TRIANGLE COUNTING ACCELERATIONS: FROM ALGORITHM TO IN-MEMORY COMPUTING ARCHITECTURE 2465
Graph Data by Step 1 Step 2 Step 3 Step 4 Step 5
l—-y) ALOJ[]=1 ALO][2]=1 AMI21=1 AMIBI=1 AL2I[3]=1
0 RyJo[1]1]o0 RoJof1]z]o Rfofol1]1] Rifofo]2]z RJofoo]1
/ Cc,{1|0|0|0 Ci{1|0f0f0 Ci{1|o0fo0|0 Ci1fo0|0]|0O C1(ofo|o0
oe cl1]1]o0 cli]1]o]o Clil1]o]o Cli[1]o]o
e Cslo|1[1]0 Cjo|1]1]0
l T 1 v il 1 1 1]
[sa@np) | [sa@anp) | SA (AND) SA (AND)
I I v
lo]1]o]o] [ofofofo| [o]o]1]o] ojojojo
° T 111 T 113 T 111 T 111
- l BitCounter l l BitCounter l l BitCounter l l BitCounter l
N T T
s # of
: o] o (] = [w [2] = [z] m f

Fig. 3. Demonstrations of triangle counting with AND and BitCount bitwise operations.

2) For A[0][2], row Ry = ‘0110" and column C5 = ‘1100
are executed with AND operation and the result is
‘0100’, then the BitCount result of ‘0100’ is one;

For A[1][2], row R; = “‘0011” and column C3 = 1100’
are executed with AND operation, then the AND result
‘0000’ is sent to the bit counter, thus the result remains
to be one;

For A[1][3], row Ry = ‘0011" and column Cj = ‘0110’
are executed with AND operation, then the AND result
‘0010’ is executed with BitCount, the bit counter is
incremented by one, thus gets a result of two;

For A[2][3], row R, = “0001" and column C3 = ‘0110’
are executed with AND operation, then the AND result
‘0000’ is sent to the bit counter, thus the result remains
to be two.

After the process of the last non-zero element A[2][3] is
finished, the accumulated BitCount result is two, as a
result, the graph has two triangles (corresponds to triangles
"0—-1-2-0"and "1 — 2 — 3 — 1” in the graph).

3)

4)

5)

3.3 Discussions on the Reformulated TC

We show that the number of triangles in a given graph can
be computed using only AND operations and bit counters on
the adjacency matrix of the graph. Once the problem has
been framed in this form, the method proposed for triangle
counting looks at every non-zero entry in the adjacency
matrix and, for each such entry, the corresponding row and
column are loaded into STT-MRAM memory where each
cell consists of one transistor and one MT]J. AND computa-
tions are then carried out within memory and a bit counter
is incremented by one if the result of the computations is 1.
The bit counter will eventually store the total number of tri-
angles in the graph.

The proposed TC method has the following characteris-
tics: First, it avoids the traditional time-consuming matrix
multiplications. Through making the operation data be
either zero or one, we can simply implement the original
multiplication with Boolean AND logic. Second, the pro-
posed method does not need to store the intermediate
results that are larger than one (such as the elements in A?),
which enables high storage efficiency and in-memory com-
putation regularity. Third, it does not need complex control
logic. It only needs to iterate the non-zero elements and con-
duct corresponding AND and BitCount operations.

Given the above three characteristics, and the fact that in-
memory computation is suitable for data-intensive applica-
tions with relative simple computation and control logic,
the proposed reformulated TC method is amenable to
highly efficient in-memory computing structure.

4 SPARSITY-AWARE GRAPH DATA MANAGEMENT
FOR IN-MEMORY ACCELERATIONS

Given that the size of the computational memory array is
limited, and that most graphs are highly sparse, efficient
data flow management is critical for TC accelerations in
order to reduce the unnecessary memory and computation
requirements. In this part, we will discuss about the data
flow management techniques, including the data reuse/
replacement and data compression methods, to minimize
the needed memory space and computations when being
mapped onto the computational memory array.

4.1 Graph Data Reuse and Replacement

The proposed TC method in Section 3 iterates over each
non-zero element Al[i][j] in the adjacency matrix A, and
loads its corresponding row R; and column C} into compu-
tational memory for AND operation. As a result, all the non-
zero elements in row R; can reuse this row for computa-
tions, and similarly, the non-zero elements in column C;
can reuse this column. We propose data reuse strategy
based on this observation.

Without loss of generality, we assume that the non-zero
elements are iterated by rows. For each processed row, it
needs to be first loaded into the computational memory,
then the corresponding columns of the non-zero elements in
this row are sequentially loaded for AND computation. In this
case, once the computations for all the non-zero elements in
a row have been finished, this row will no longer be used in
future computations, thus this row can be overwritten by the
next to-be-processed row. On the contrary, the correspond-
ing columns might be used again while processing the non-
zero elements in other rows. As a result, before loading a cer-
tain column into memory for computation, we will first
check whether this column has been loaded in previous com-
putations. If it has existed in the computational memory,
then it can be reused and save a memory WRITE operation,
and if not, the column will be loaded to a spare computa-
tional memory space. Overlapping the rows and reusing the

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

2466

columns can effectively reduce unnecessary space utilization
and memory WRITE operations.
Here remains two questions to be answered:

e First, how to decide the row sequence of processing?

e Second, in case that the computational memory is

full, by what data replacement policy to swap data?

On selecting the next to-be-processed row, in a greedy
way, the local optimal strategy is to choose the next row
that has maximum overlaps with the current row on the col-
umns of 1’s, and in the ideal case, all the columns should be
data hit. However, in case that the size of the matrix is huge
then the columns of 1’s may not be able to fit in the compu-
tational memory. Also, finding the row that overlaps most
with the current row will increase non-trivial computational
effort. Alternatively, one may do in the zig-zag way: the first
row goes from left to right to load the columns with 1, the
second row goes from right to left to reuse the columns that
are already in. This zig-zag way will work well in case of
dense graphs. As for the highly sparse graphs, we will sim-
ply process each row sequentially in the order in which the
graph data is stored.

Take the case in Fig. 3 as an example, in step 1 and step 2,
the two non-zero elements A[0][1] and A[0][2] are processed
respectively, and corresponding row R, and columns C
and () are loaded to memory. Next, while processing
A[1][2] and A[1][3], R; will overlap Ry and reuse existing C5
in step 3, and load Cj in step 4. In step 5, to process A[2][3],
R, will be overlapped by R,, and Cs is reused.

For the data replacement policy, when the computational
memory is full and a new column needs to be loaded into
the memory for computation, we need to select one candi-
date column to be swapped out. We know that a good data
replacement algorithm should have a low replacement fre-
quency, as a result, data that will not be accessed in the
future or will not be accessed for a long time in the future
should be swapped out first.

According to our proposed TC method, we need to iter-
ate the non-zero elements in the adjacency matrix by rows.
On iterating one certain non-zero element, we need to load
the corresponding column for AND and BitCount compu-
tations. At the same time, we will also record which col-
umns have been loaded into the computational memory.
Therefore, we are able to know about the future computa-
tions and the storage status in the computational memory
array. Given the above information, when the computa-
tional memory is full and a data replacement happens, we
are able to locate the column in the computational memory
with the longest time between the next visit and swap it out.

Compared to the traditional data replacement strategies
such as the LRU (Least Recently Used) policy, which predicts
a good choice on choosing to-be-swapped candidate column
according to the past computations, our proposed method is
able to make the optimal decision with the knowledge of
future executions. This can cause the least data replacement
frequency, and we name it as Priority data replacement policy.

4.2 Graph Data Compression

To utilize the sparsity of the graph to reduce the memory
requirement and unnecessary computation, we propose a
data slicing strategy for graph data compression.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

RiSo RiS1 RiS2 RiS3 RiS4 RiSs
0010:0000:0000:0100:0000:0010

STT-MRAM Array

> RiS5|0 0|10
~ —> CiS5({0 0|0 |1

“ 1+ rissjo|1]o]o
> css|1]1]o]o

Columnj

0 0 1 @ 0 @
0000:0000:0100:1100:0000:0001
CiSo CiS1 CjS2 CjS3 CjSa CiSs

Fig. 4. Sparsity-aware data slicing and mapping.

Assume R; is the ith row, and Cj is the jth column of the
adjacency matrix A of graph G(V; E). Let the slice length be
|S| (namely e‘aclzh slice contains |S| bits), then each row and

v

column has [Tﬂ slices. Accordingly, the kth slice in row R;,

which is represented as R;Sj, can be formulated as
RSy = {Ali][k = [S]],- -, Ald][(k + 1) * [S] — 1]}

We define slice R;S}, is valid if and only if it has at least one
non-zero element, namely

JA[i[t] € RiSy, Ai][t] = 1,t € [k=|S], (k+ 1) =|S| —1].
Similar for the the kth slice of column Cj:
CiSk = {Ak*|SN[], - Al(k+ 1)+ |S] =][5}
Slice C;S}; is valid if and only if

JA] € CiSi, Altllgl = 1,t € [k* S|, (k+ 1) = |S| — 1].

Recall that for each non-zero element A[i][j] =1 in the
adjacency matrix, we need to compute the AND of its corre-
sponding row R; and column C;. With the proposed row
and column slicing methods, we will perform the AND oper-
ation in the unit of slices, and we only need to process the
valid slice pairs. Namely only when both of the row slice
R;S). and column slice C;S}, are valid, we will load the valid
slice pair (R;Sy, C;S},) into the computational memory array
for AND operation.

Fig. 4 demonstrates an example, after row and column slic-
ing, only the valid slice pairs (R;S3,C;S3) and (R;S5,C;S5)
will be enabled for AND computation. This gives a glance of
the fact that this filter process can reduce the needed computa-
tion significantly, especially in the large sparse graphs.

Compression Rate Analysis. Assume that the graph has |V
nodes, |E| edges, the slice length is |S|, the sparsity of G is
defined as

2

\4=

Therefore, « intuitively demonstrates the probability for
an element in the adjacency matrix to be zero. Accordingly,
the probability for a slice with length of | S| to be invalid (all
elements in the slice should be zero) is «/l. Correspond-
ingly, the probability for a slice to be valid (at least one ele-
ment in the slice should be non-zero) is 1—a/l. The
number of valid slices Nyg can be formulated as:

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TRIANGLE COUNTING ACCELERATIONS: FROM ALGORITHM TO IN-MEMORY COMPUTING ARCHITECTURE

2467

Row Driver

Multi-row Activation

GraphData ~ emmmemeeeeeeeeeoooo
| ;
Data Slicing /)
/ Bank
Controller c v 5 ; ,—l—
ompresse! / o
ER i
Data Buffer Computational e 3 - Subarra
STT-MRAM % 8 i
Valid Slice go
Index
> Valid Slice Data
STT-MRAM
Storage Status T
|

Data Reuse &

Replacement

Fig. 5. Overall processing-in-memory architecture.

— (1 _ oM ﬂ
N, Vs (1 o) | S| .

For data compression, we need to store the index of valid
slices and the detailed data information of these slices.
Assume that we need |D| bits to store the index of slice
(|D| > logg%), then the overall needed space (in Bytes) for
compressed graph G is

8

N o VPP [1D]+18]
(1a|5).5.<8>

Without data slicing and compression, the needed stor-
age space (in Bytes) is

D
Compressed Graph Size = Nyg x <M>

. 4
Ordinary Graph Size = 5

Consequently, the compression rate of the graph data can
be expressed as:

Compressed Graph Size

C ion Rate CR =
ompression Rate Ordinary Graph Size

_ |D|

Therefore, the graph compression rate is determined by
the sparsity of the graph, the slice length and the graph size.
Fig. 6a demonstrates the compression rate with different
graph sparsity and slice length when we use an integer
(|D] = 32) to store each valid slice index, and Fig. 6b zooms
in the figure when the sparsity o € (0.9,1). We can see that
the graph compression rate is dominated by the graph spar-
sity, when the sparsity is larger than 0.99, the compression
method is expected to have a high compression efficiency.
Given that most graphs are highly sparse, the needed space
to store the graph can be trivial and the experimental section
will demonstrate some results.

More importantly, the proposed format of compressed graph data
is friendly for directly mapping onto the computational memory
arrays to perform in-memory logic computation. This is because
the proposed compression method does not compress the

Local Data Buffer \
Bit Counter

valid slice data, thus does not need complex decompression
process.

5 OVERALL ARCHITECTURE AND IMPLEMENTATION

5.1 Overall Architecture Design

Fig. 5 demonstrates the overall architecture of the proposed
TC accelerator. First, the graph data will be sliced and com-
pressed, and represented by the valid slice index and corre-
sponding slice data. Consequently, according to the valid
slice indexes in the data buffer, the corresponding valid
slice pairs are loaded into computational STT-MRAM array
for bitwise computation. The storage status of STT-MRAM
array (such as which slices have been loaded) is also
recorded in the data buffer and utilized for data reuse and
replacement.

As for the computational memory array organization,
each chip consists of multiple Banks and works as computa-
tional array. Each Bank is comprised of multiple computa-
tional sub-arrays, which are connected to a global row
decoder and a shared global row buffer. Read circuit and
write driver of the memory array are modified for processing
bitwise logic functions. Specifically, the operation data are
stored in different rows in memory arrays. The rows associ-
ated with operation data will be activated simultaneously
for computing. Sense amplifiers are enhanced with AND ref-
erence circuits to realize either READ or AND operations.

Note that in traditional Von-Neumann computing archi-
tecture, CPU is the central unit for control and computations,
which can efficiently deal with complex computing and con-
trol task. In contrast, for in-memory processing, the decentral-
ized processing cores can provide ultra-high parallelism,
while they are more suitable for relatively single types of cal-
culations with less control logic, such as the neural network
computations. Data-intensive applications (such as the

02
04" o5

09 092 0% 0% o098
Sparsity

Spasity Slice Length

@) a € (0,1),|D| = 32 ®) a € (0.9,1), |D] = 32

Fig. 6. Compression rate with different sparsity and slice/index length.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

2468

triangle counting graph algorithm demonstrated in this
paper) which can be reformulated as simple logic computa-
tions are amenable to the proposed architecture.

Some nice work on graph computing accelerations has
been proposed, such as GraphR [10] and GraphSAR [12].
They point out that large-scale graph calculation problems
can be simulated in memristor array in the form of matrix
vector operations. However, for graph computing, the
implementation of vector matrix multiplication through
analog operations faces the problem of accuracy and the
additional overhead caused by digital-to-analog/analog-to-
digital conversion. The proposed approach in this article
reformulates the graph computing problem into basic Bool-
ean logic functions, which can be implemented efficiently
in-memory.

5.2 Pseudo-Codes for In-Memory TC Acceleration
Algorithm 1 demonstrates the pseudo-code for TC accelera-
tions with the proposed architecture. It iterates over each
edge of the graph (corresponds to each non-zero element in
the adjacency matrix) and partitions the corresponding rows
and columns into slices, then loads the valid slice pairs onto
computational memory for AND and BitCount computa-
tion. In case that there is no enough memory space, it will
select one slice with the longest time between the next visit to
be swapped out by the new slice. Then repeat the above pro-
cess until all the non-zero elements in the adjacency matrix
are processed, and the accumulated BitCount result will be
the number of triangles in the graph.

Algorithm 1. Triangle Counting With Processing-In-
Memory Architecture

Input: Graph G(V, E).
Output: The number of triangles in G.
TC G =0;
Represent G with adjacent matrix A;
Iterate the non-zero elements in A by rows;
for each non-zero element Ali][j] = 1 do
Partition R; into slices;
Partition C} into slices;
for each valid slice pair (R; Sy, C;S,) do
TC_G += COMPUTE (R; S}, C;S);
return 7C_G as the number of triangles in G.

R IO Ul WN -

\O

10

11 COMPUTE (RowSlice, ColumnSlice)

12 Load RowSlice into memory;

13 if ColumnSlice does not exist in the computational memory then

14 if there is no enough space then

15 one slice with the longest time between the next visit to
be swapped out;

16 Load ColumnsSlice into memory;

17 return BitCount (AND(RowSlice, ColumnSlice)).

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

To validate the effectiveness of the proposed methods, com-
prehensive device-to-architecture evaluations along with
two in-house simulators are developed.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

TABLE 1

Key Parameters for MTJ Simulations
Parameter Value
MT] Surface Length 40 nm
MT]J Surface Width 40 nm
Spin Hall Angle 0.3
Resistance-Area Product of MTJ 10712 Q - m?
Oxide Barrier Thickness 0.82 nm
TMR 100%
Saturation Field 10% A/m
Gilbert Damping Constant 0.03
Perpendicular Magnetic Anisotropy 4.5 x 10° A/m
Temperature 300 K

At the device level, we jointly use the Brinkman model
and Landau-Lifshitz-Gilbert (LLG) equation to characterize
MT] [26]. The key parameters for MT] simulation are dem-
onstrated in Table 1. For the circuit-level simulation, we
design a Verilog-A model for 1TIR STT-MRAM device,
and characterize the circuit with 45nm FreePDK CMOS
library. We design a bit counter module based on Verilog
HDL to obtain the number of non-zero elements in a vec-
tor. Specifically, we split the vector and feed each 8-bit
sub-vector into an 8-256 look-up-table to get its non-zero
element number, then sum up the non-zero numbers in all
sub-vectors. We synthesis the module with Synopsis Tool
and conduct post-synthesis simulation based on 45nm
FreePDK. The modified sense amplifier part (to support
logic computations) is also simulated in Cadence tool on
45nm FreePDK. After getting the circuit-level simulation
results, we integrate the parameters into the open-source
NVSim simulator [27] and obtain the memory array per-
formance with wordwidth of 64 bits, 8-way cache configu-
ration. In addition, we develop a simulator in Java for the
processing-in-memory architecture, which simulates the
proposed function mapping, data slicing and data map-
ping strategies. Finally, a behavioral-level simulator is
developed in Java, taking architectural-level results and
memory array performance to calculate the latency and
energy that is spent on TC in-memory accelerator.

To provide a solid comparison with other accelerators,
we select from the real-life graphs from SNAP dataset [28]
(see Table 2), and run comparative baseline intersect-based
algorithm on Inspur blade system with the Spark GraphX
framework on Intel E5430 single-core CPU. For fair compar-
isons, our TC in-memory acceleration algorithm also runs
on single-core CPU.

6.2 Evaluations of Data Slicing and Compression
For the convenience and efficiency of computing, we can set
the slice length to be the multiple of the computer word
length. We assume the computer word length to be 64 bits
in this paper. Fig. 7 demonstrates the normalized valid slice
number when the slice length is 64, 128, and 256, respec-
tively. We can see that the number of valid slices only dem-
onstrate a trivial reduction (on average less than 10%) when
the slice length increase from 64 bits to 128/256 bits (each
slice has 2x /4x more bits). Therefore, we set |S| = 64 in the
following experiments.

Table 3 demonstrates the sparsity of the each bench-
mark in the SNAP graph dataset and the corresponding

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TRIANGLE COUNTING ACCELERATIONS: FROM ALGORITHM TO IN-MEMORY COMPUTING ARCHITECTURE

2469

TABLE 2

SNAP Graph Dataset
Graph # Vertices # Edges # Triangles Description
ego-facebook 4039 88234 1612010 Social circles from Facebook (anonymized)
email-enron 36692 183831 727044 Email communication network from Enron
com-Amazon 334863 925872 667129 Amazon product network
com-DBLP 317080 1049866 2224385 DBLP collaboration network
com-Youtube 1134890 2987624 3056386 Youtube online social network
roadNet-PA 1088092 1541898 67150 Road network of Pennsylvania
roadNet-TX 1379917 1921660 82869 Road network of Texas
roadNet-CA 1965206 2766607 120676 Road network of California
com-LiveJournal 3997962 34681189 177820130 LiveJournal online social network

compression rate when the slice length is 64 and index
length is 32. As shown in the second and third columns
of Table 3, the real-world graph are highly sparse, which
leads to an extreme low compression rate, which vali-
dates the theoretical analysis in Section 4.2. As shown in
the fourth column of Table 3, the valid slice pairs occupy
a very small percentage among the whole slices, and this
also leads to a high computation efficiency. The average
sparsity of the five largest graphs is 99.999%, with the
average compression rate and average percentage of valid
slices be 0.01%, This means the proposed data slicing and
compression strategy could significantly reduce the
needed memory space and computations by 99.99%.

o Slice Length = 64
1

o Slice Length = 128

Slice Length = 256

Normailized Valid Slice
o o o o
S

Fig. 7. The number of valid slices with the slice length being 64, 128 and
256, respectively.

TABLE 3
The Sparsity of the Graph Dataset and the Compression
Metrics by Data Slicing With Slice Length |.S| = 64
and Index Length |D| = 32

Graph o* CR** VSR'
ego-facebook 99.45914% 11.154% 7.017%
email-enron 99.98635% 0.584% 1.483%
com-Amazon 99.99917% 0.078% 0.014%
com-DBLP 99.99896% 0.080% 0.036%
com-Youtube 99.99977 % 0.014% 0.013%
roadNet-PA 99.99987% 0.009% 0.013%
roadNet-TX 99.99990% 0.007% 0.010%
roadNet-CA 99.99993% 0.005% 0.007%
com-LiveJournal 99.99978% 0.013% 0.006%

*Sparsity of the graph.
**Compression rate.
tValid slice pair ratio.

6.3 Evaluations of Data Reuse and Replacement

We know that the first time a data slice is loaded, it is
always a miss, and a data hit implies that the slice data
has already been loaded and a data reuse has happened.
And when the required computational memory is larger
than the STT-MRAM computational memory size, at the
same time a data miss occurs, then data replacement will
happen.

With 8 MB STT-MRAM computational memory array, in
Fig. 8, we have listed the ratios of data hit and data miss
ratios under LRU and Priority data replacement policies.
For the Priority data replacement policy, the data hit and
data miss ratios are 60.5% and 39.5%, respectively. The data
hit rate implies that the proposed data reuse strategy saves
on average 60.5% memory WRITE operations.

The five largest graphs, including com-Youtube, roadNet-
PA, roadNet-TX, roadNet-CA, and com-LiveJournal, will have
to do data replacement. And the experimental result in
Fig. 9 demonstrate that with our proposed Priority data
replacement policy, compared with the least recently used

LRU Data Hit

LRU Data Miss @ Priority Data Hit @ Priority Data Miss

Fig. 8. Data hit and data miss ratios with LRU and priority data replace-
ment strategies.

0.7

0.6 #LRUCacheExchange PriorityCacheExchange
05

04

03 B

02 ||

0.1 "%é

0 e - ! .
com-Youtube roadNet-PA roadMet-TX roadNet-CA com-j

Fig. 9. Data replacement ratio with LRU and priority data replacement
strategies.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

2470 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022
TABLE 4
Runtime (In Seconds) Comparison Among Our Proposed Methods, CPU, GPU and FPGA Implementations

Dataset CPU GPU [3] FPGA [3] Proposed Method

w/o PIM TCIM Priority TCIM
ego-facebook 5.399 0.15 0.093 0.169 0.005 0.005
email-enron 9.545 0.146 0.22 0.8 0.021 0.011
com-Amazon 20.344 N/A N/A 0.295 0.011 0.011
com-DBLP 20.803 N/A N/A 0.413 0.027 0.027
com-Youtube 61.309 N/A N/A 2.442 0.098 0.100
roadNet-PA 77.320 0.169 1.291 0.704 0.043 0.025
roadNet-TX 94.379 0.173 1.586 0.789 0.053 0.030
roadNet-CA 146.858 0.18 2.342 3.561 0.081 0.047
com-LiveJournal 820.616 N/A N/A 33.034 2.006 1.940
Average 1.0 1.36

(LRU) replacement policy, the number of data replacement
is reduced by up to 30.1%.

6.4 Performance and Energy Results

Table 4 compares the performance of our proposed in-mem-
ory TC accelerator against a CPU baseline implementation,
and the existing GPU and FPGA accelerators.

One can see a dramatic reduction of the execution time in
the last columns from the previous three columns. Indeed,
without PIM, we achieved an average 53.7x speedup
against the baseline CPU implementation because of data
slicing, reuse, and replacement. With PIM, another 25.5x
acceleration is obtained. Compared with the GPU and
FPGA accelerators, the improvement is 9x and 23.4x,
respectively. It is important to mention that we achieve this
with a single-core CPU and 16 MB STT-MRAM computa-
tional array. With the optimized Priority data replacement
policy (named as Priority TCIM), we can get another 1.36x
speedups.

As for the energy savings, as shown in Fig. 10, our
approach has 34x less energy consumption compared to
the energy-efficient FPGA implementation [3], which bene-
fits from the non-volatile property of STT-MRAM and the
in-situ computation capability.

7 CONCLUSION

In this paper, we propose a new triangle counting (TC)
method, which uses massive bitwise logic computation,
making it amenable for in-memory implementations. We
further propose a sparsity-aware processing-in-memory
architecture for efficient in-memory TC accelerations. A
straightforward data reuse strategy is proposed to save

50.0
§ — 46.3 458 441
s OPriority TCIM B FPGA[3] .
gm_a
w
>
230.0
@
iy
B 200 15.8 184
N = &
= | |
2100 { w ; !
] 1.0 1.0 b 1.0 1.0 1.0
=z I
] el L - e ——
ego-facebook email-enron roadNet-PA roadNet-TX roadNet-CA

Fig. 10. Normalized results of energy consumption for priority TCIM with
respect to FPGA.

write operations as well as a data slicing technique to
exploit sparsity in the benefit of saving even more write
operations. By data slicing, the computation could be
reduced by 99.99%, meanwhile the compressed graph data
can be directly mapped onto STT-MRAM computational
memory array for bitwise operations, and the proposed
data reuse and replacement strategy reduces 60.5% of the
memory WRITE operations. Device-level simulations were
carried out to obtain MT] parameters then used in NVSim
to estimate memory array performance. This, in turn, is
then used by a behavioral-level simulator developed to
compute energy and latency metrics. The device-to-architec-
ture co-simulations demonstrate that our in-memory accel-
erator achieves improvement in terms of speed and energy
efficiency by an order of magnitude over traditional GPU/
FPGA accelerators.

REFERENCES

[1] M. A.Hasanand V.S. Dave, “Triangle counting in large networks:
A review,” Wiley Interdisciplinary Reviews: Data Mining Knowl. Dis-
covery, vol. 8, no. 2, 2018, Art. no. e1226.

V. S. Mailthody et al., “Collaborative (CPU+GPU) algorithms for
triangle counting and truss decomposition,” in Proc. IEEE High
Perform. Extreme Comput. Conf., 2018, pp. 1-7.

S. Huang et al., “Triangle counting and truss decomposition using
FPGA,” in Proc. IEEE High Perform. Extreme Comput. Conf., 2018,
pp- 1-7.

V. Seshadri and O. Mutlu, “In-DRAM bulk bitwise execution
engine,” 2019, arXiv:1905.09822.

S.Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A proc-
essing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories,” in Proc. 53nd ACM/EDAC/IEEE
Des. Automat. Conf., 2016, pp. 1-6.

B.Li, B. Yan, and H. Li, “An overview of in-memory processing with
emerging non-volatile memory for data-intensive applications,” in
Proc. ACM Great Lakes Symp. VLSI, 2019, pp. 381-386.

S. Angizi, . Sun, W. Zhang, and D. Fan, “AlignS: A processing-
in-memory accelerator for dna short read alignment leveraging
sot-mram,” in Proc. 56th ACM/IEEE Des. Automat. Conf., 2019,
pp- 1-6.

M. Wang et al., “Current-induced magnetization switching in
atom-thick tungsten engineered perpendicular magnetic tunnel
junctions with large tunnel magnetoresistance,” Nature Commun,
vol. 9, no. 1, 2018, Art. no. 671.

S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in
memory with spin-transfer torque magnetic RAM,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 3, pp. 470483,
Mar. 2018.

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerat-
ing graph processing using ReRAM,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit., 2018, pp. 531-543.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: TRIANGLE COUNTING ACCELERATIONS: FROM ALGORITHM TO IN-MEMORY COMPUTING ARCHITECTURE 2471

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

S. Angizi, J. Sun, W. Zhang, and D. Fan, “Graphs: A graph proc-
essing accelerator leveraging SOT-MRAM,” in Proc. Des. Automat.
& Test Europe Conf. & Exhib., 2019, pp. 378-383.

G. Dai, T. Huang, Y. Wang, H. Yang, and]. Wawrzynek,
“GraphSAR: A sparsity-aware processing-in-memory architecture
for large-scale graph processing on ReRAMSs,” in Proc. 24th Asia
South Pacific Des. Automat. Conf., 2019, pp. 120-126.

Y. Zhuo et al., “GraphQ: Scalable PIM-based graph processing,” in
Proc. 52nd Annu. IEEEJACM Int. Symp. Microarchit., 2019,
pp. 712-725.

C. Yin et al.,, “Network science characteristics of brain-derived
neuronal cultures deciphered from quantitative phase imaging
data,” Scientific Reports, vol. 10, no. 1, pp. 1-13, 2020.

R. Yang and P. Bogdan, “Controlling the multifractal generating
measures of complex networks,” Scientific Reports, vol. 10, no. 1,
pp- 1-13, 2020.

J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions: A
low-overhead, locality-aware processing-in-memory architecture,”
in Proc. Int. Symp. Comput. Archit., 2015, pp. 336-348.

X. Liu et al., “Reno: A high-efficient reconfigurable neuromorphic
computing accelerator design,” in Proc. Des. Automat. Conf., 2015,
pp. 1-6.

S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, “Spindle: Spintronic deep learning engine for
large-scale neuromorphic computing,” in Proc. Int. Symp. Low
Power Electron. Des., 2014, pp. 15-20.

Z. 1. Chowdhury et al., “Efficient in-memory processing using
spintronics,” Comput. Archit. Letters, vol. 17, no. 1, pp. 4246, 2018.
W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, “In-memory
processing paradigm for bitwise logic operations in STT-MRAM,”
IEEE Trans. Magn., vol. 53, no. 11, pp. 1-4, Nov. 2017.

F. Parveen, Z. He, S. Angizi, and D. Fan, “HielM: Highly flexible
in-memory computing using STT MRAM,” in Proc. Asia South
Pacific Des. Automat. Conf., 2018, pp. 361-366.

L. Chang et al., “DASM: Data-streaming-based computing in non-
volatile memory architecture for embedded system,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 27, no. 9, pp. 2046-2059,
Sep. 2019.

Y. Zhao et al., “An STT-MRAM based in memory architecture for
low power integral computing,” IEEE Trans. Comput., vol. 68, no. 4,
pp- 617-623, Apr. 2019.

Z. Guo et al., “Spintronics for energy- efficient computing: An over-
view and outlook,” in Proc. IEEE, vol. 109, no. 8, pp. 1398-1417, Aug.
2021.

J. Yang et al., “Exploiting spin-orbit torque devices as reconfigura-
ble logic for circuit obfuscation,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 38, no. 1, pp. 57-69, Jan. 2018.

J. Yang ef al., “Radiation-induced soft error analysis of STT-
MRAM: A device to circuit approach,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 3, pp. 380-393,
Mar. 2015.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile
memory,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 31, no. 7, pp. 994-1007, Jul. 2012.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” Jun. 2014. [Online]. Available: http://snap.
stanford.edu/data

Xueyan Wang (Member, IEEE) received the BS
degree in computer science and technology from
Shandong University, Jinan, China, in 2013, and
the PhD degree in computer science and technol-
ogy from Tsinghua University, Beijing, China, in
2018. From 2015 to 2016, she was a visiting
scholar in the University of Maryland, College
Park, MD. She is currently an assistant professor
with the School of Integrated Circuit Science and
Engineering, Beihang University, Beijing, China.
Her research interests include processing-in-
memory architectures, Al chip, and hardware
security.

-

Jianlei Yang (Senior Member, |IEEE) received
the BS degree in microelectronics from Xidian
University, Xi'an, China, in 2009, and the PhD
degree in computer science and technology from
Tsinghua University, Beijing, China, in 2014. He is
currently an associate professor in Beihang Uni-
versity, Beijing, China, with the School of Com-
puter Science and Engineering. From 2014 to
2016, he was a postdoctoral researcher with the
Department of ECE, University of Pittsburgh,
Pittsburgh, Pennsylvania. His current research

interests include computer architectures and neuromorphic computing
systems. He was the recipient of First/Second place on ACM TAU Power
Grid Simulation Contest in 2011/2012. He was a recipient of IEEE ICCD
Best Paper Award, in 2013, ACM GLSVLSI Best Paper Nomination, in
2015, IEEE ICESS Best Paper Award, in 2017, ACM SIGKDD Best Stu-
dent Paper Award, in 2020.

ad;

Yinglin Zhao received the MS degree in software
engineering from Xidian University, Xi'an, China, in
2017, and currently working toward the PhD
degree in electrical engineering in the School of
Electronic and Information Engineering, Beihang
University, Beijing, China. His research interests
include the computer systems architecture and the
design of non-volatile memory.

Xiaotao Jia received the BS degree in mathe-
matics from Beijing Jiao Tong University, Beijing,
China, in 2011, and the PhD degree in computer
science and technology from Tsinghua University,
Beijing, China, in 2016. He is currently an associ-
ate professor with the School of Microelectronics,
Beihang University, Beijing, China. From 2016 to
2019, he was a postdoctoral researcher with the
Microelectronics, Beihang University, Beijing,
China. His current research interests include
spintronic circuits, stochastic computing and

Bayesian deep learning.

Rong Yin received the PhD degree from the
Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China, and the
School of Cyber Security, University of Chinese
Academy of Sciences, Beijing, China, in 2020.
She is currently an associate professor with the
Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China. Her current
research interests include machine learning, data
mining, statistical theory, optimization algorithm,
and large-scale kernel methods.

Xuhang Chen received the BS degree in com-
puter science and technology from the Dalian
University of Technology, Dalian, China, in 2020,
and currently working toward the MS degree in
the School of Integrated Circuit Science and
Engineering, Beihang University, Beijing, China.
His research interests include the graph comput-
ing accelerations with emerging in-memory com-
puting architectures.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

2472

Gang Qu (Fellow, IEEE) received the BS and MS
degrees in mathematics from the University of
Science and Technology of China, China, in 1992
and 1994, respectively, and the PhD degree in
computer science from the University of Califor-
nia, Los Angeles, Los Angeles, California, in
2000. Upon graduation, he joined the University
of Maryland, College Park, Maryland, where he is
currently a professor in the Department of Electri-
cal and Computer Engineering and Institute for
Systems Research. He is the director of Mary-
land Embedded Systems and Hardware Security Lab and the Wireless
Sensors Laboratory. His primary research interests include embedded
systems and VLS| CAD with focus on low power system design and
hardware related security and trust. He is an associate editor for the
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on Emerging Topics in Computing,
ACM Transactions on Design Automation of Electronic Systems, Journal
of Hardware and System Security, Journal of Computer Science and
Technology, and the Integration, VLSI Journal. He has served 18 times
as the general or program chair/co-chair for conferences, symposiums
and workshops. He is the co-founder of IEEE Asian Hardware Oriented
Security and Trust Symposium, Hot Picks in Hardware and System
Security Workshop, and the IEEE CEDA Hardware Security and Trust
Technical Committee.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

Weisheng Zhao (Fellow, IEEE) received the PhD
degree in physics from the University of Paris Sud,
Paris, France, in 2007. He is currently a professor

with the School of Integrated Circuit Science and
Engineering, Beihang University, Beijing, China.
Mo In 2009, he joined the French National Research

Center (CNRS), as a tenured research scientist.

- Since 2014, he has been a distinguished profes-

E ! sor with Beihang University, Beijing, China. He

' has published more than 200 scientifc articles in

leading journals and conferences, such as Nature

Electronics, Nature Communications, Advanced Materials, IEEE Trans-
actions, ISCA and DAC. His current research interests include the hybrid
integration of nano-devices with CMOS circuit and new nonvolatile mem-
ory (40-nm technology node and below) like MRAM circuit and architec-
ture design. He is currently the editor-in-chief for the IEEE Transactions
on Circuits and Systems I: Regular Paper.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2023 at 06:05:12 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

