
Generative Adversarial Network Based Scalable
On-chip Noise Sensor Placement

Jinglan Liu∗, Yukun Ding∗, Jianlei Yang†, Ulf Schlichtmann‡, Yiyu Shi∗
∗Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556

Email:{jliu16, yding5, yshi4}@nd.edu
†Fert Beijing Research Institute,

Beijing Advanced Innovation Center for Big Data and Brain Computing,

School of Computer Science and Engineering, Beihang University, Beijing, China

Email: jianlei@buaa.edu.cn
‡Technical University of Munich, Munich, Germany

Email:ulf.schlichtmann@tum.de

Abstract—The relentless efforts towards power reduction of
integrated circuits have led to the prevalence of near-threshold
computing paradigms. With the significantly reduced noise mar-
gin, therefore, it is no longer possible to fully assure power in-
tegrity at design time. As a result, designers seek to contain noise
violations, commonly known as voltage emergencies, through
various runtime techniques. All these techniques require accurate
capture of voltage emergencies through noise sensors. Although
existing approaches have explored the optimal placement of
noise sensors, they all exploited the statistical modeling of noise,
which requires a large number of samples in a high-dimensional
space. For large scale power grids, these techniques may not
work due to the very long simulation time required to get the
samples. In this paper, we explore a novel approach based on
generative adversarial network (GAN), which only requires a
small number of samples to train. Experimental results show
that compared with a simple heuristic which takes in the same
number of samples, our approach can reduce the miss rate of
voltage emergency detection by up to 65.3% on an industrial
design.

I. INTRODUCTION

To meet the stringent power budget imposed by either package

cooling limits or battery-life requirements in mobile applica-

tions, near-threshold computing has been explored in a broad

range of applications, where the supply voltage is approxi-

mately equal to the threshold voltage of the transistors [1].

However, near-threshold computing significantly reduces the

noise margin, making design-time power integrity assurance a

very challenging task. There are a few more papers [2], [3]

utilizing on-chip noise sensors to track voltage emergencies.

In order to accurately track voltage emergencies, it is critical

to place the noise sensors optimally. Towards this, [4]–[7]

proposed Eagle-Eye, the first noise sensor placement work in

the literature to minimize the miss rate of voltage emergency

detection [7]. The method is based on statistical modeling

of noise and uses a heuristic which is proved to be optimal

among all polynomial complexity algorithms. Later [8] further

developed an alternative noise sensor placement framework but

with the target of recovering the entire noise map 1 given that

1A noise map is formed by the noise values of all the nodes in the power
grid at a particular time, which can be obtained by transient simulation.

some of the functional areas cannot allow sensor placement. It

is not quite relevant to the detection of voltage emergencies.

A fundamental issue with all these approaches is that they

rely on statistical information of the noise. As detailed in Sec-

tion II, in order to accurately capture the statistical correlation

between different nodes, the number of samples increases with

the number of nodes. With hundreds of thousands or even

millions of nodes present in the power grids, a huge number

of samples are needed and the statistical modeling can hardly

be accurate. It is imperative to search for alternative methods

that can work even with limited number of samples.

Machine learning algorithms have achieved extraordinary

improvement in various applications, which include image

searching [9], action recognition [10], and even beating a hu-

man champion at Go [11]. Nowadays they are also applied to

the field of electronic design automation, including high level

synthesis, physical design, circuit test, online thermal/power

management and so on [12]–[15]. In this paper, we attempt

to make use of the newest breakthrough, generative adver-

sarial network (GAN), to solve the problem of noise sensor

placement. Specifically, the proposed method uses a limited

number of noise samples obtained from power grid simulation

to train GAN and extract critical features, from which a large

number of samples can quickly be yielded for optimal sensor

placement through an efficient heuristic method. Experimental

results on an industrial design show that compared with a

simple heuristic method which takes in the same number of

samples, our approach can reduce the miss rate of voltage

emergency detection by up to 65.3%.

The remainder of this paper is organized as follows. We

first present the background about the on-chip noise sensor

placement problem with its formulation and related work in

Section II. The GAN scheme adopted is introduced in Section

III with our proposed strategy to decide locations for noise

sensors. Experimental results are presented in Section IV and

concluding remarks are given in Section V.

978-1-5386-4034-0/17/$31.00 ©2017 IEEE 239

II. BACKGROUND AND MOTIVATION

Following [4], the on-chip noise sensor placement problem

can be formally defined as follows. Given the following

information as inputs

1) M candidate nodes in the power grid for noise sensor

placement and their respective simulated noise informa-

tion

2) voltage threshold t for the voltage emergencies, which

is specified by the designer and is the same for all the

sensors;

3) total number of noise sensors n to be placed.

Our objective is to find the optimal n locations out of the M
candidate nodes so that the miss rate, defined as the probability

that a voltage emergency occurred somewhere on chip but

none of the placed sensors capture it, is minimized. The miss

rate can be mathematically defined as

Miss Rate =P (Zmax ≥ t|Zr1 ≤ t, Zr2 ≤ t, · · · , Zrn ≤ t)

=P (Zmax ≥ t|max(Zr1 , Zr2 , · · · , Zrn) ≤ t)

where Zmax is the maximum noise among all the nodes in

the power grid, Zr1 , Zr2 , · · · , Zrn are noise values at the n
nodes where the sensors are connected, and t is the voltage

threshold. If there is a voltage emergency somewhere on chip,

at least one node must have Zi ≥ t, 1 ≤ i ≤ M , which infers

Zmax ≥ t.
Originally, a method named Eagle-Eye is proposed based on

statistical noise analysis in [4]. The noise of on-chip node i,
either Gaussian or non-Gaussian, can be represented as follows

Zi = Fi(X) = Hi(G) + ΔRi (1)

where X is a set of common correlated factors that result

in the variation of voltage noise through function Fi. Through

modelling techniques, the noise can be represented by function

Hi(G), where G is an m-dimensional uncorrelated random

variable that models the global variation sources (common for

all positions) which can be extracted from X through either

principle component analysis (PCA) for Gaussian or indepen-

dent component analysis (ICA) for non-Gaussian distributions

of X . This transformation is based on the covariance matrix

estimation. In addition, ΔRi models the independent source

of noise variation specific to position i. After this, Sensing

Quality Metric (SQM) for a set of positions is defined as the

probability that the maximum noise among them exceeds the

voltage threshold. Based on SQM, noise sensor placement is

decided by existing algorithms, since it can be interpreted as

the max set cover (MSC) problem [16].

Eagle-Eye is built on the basis of transformation in (1),

which is calculated from covariance matrix estimation. Com-

rey and Lee [17] urged researchers to obtain 500 or more

samples per variable. Therefore, even for a medium scale

power grid with 100,000 nodes, the number of noise samples

required is 50 million. SPICE simulation to get such a huge

number of samples will take an extremely long time. In this

paper, we will try to address this scalability problem by

devising a generative adversarial network based approach.

III. GAN BASED NOISE SENSOR DEPLOYMENT

The proposed method to decide where to place noise sensors

consists of two major parts. One is to efficiently produce more

noise maps via GAN, and the other is to determine optimal

deployment for noise sensors from the produced noise maps.

A. Produce noise maps based on GAN

GAN was developed by Goodfellow et al. as a framework to

train a generative model by an adversarial process [18]. Recent

applications of GANs have shown that they can produce ex-

cellent image samples [19], [20]. A well-trained GAN enables

fast sampling from the learned distribution of images. That is,

if noise maps are treated as images, based on limited training

noise maps, GAN can produce a number of new noise maps

with the same distribution as the training ones. This makes it

an ideal method to generate a large number of noise maps.

The basic idea of GAN is to set up a game between two

players. One player named discriminator examines samples

and tries to distinguish the real samples from training dataset

from the synthetic ‘fake’ samples, which are noise maps here.

The other player named generator produces such ‘fake’ noise

maps to ‘fool’ the discriminator. The competition in the game

drives both players to improve their skills and finally become

experts on their own tasks.

Formally, the two players in the game are represented by

two functions: a discriminator network D and a generator

network G. Both functions are realized by deep neural net-

works and are differentiable with respect to their inputs and

parameters. As shown in Fig. 1, the generator network G maps

random variable z ∼ p(z) to data space x = G(z). The dis-

criminator network D assigns a probability p = D(x) ∈ [0, 1]
which represents the probability that x comes from the real

data rather than the generator’s distribution pg .

Fig. 1. Generative adversarial networks

The solution to this game is a Nash equilibrium where

each function reaches a local minimum of its loss function

with respect to its parameters. It has been proved that, given

both generator and discriminator have enough capability, the

only global optimum is pg = pdata, where pg is the implicit

probability distribution of the samples G(z) obtained when

z ∼ p(z) and pdata is the real probability distribution of data.

240

Since the input for GAN is usually a set of images with

pixels ranging from 0 to 255, noise maps need slight trans-

formation before being fed to GAN. As mentioned in Section

II, there are M candidate nodes for a chip, thus a noise map

can be formulated as a 1×M vector of noise values. We can

take the noise values of every position as a pixel. In simulated

noise maps, each pixel varies in a small range from 0 to 0.3

with Volt as unit in our record. Therefore, to make the full use

of space provided by image domain, every element of noise

maps is scaled to the range from 0 to 255 as pixels. After

scaling, noise maps can be treated as images to be fed to GAN

directly. Accordingly, the threshold that should be recognized

as a voltage emergency can be defined by a proportion of the

maximum voltage, whose value is 255 after scaling, instead of

a concrete value based on experience in other works [4]. As a

result, the voltage threshold t = p×Max, where Max = 255
and p is the proportion selected.

Since the most critical problem of the original GAN con-

cept is the non-convergence, the deep convolution generative

adversarial network (DCGAN), an extension of GANs, makes

it more stable to train in most settings through utilizing several

tricks. Therefore, DCGAN instead of original GAN is adopted

in implementation of our experiments. After training process,

the generator network G of DCGAN should be able to produce

noise maps with the same distribution as the simulated noise

maps plus variation.

B. Efficient selection

To deploy on-chip noise sensors properly, we propose an

efficient algorithm based on the produced noise maps through

DCGAN, which is named as efficient selection (ES). It can

skip statistical noise analysis that is too complex to implement.

The key idea is to remove samples as long as they can be de-

tected by any existing noise sensor, since they cannot provide

further information for subsequent noise sensor placement.

Details of efficient selection are shown in Algorithm 1.

For inputs, noise map matrix Mq is a N × M matrix of

quantized produced noise maps. N is the number of noise

maps and M is the number of candidate nodes. What is

different from definitions in Section III-A is that every element

in Mq is quantized by threshold t so that if a voltage noise

value is beyond the threshold, it is quantized as 1; otherwise

it is 0. In addition, the number of noise sensors n to be placed

is the same as defined in Section II. As for output, Snoise is

a list containing selected positions to place noise sensors.

In Algorithm 1, sum(Mq) returns the result of summing

every element in Mq , while sum(Mq , axis=0) returns a vector

whose each element is the sum of every column of Mq .

Later on, max(sum c) returns the maximum value in sum c.

Mq.rows returns the number of rows remaining in matrix

Mq . When sum(Mq)==0 or Mq.rows==0, there is no noise

remaining in Mq or there is no more available noise map

to suggest any position for noise sensors. In addition, idx c

is the position where voltage emergency is most likely to

happen and it is added into Snoise through the operation

Snoise.append(idx c). After that, any noise map, that is, any

Algorithm 1 Efficient selection

Input: Quantized noise map matrix Mq .

Number of noise sensors n.

Output: Positions to place noise sensors Snoise.

for i = 1 to n do
if sum(Mq)==0 or Mq.rows==0 then

All noise covered!

return Snoise

end if
sum c = sum(Mq , axis=0)

max c = max(sum c)

idx c = column number where max c locates

Snoise.append(idx c)

//remove noise maps that can be detected

//by the sensor placed on idx c

remove any row r in Mq that r(idx c) = 1

end for
return Snoise

row r in Mq , is not able to provide more useful information

for deployment, if it gets 1 at the idx c position. Thus, such

rows corresponding to those samples are removed afterwards.

IV. EXPERIMENTAL RESULTS

The experiments are performed on an industrial design for

transient analysis. The simulation is conducted on PowerRush

[21]–[23], while the DCGAN implementation is based on [24].

Simulated noise maps are sequentially and randomly divided

into training set and test set. The training set is fed to DCGAN

to produce more noise maps, while the test set is used to

measure the miss rate of voltage emergency detection after

sensor placement.

The simulation to generate enough samples for Eagle-

Eye requires a long time and huge memory to complete, as

Eagle-Eye is not very suitable for large scale power grids.

Accordingly, in this paper we directly compare the proposed

approach with a new yet intuitive heuristic method. In the

heuristic method, the n-top positions with highest voltage

emergency occurrence frequency in the test set are selected.

The number n here is the same as the number of sensors to

be placed as mentioned in Algorithm 1.

Fig. 2 displays comparison between the efficient selection

based on GAN and the heuristic method based on training set

in terms of miss rate of voltage emergency detection versus

different number of noise sensors employed. In this figure, x-

axis corresponds to the number of noise sensors placed, and

y-axis is the corresponding miss rate of voltage emergency

detection. Since a chip cannot afford many noise sensors

because of overhead [4], in our experiments the number of

noise sensors is nine at most.

From Fig. 2, we can see that the efficient selection based

on GAN (the line named by ”ES based on GAN” in Fig. 2)

outperforms the heuristic method based on the training set,

which decreases the miss rate by 65.3% when the number

241

of noise sensors is eight. This is because the trained GAN

provides additional samples following the same noise distri-

bution, allowing more accurate placement of the noise sensors.

There are some cases, however, where ES based GAN does

not show significant improvement over the heuristic, and this

is probably because the samples in the training set already

contain enough statistical information to guide the placement

of noise sensors, and adding additional samples from GAN

does not provide any further help.

2 3 4 5 6 7 8 9

Number of noise sensors

0

5

10

15

20

M
is

s
ra

te
 (

%
)

Heuristic
ES based on GAN

Fig. 2. Miss rate vs. the number of on-chip noise sensors
employed in different methods

V. CONCLUSIONS AND FUTURE WORK

The near-threshold computing paradigms have been used

widely, because of the relentless efforts towards power reduc-

tion of integrated circuits. It leads to the significantly reduced

noise margin, and it is no longer possible to fully assure power

integrity at design time. Therefore, designers have proposed

various runtime techniques to manage voltage emergencies

based on noise sensors on chips. There exist some related

works for placement of noise sensors, but they all exploited

the statistical modeling of noise. However, for large scale

power grids with a high dimensional space that requires a large

number of samples, it will take very long simulation time to get

enough samples. Thus, these works may not work anymore.

In this paper, a novel approach based on GAN is proposed,

which only requires a small number of samples. Experimental

results show that compared with the heuristic method which

takes in the same number of samples, our approach can reduce

the miss rate by up to 65.3% on an industrial design.

ACKNOWLEDGMENT

This work was supported by the German Research Founda-

tion (DFG) as part of the Transregional Collaborative Research

Centre “Invasive Computing” (SFB/TR 89).

REFERENCES

[1] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming moore’s law through
energy efficient integrated circuits,” Proceedings of the IEEE, vol. 98,
no. 2, pp. 253–266, 2010.

[2] A. Muhtaroglu, G. Taylor, and T. Rahal-Arabi, “On-die droop detector
for analog sensing of power supply noise,” IEEE Journal of solid-state
circuits, vol. 39, no. 4, pp. 651–660, 2004.

[3] V. J. Reddi, M. S. Gupta, G. Holloway, G.-Y. Wei, M. D. Smith, and
D. Brooks, “Voltage emergency prediction: Using signatures to reduce
operating margins,” in High Performance Computer Architecture, 2009.
HPCA 2009. IEEE 15th International Symposium on. IEEE, 2009, pp.
18–29.

[4] T. Wang, C. Zhang, J. Xiong, and Y. Shi, “Eagle-eye: a near-optimal
statistical framework for noise sensor placement,” in Computer-Aided
Design (ICCAD), 2013 IEEE/ACM International Conference on. IEEE,
2013, pp. 437–443.

[5] T. Wang, C. Zhang, J. Xiong, and Y. Shi, “On the deployment of on-
chip noise sensors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 33, no. 4, pp. 519–531, 2014.

[6] T. Wang, C. Zhang, J. Xiong, P.-W. Luo, L.-C. Cheng, and Y. Shi, “On
the optimal threshold voltage computation of on-chip noise sensors,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 10, pp. 1744–1754, 2016.

[7] T. Wang, C. Zhang, J. Xiong, P.-W. Luo, L.-C. Cheng, and Y. Shi,
“Variation aware optimal threshold voltage computation for on-chip
noise sensors,” in Computer-Aided Design (ICCAD), 2014 IEEE/ACM
International Conference on. IEEE, 2014, pp. 205–212.

[8] X. Liu, S. Sun, X. Li, H. Qian, and P. Zhou, “Machine learning for
noise sensor placement and full-chip voltage emergency detection,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 36, no. 3, pp. 421–434, 2017.

[9] C. Rosenberg, “Improving photo search: A step across the semantic
gap,” 2013.

[10] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[12] J. Liu, D.-C. Juan, and Y. Shi, “Effective cad research in the sea of
papers,” in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 2015, pp. 781–785.

[13] B. Yu, D. Z. Pan, T. Matsunawa, and X. Zeng, “Machine learning and
pattern matching in physical design,” in Design Automation Conference
(ASP-DAC), 2015 20th Asia and South Pacific. IEEE, 2015, pp. 286–
293.

[14] L.-C. Wang, “Data mining in functional test content optimization,” in
Design Automation Conference (ASP-DAC), 2015 20th Asia and South
Pacific. IEEE, 2015, pp. 308–315.

[15] H. Hantao, P. S. Manoj, D. Xu, H. Yu, and Z. Hao, “Reinforcement
learning based self-adaptive voltage-swing adjustment of 2.5 di/os for
many-core microprocessor and memory communication,” in Computer-
Aided Design (ICCAD), 2014 IEEE/ACM International Conference on.
IEEE, 2014, pp. 224–229.

[16] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[17] S. P. Reise, N. G. Waller, and A. L. Comrey, “Factor analysis and scale
revision.” Psychological assessment, vol. 12, no. 3, p. 287, 2000.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[19] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[20] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in Advances
in neural information processing systems, 2015, pp. 1486–1494.

[21] J. Yang, Z. Li, Y. Cai, and Q. Zhou, “Powerrush: A linear simulator
for power grid,” in Proceedings of the International Conference on
Computer-Aided Design. IEEE Press, 2011, pp. 482–487.

[22] J. Yang, Z. Li, Y. Cai, and Q. Zhou, “Powerrush: Efficient transient
simulation for power grid analysis,” in Proceedings of the International
Conference on Computer-Aided Design. ACM, 2012, pp. 653–659.

[23] J. Yang, Z. Li, Y. Cai, and Q. Zhou, “Powerrush: An efficient simulator
for static power grid analysis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2103–2116, 2014.

[24] T. Kim. (2016) DCGAN-tensorflow. [Online]. Available:
https://github.com/carpedm20/DCGAN-tensorflow

242

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

