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 ABSTRACT 

Two-dimensional (2D) materials and their heterostructures, with wafer-scale 

synthesis methods and fascinating properties, have attracted significant interest 

and triggered revolutions in corresponding device applications. However, facile

methods to realize accurate, intelligent, and large-area characterizations of these

2D nanostructures are still highly desired. Herein, we report the successful 

application of machine-learning strategy in the optical identification of 2D 

nanostructures. The machine-learning optical identification (MOI) method 

endows optical microscopy with intelligent insight into the characteristic color

information of 2D nanostructures in the optical photograph. The experimental

results indicate that the MOI method enables accurate, intelligent, and large-area

characterizations of graphene, molybdenum disulfide, and their heterostructures, 

including identifications of the thickness, existence of impurities, and even stacking

order. With the convergence of artificial intelligence and nanoscience, this

intelligent identification method can certainly promote fundamental research

and wafer-scale device applications of 2D nanostructures. 

 
 

1 Introduction 

Two-dimensional (2D) materials have attracted 

increasing interest owing to their superior properties 

[13]. Heterostructures of 2D materials, which enable 

great flexibility in both junction fabrication and pro-

perty engineering, have further triggered revolutions in 

corresponding device applications [47]. Considering 
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the progress in wafer-scale synthesis method [810], 

the development of an efficient and large-area 

characterization technique has been a primary 

obstacle for fundamental research and commercial 

level applications of 2D nanostructures. Among the 

existing techniques, transmission electron microscopy 

and scanning tunneling microscopy (STM) enables 

characterization with high spatial resolution down  

to the atomic scale [1114]. However, both these 

techniques have drawbacks of low-throughput and 

complicated sample preparation. Atomic force micro-

scopy (AFM) with special design can also enable 

atomic characterization of 2D materials and even  

the interface of 2D heterostructures; however, the 

efficiency of this technique is limited by the presence 

of surface adsorbates [15, 16]. Optical spectroscopy, 

for example, Raman spectroscopy, can realize accurate 

characterization of 2D nanostructures [17]. However, 

the spectroscopy method usually enables local 

characterization within the light spot, resulting in 

limited efficiency. Compared to the aforementioned 

techniques, optical microscopy methods, which enable 

high-speed, large-area, non-destructive, and accurate 

identification of samples from as-collected optical 

photographs (i.e., the ability of wide-field charac-

terization), have already boosted controllable synthesis 

or fabrication, structure-dependent physical property 

measurement, and device applications of 2D nano-

structures [1824]. 

The optical microscopy method by characterizing 

bright-field photographs of 2D materials has been 

applied for large-area or even wafer-scale charac-

terization of 2D materials [78, 2326]. Recently, 

identification of interlayer coupling in 2D vertical 

heterojunctions has successfully extended this 

characterization method to 2D heterostructures, 

although it relies on a modified optical microscope 

with ability of photoluminescence imaging [27, 28]. 

However, there are still two drawbacks: (1) Iden-

tification of 2D heterostructures by optical microscopy 

is still immature; (2) the optical microscopy method 

often relies on the experience of the user. Unless 

intelligent image processing and identification of 2D 

nanostructures are realized, these drawbacks can 

greatly hamper its applications. Adoption of machine- 

learning strategy in image identification or visual 

recognition has achieved distinct advantages and 

outperformed humans, implying the great potential 

of artificial intelligence in image identification of 

micro and especially nanostructures [29, 30]. In this 

sense, integration of machine-learning with optical 

microscopy may realize accurate, intelligent, and 

large-area characterization of 2D materials and even 

2D heterostructures, which can further promote both 

fundamental research and commercial applications. 

In this work, we applied machine-learning strategy 

in the optical identification of 2D nanostructures, 

including graphene, molybdenum disulfide (MoS2), 

and heterostructures of these two materials. The 

machine-learning optical identification (MOI) method 

relies on trainable and automatic analyses of red, 

green, and blue (RGB) information in the optical 

photograph of 2D nanostructures using a support 

vector machine (SVM) algorithm. With this intelligent 

insight into the characteristic color information of 2D 

nanostructures, the MOI method enables accurate 

and intelligent characterization of 2D nanostructures, 

including identification of thickness, existence of 

impurities, and even stacking order, which is expected 

to promote the development of 2D science and 

technology. 

2 Experimental 

The MOI system is based on an optical microscope 

system enhanced by self-customized software (Fig. 1). 

The optical microscope enables collection of bright- 

field photographs of 2D nanostructures at different 

magnifications. The self-customized software further 

realizes intelligent identification of the as-collected 

photographs according to a pre-established database 

and model. The intelligent identification can be sorted 

in two steps (Fig. 1), i.e., a training process and a 

test process. The purpose of the training process is to 

establish a database and the corresponding SVM 

model containing the “fingerprint” or characteristic 

information of RGB channel intensities in the optical 

photograph of 2D materials with different thicknesses. 

During the training process, the RGB data in the 

optical microscope photographs of graphene or MoS2 

samples at different light intensities (“training set” in 

Fig. 1), is manually linked to graphene or MoS2 with 
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different number of layers and then classified into 

different categories by an SVM algorithm, following 

the judgments of AFM and Raman spectroscopy. The 

database and the SVM model with different categories 

of RGB channel intensities linked to the sample 

thickness (“training result” in Fig. 1) thus make the 

following test process possible. During the test 

process, the RGB information in the photographs of 

graphene or MoS2 (“test set” in Fig. 1) is collected 

and classified by the software into specific categories. 

These classifications result in a false-color image (“test 

result” in Fig. 1), which indicates the distribution   

of substrate, 2D material (with different numbers of 

layers), and even impurities. Such a self-customized 

system inheriting the in situ and the wide-field 

characterization features of optical microscopy thus 

enables accurate, intelligent, and large-area identifica-

tion of 2D nanostructures. 

The accurate and intelligent identification relies on 

the optical contrast characteristics of the 2D materials 

[1922] as well as the efficient processing and 

recognition by the self-customized software [29, 30]. 

The following key features of the MOI system greatly 

improve the performance of identification. The first 

one is the pretreatment of the photographs before 

analysis. The pretreatment includes denoising by 

mean filtering and median filtering, together with 

color calibration by linear scaling of G and B channels 

according to the R channel of the substrate. The color 

calibration eliminates possible influence induced by 

the instability of the optical microscope system. The 

second feature is about the SVM algorithm. For a 

small set of training samples, the SVM algorithm is an 

efficient supervised learning model for data classifi-

cation [31]. In the MOI system, the SVM classifiers 

represent the training data of RGB information in   

 

Figure 1 The MOI system. Schematic illustration and photograph of the MOI system. The training set contains optical microscope
photographs of graphene or MoS2 samples at different light intensities. Following the judgment of AFM and Raman spectroscopy, the
RGB database and SVM model of graphene or MoS2 samples (denoted as “training results”) are established after SVM analyses of the 
RGB data collected from the training set. Referring to the “training results”, graphene, MoS2, or heterostructures of these two materials 
can be identified according to their optical microscope photograph (denoted as “test results”). The brain shaped inset shows the 
photograph of the MOI system which includes an optical microscope enhanced by self-customized software. 
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a three-dimensional (3D) space (see Fig. S1 in the 

Electronic Supplementary Material (ESM)), and 

decide the maximum-margin planes (i.e., boundaries 

of different categories). After mapping the testing 

sample into the same space, the maximum-margin 

plane is evaluated to perform the classification into 

a specific category (e.g., single-layered graphene). 

The third feature is to perform the identification by 

multi-channel information of RGB data rather than 

judging the number of layers by only one channel. 

Unlike conventional identification methods based 

on the contrast difference of specific channel between 

the substrate and the 2D material [22, 32], which have 

the disadvantage of spatial inhomogeneity of the 

light intensity, our multi-channel identification method 

realizes intelligent identification of 2D materials and 

their number of layers, as well as the substrate. Such 

a multi-channel identification method relies on the 

optical characteristics of 2D materials in RGB space 

(see Fig. S2 in the ESM for the results of graphene 

and MoS2), which implies the possibility to simul-

taneously identify impurities, 2D materials, and even 

2D heterostructures without the information of light 

intensity distribution in the optical microscope 

photograph. 

3 Results and discussion 

3.1 Identification of graphene 

Accurate and intelligent identification of the graphene 

sample based on the MOI system is demonstrated in 

Fig. 2, which is expected to benefit abundant research 

and applications of graphene [2, 3]. In the training 

process, the optical microscope photographs of the 

graphene samples (see Figs. 2(a) and 2(c) for two 

typical samples) with deterministic judgment of the 

thickness by AFM (Figs. 2(b) and 2(d)) are processed 

as a database with different categories of RGB 

channel intensity linked to the sample thickness (i.e., 

different number of layers) and further analyzed   

by the SVM algorithm to establish a training model. 

The training result (i.e., the SVM model) contains 

as-classified RGB information of graphene and the 

 

Figure 2 MOI of graphene sample. (a)(d) Typical optical microscope photographs ((a) and (c)) included in the training set of graphene,
including the corresponding AFM images ((b) and (d)). (e) Training result of graphene samples containing as-classified RGB information; 
note that the SVM model is not shown. (f) Optical microscope photograph of a mixed-layer graphene sample for test purpose; the inset 
shows the corresponding AFM image. (g) Thickness information of different-layer graphene in (f) by AFM analysis. (h) Test result of 
the sample in (f) according to the database in (e), where regions of different layers are colored in accordance with (e). 
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substrate (Fig. 2(e)), which enable the following 

intelligent identifications of graphene thickness. For 

a mixed-layer graphene sample (see Fig. 2(f) for the 

optical microscope photograph), the MOI system 

automatically refers the photograph to the training 

result by analyzing the RGB information. As shown 

in Fig. 2(h), accurate assignments of the number of 

graphene layers with a pixel-to-pixel accuracy of 

96.78% are realized in agreement with the AFM results 

(insets of Figs. 2(f) and 2(g)), where regions of different 

layers are colored respectively. 

3.2 Identification of MoS2 

In general, the MOI method also works for other   

2D materials that have characteristics in RGB  

space, for example, MoS2 and other transition metal 

dichalcogenides [19, 32]. Accurate and intelligent 

identification of MoS2 sample is demonstrated in Fig. 3. 

Following a similar training process of graphene, the 

RGB information in the optical microscope photographs 

of MoS2 samples (Figs. 3(a) and 3(c)) is collected and 

analyzed by the SVM algorithm according to the 

thickness judgment by AFM measurements (Figs. 3(b) 

and 3(d)). As a result, a training result containing the 

characteristic RGB information of MoS2 (Fig. 3(e)) is 

obtained. As shown in the false-color image in Fig. 3(h), 

intelligent identification of the MoS2 sample is realized 

automatically with a pixel-to-pixel accuracy of 94.26% 

based on its optical microscope photograph (Fig. 3(f)). 

Besides, the intelligent identification result is also 

sensitive to impurities or contaminations (black regions 

in Fig. 3(h)) which can severely affect the intrinsic 

property of 2D materials [33, 34]. For example, adhesive 

residues appearing as light green regions on the 

substrate and encircling the MoS2 flakes in the optical 

microscope photograph (Fig. 3(f)) can be successfully 

recognized. 

3.3 Identification of 2D heterostructures 

With great flexibility in junction fabrication and 

property engineering, heterostructures of 2D materials 

enable exploration of emerging 2D physics and novel 

 

Figure 3 MOI of MoS2 sample. (a)(d) Typical optical microscope photographs ((a) and (c)) included in the training set of MoS2, 
where corresponding AFM images ((b) and (d)) are also present. (e) Training result of MoS2 samples containing as-classified RGB 
information; note that the SVM model is not shown. (f) Optical microscope photograph of a mixed-layer sample for test purpose; the
inset shows the corresponding AFM image. (g) Thickness information of different-layer MoS2 in (f) by AFM analysis. (h) Test result of
the sample in (f) according to the database in (e), where regions of different layers are colored in accordance with (e). The as-identified 
regions of adhesive residues are blacked and the overexposed regions are grayed. 
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device applications [47]. Our intelligent identification 

method of 2D materials by their “fingerprints” in RGB 

channels may further realize the identification of 2D 

heterostructures and boost the development of 2D 

science. Figure 4(a) shows a 2D heterostructure with 

a vertical heterojunction of bilayer graphene and 

single-layered MoS2, fabricated using a previously 

reported transfer method (see Ref. [35] for details of 

the transfer method). Based on the training results of 

graphene and MoS2 samples (see Figs. 2(e) and 3(e), 

and Fig. S2 in the ESM), the intelligent identification 

of a graphene-MoS2 heterostructure is successfully 

demonstrated (Fig. 4(c)).  

Regions of substrate, graphene, MoS2, heterojunction, 

as well as the resist residues from the transfer process 

can be automatically recognized with a pixel-to-pixel 

accuracy of 90.16%. Detailed analyses of the RGB 

information from different regions (Figs. 4(d) and 4(e)) 

indicate that MoS2 dominates the optical contrast   

of the heterojunction, which can hamper accurate  

identification of heterostructures by optical methods. 

According to the theoretical calculation results (see 

Fig. S3 in the ESM and Refs. [22, 3638]), further 

optimization of the oxidation layer thickness and 

the light wavelength can be adopted to improve the 

performance of identification and even realize the 

identification of stacking order in the vertical hetero-

junction. Besides, further comparison of the RGB 

information before and after the transfer process 

(Fig. 4(e)) implies the feasibility of this intelligent 

identification method to evaluate the performance, 

especially the resist residues of the 2D material 

transfer method. 

3.4 Discussion 

Ever since the first application in the thickness 

identification of graphene [21, 22], much progress has 

been achieved in optical microscopy of 2D nano-

structures [1820, 2729, 32, 39]. These breakthroughs 

include characterization capabilities of various 2D 

 

Figure 4 MOI of 2D heterostructure sample. (a) A 2D heterostructure with a vertical heterojunction of bilayer graphene and single-
layered MoS2, in which graphene and MoS2 are marked respectively. (b) MoS2 and graphene samples used to fabricate the 
heterostructure. (c) Test result of the heterostructure according to the training results of graphene and MoS2, where graphene and MoS2

are marked respectively. The as-identified regions of adhesive residues are blacked. (d) RGB information of heterojunction, graphene, and
MoS2 at different light intensities, where projections of 3D (RGB) data onto 2D plane (e.g., RG) are also plotted as circles. (e) Comparison 
of the RGB data of heterojunction, graphene, and MoS2 at the same light intensity, together with the RGB data of graphene and MoS2

before and after the transfer process. 
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materials and their heterostructures for additional 

physical properties (e.g., grain boundaries, defects, and 

interlayer coupling strength), as well as developments 

to meet the demands of autonomous fabrications.  

At the same time, artificial intelligence, especially 

machine-learning algorithm has been introduced for 

its great application potential in nanoscience and 

nanotechnology. The as-reported intelligent identifi-

cation of 2D materials and heterostructures relies on 

the successful application of machine-learning strategy 

in optical microscopy analysis. With the ability of 

identifying subtle differences in the optical RGB 

information, this method can realize accurate and 

efficient identification of individual 2D materials 

with different thicknesses. The direct identification of 

RGB information collected from the optical photograph 

avoids possible influence of the color conversion 

process, which thus improves the identification accuracy 

in determining the existence of multiple 2D materials 

and even the impurities. By referring to the optical 

characteristics of 2D materials in RGB space, this 

method can simultaneously recognize different 2D 

materials and impurities, outperforming humans, in 

the characterization of 2D heterostructures, thereby 

boosting the corresponding device applications. Besides, 

such a machine-learning enhanced characterization 

method would promote the convergence of artificial 

intelligence and nanoscience by inspiring intelligent 

development of optical microscopy/spectroscopy and 

other characterization techniques. 

4 Conclusions 

In summary, we report the successful application of 

machine-learning strategy in the optical identification 

of 2D nanostructures, including graphene, MoS2, and 

their heterostructures. The MOI method relies on 

trainable and automatic analyses of RGB information 

in the optical photograph of 2D nanostructures using 

a SVM algorithm. By endowing optical microscopy 

with intelligent insight into the characteristic color 

information of 2D materials and 2D heterostructures, 

the MOI method can realize accurate, intelligent, and 

large-area characterizations of 2D nanostructures, 

including the thickness, existence of resist residues, 

and even stacking order in heterostructures. With 

applicability to wafer-scale 2D materials and 2D 

heterostructures, this intelligent identification method 

can certainly promote fundamental research and 

commercial level applications of 2D nanostructures. 

5 Methods 

5.1 Sample preparation and characterization 

The graphene and the MoS2 samples were fabricated 

by mechanical exfoliation on silicon wafers with  

300 nm oxidation layers [40]. The heterostructure 

samples were prepared by a transfer and stacking 

method [35]. Characterizations of the samples were 

performed by AFM (Bruker, MultiMode 8), Raman 

spectroscopy (Horiba, Jobin-Yvon LabRAM HR800), 

and optical microscopy (Leica, DM2700 M). The self- 

customized software for the pretreatment, training, 

and testing processes was created using MATLAB. 

5.2 Training process 

All the 2D samples were photographed at different 

positions and light intensities to constitute the training 

set. Each photograph was then divided into sub-regions 

by the contour of the light intensity which was 

obtained from the photograph of the substrate (see 

Fig. S4 in the ESM) for the purpose of collecting more 

RGB information of the sample at different light 

intensities. Median and mean filters were first adopted 

in each picture for noise reduction followed by a 

color calibration treatment, i.e., scaling the G and B 

channel of all pixels in the whole photograph linearly 

based on a block of manually selected substrate as 

described above (see Fig. S5 in the ESM). Then, using 

a manually drawn mask for each photograph within 

the category for corresponding pixels (e.g., single 

layered graphene region), the mean value of each 

channel with the same category in one sub-region 

was calculated as the training dataset. Finally, a 3D 

one vs. one linear SVM can be trained to establish the 

model containing the characteristic RGB information 

(i.e., the “training result”) using the training dataset. 

5.3 Test process 

For the test process, denoising and color calibration 

treatments were also applied. The category of each 
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pixel can then be automatically identified referring to 

the training result based on their characteristic RGB 

information. 
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