
Exploiting Near-Memory Processing Architectures
for Bayesian Neural Networks Acceleration

Yinglin Zhao∗§, Jianlei Yang†§, Xiaotao Jia∗§, Xueyan Wang∗§, Zhaohao Wang∗§

Wang Kang∗§, Youguang Zhang‡§ and Weisheng Zhao∗§
∗ School of Microelectronics, Beihang University, Beijing, 100191, China.

† School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
‡ School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China.

§ Fert Beijing Research Institute, BDBC, Beihang University, Beijing, 100191, China.
Email: {jianlei, weisheng.zhao}@buaa.edu.cn

Abstract—Bayesian inference is an effective approach to cap-
ture the model uncertainty as well as tackle the over-fitting
problem in deep neural networks. Recently Bayesian neural
networks (BNNs) are becoming more and more popular and
have succeeded in many recognition tasks. However, the BNNs
inference procedure requires numerous memory access opera-
tions due to the resulted sampling networks. In this paper, a
near memory architecture is proposed for accelerating BNN
inference by introducing additional memory units near the
processing units. The near memory architecture could cache
the frequently accessed data to reduce the data movement
efficiently. Minimizing the expensive data movements between
memory units and computation units contributes to cutting
down the latency and energy consumption. Comparing with
the traditional approach, the simulation results show that the
proposed architecture reduces the energy consumption by 9%
and achieves a 1.6× speedup at the cost of 4% area overhead.

Index Terms—Bayesian Neural Network, Near Memory Pro-
cessing, Architecture.

I. INTRODUCTION

The training of Deep Neural Network (DNN) synaptic
weights usually requires large scale of training data and is
susceptible to over-fitting problem [1]. The over-fitting prob-
lem may cause failures in fitting additional data or predicting
future observations, which is considered as a weak suitability
of a model. In addition, recent research has found that subtle
pixel modifications can mis-classify the image into other labels
for an image that has been correctly classified under DNN [2].

In order to overcome these shortcomings, a novel method
called Bayesian Neural Network (BNN) is proposed [3]. BNN
not only provides a consistent framework for statistical pattern
recognition, but also has many practical advantages e.g., avoid-
ing over-fitting problems. By exploiting the uncertainty and
making use of prior knowledge, the computing pattern of BNN
is closer to real circumstance, which makes it exhibit required
robustness for future decision. For example, the authors of [4]
propose a novel method of propagating the uncertainty through
the sparsity-promoting layers and design a Bayesian Learned
Iterative Shrinkage-Threshold network. Reference [5] intro-
duces a python probabilistic programming library for Bayesian
deep learning to conjoin the complimentary advantages of
Bayesian methods and deep learning.

However, the BNN method faces a critical technical chal-
lenge due to the high cost on computation and data move-
ment. While performing the inference procedure, the sampled
weights are read from off-chip memory for computation and
then the results are written back. Lots of data movement
introduces a lot of energy consumption to perform feed-
forward propagation [6]. As remarkable performance is always
achieved at the cost of a high computation complexity associ-
ated to the deep layer structure, high performance computing
resources and large data transmission bandwidth are necessary
to accelerate the BNN inference. The works [7], [8] aim to
reduce data transmission and accelerate computation proce-
dure from a different view. With requirements of inference
accuracy increasing, the energy consumption cost is becoming
even higher.

Therefore, a lot of state-of-the-art researches are focused
on coming up with innovative computing architectures to
overcome these limitations. The traditional approach is moving
data from memory all the way up to cache and then processing
them in computation units. In contrast, near-memory comput-
ing (NMC) aims to perform computation close to where the
data resides. The data-centric approach proposed in [9] couples
computation units close to memory and seeks to minimize the
expensive cost of data movement.

In view of the above, we propose a customized compu-
tation architecture to improve the computation efficiency of
BNN algorithm. By integrating a small capacity memory with
computation units, the frequently accessed data can be cached
in the local memory that is near to the computation units,
so that it could be processed more efficiently. The proposed
scheme enables data reuse and reduces data transmission. The
main contributions of our work are summarized as follows:

• A novel near-memory computing architecture is proposed
to perform fast and energy efficient BNN inference. By
taking the advantage of the low access latency charac-
teristic of near-memory computing, the BNN inference
procedure could be effectively accelerated.

• The proposed architecture has been evaluated by simula-
tions. The results indicate that the proposed architecture
could reduce energy consumption by 9% and achieve a
1.6× speedup at the cost of 4% area overhead.

203

2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

978-1-7281-3391-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ISVLSI.2019.00045

 σ μ

 R1 L1 W1

 x

 y1× + .

 Rk Lk Wk yk× V+ .

 RT LT WT yT

 y

× + .

uncentainty
matrix

standard normal
distribution

element-wise
multiplication

element-wise
addition

matrix-vector
multiplication

scale
matrix

location
matrix

weight
matrix

input
vector

output
vector

vote

N(0,1)

..

..

weight sampling feed-forward propagation

_

dimension: M×N

dimension: N×1

dimension: M×1

Fig. 1: Single-layer BNN dataflow is divided in two steps: weight sampling and feed-forward propagation.

The rest of this paper is organized as follows. Section II
discusses some preliminaries and related work. Section III
demonstrates the proposed near-memory computing architec-
ture in detail. Section IV provides the evaluation methodology
and results. And Section V concludes this paper.

II. PRELIMINARIES

BNNs are comprised of a probabilistic model and a neural
network [10]. Neural networks have universal continuous
function approximation ability, and statistical models allow
us to generate cases according to the posterior distribution pa-
rameters that are derived from observations. In the prediction
phase, the statistical model generates a complete distribution
and guarantees the probability of prediction. BNN is therefore
the combination of neural networks and stochastic models,
and stochastic models form the core of this integration. By
introducing the augmentation of standard neural networks with
posterior inference, BNN creates a deep learning framework
which considers the effect of parameter uncertainty.

BNN training is related to the process of finding the poste-
rior distribution over model parameters, which is very difficult
since the posterior weight distribution is highly complex. In
order to improve the efficiency of BNN training, some related
BNN researches are conducted. The work in [11] introduces
an easy-to-implement stochastic variational method that can be
applied to most neural networks and revisits several common
regularization from a variational perspective. In addition, a
Turing-complete probabilistic programming language, named
Edward framework [12], is adopted to train the BNN.

After the parameters are fully trained, the BNN is used
for inference which could also be called prediction. The
BNN prediction process requires Gaussian random variable
sampling for all posterior distributions identified in the training
process. Once all the random weights are obtained, BNN could
start the process using the sampled parameters and inputs.

The essence of BNN algorithm is to perform repetitive
forward-propagation with different sampled parameters to de-
termine the final outputs. However, due to the data complexity

and diversity, numerous hardware resources are required dur-
ing data transmission and calculation. It is difficult to improve
the BNN inference efficiency for traditional computing-centric
architecture due to the limited bandwidth between computation
units and memory units. This paper analyzes the dataflow in
BNN prediction and proposes a specific computing architec-
ture which integrates memory units near computation units to
improve the data transformation efficiency.

III. NEAR-MEMORY COMPUTING ARCHITECTURE

In this section, we first describe the dataflow of the standard
BNN. Subsequently, the proposed near-memory computing
architecture is introduced in detail. For simplification, The
single-layer BNN is used as an example.

A. BNN Inference Dataflow Analysis

The BNN inference adopts a well-trained model for pre-
diction. With the trained parameters, the weights sampling
procedure could directly affect the inference efficiency. Dif-
ferent from DNNs, whose weight values are deterministic, the
weight value of BNN needs to make use of the uncertainty
characteristics of the posterior distribution. The final result is
determined by considering all outputs produced according to
each sample, in which way the uncertainty is characterized.
Under certain conditions, the more weights sampled, the better
the uncertainty is characterized, then the final result will be
more accurate.

Fig.1 shows the BNN inference dataflow of a single-layer
fully connected neural network, where σ and µ are well-trained
BNN weight parameter matrices. The symbol x denotes the
input vector. The considered BNN contains N input neurons
and M output neurons. µ and σ are posterior distribution
parameters of the M × N dimensional BNN weight values.
R is random value matrix whose elements are sampled from
standard Gaussian distribution. The weight matrix W is calcu-
lated using R, σ and µ based on scale-location transformation.
In Fig.1, ×, + and · with cycle represent the operation
of element-wise multiplication, element-wise addition and

204

 σ μ Rk Lk Wk x

 x

 ykMemory
Array

Computation
Unit Array

× + .

uncentainty
matrix

element-wise
multiplication

element-wise
addition

matrix-vector
multiplication

scale
matrix

location
matrix

weight
matrix

input
vector

output
vector

 σ μ

①

②

③

④ ⑥

⑦

⑧

next iteration next iteration next iteration
⑨ 11

13

14

12

5 10 15

（b）

 σ μ Rk Lk Wk x yk
Memory

Array

Computation
Unit Array × + .①

②

③ ④

⑤

⑥ ⑦

⑧

next iteration

⑨
10

（a）

integrated
 memory

Fig. 2: The BNN inference flow. (a) Traditional computing architecture. (b) The proposed near-memory computing architecture.

matrix-vector multiplication, respectively. Based on the neural
network theory, a sample output based on BNN is calculated
according to Eqn.(1). T is the number of samples to be
computed, and it determines the number of times that Eqn.(1)
is executed in the network. In addition, the bias terms are not
taken into account in Fig.1 for simplify.

y =Wx+ b (1)

B. Near-Memory Computation Architectures

Figure 2(a) shows the BNN inference dataflow in a tradi-
tional architecture. The data streaming is read from memory
and send to data bus which is labeled as 1©- 9© in each
iteration. When one loop is completed, the output y of one
sample is obtained, which can also be considered as one
iteration is finished. Then the next iteration continues. In
traditional computing architecture, the operations of both data
access and write back require the data bus to be activated
for transferring data. Obviously, the memory access and data
transferring usually account for most of the latency and energy
consumption in entire system. As mentioned previously, the
number of samples T determines the BNN inference accuracy.
Under certain conditions, larger T brings more data for making
a decision, and better inference accuracy can be achieved.

However, an important observation is that the data are usu-
ally partially accessed and reused among different iterations
so that the repeated data transferring should be recognized
as a waste of latency and energy. For example, the mean
value µ and standard deviation σ are utilized in each iteration
so that they are considered to be cached in an additional
local memory close to computation units. And consequently
such a caching mechanism could reduce the data transmission
cost significantly. The introduced local memory is very close

to computation units so that the near-memory computing is
reasonably enabled. The proposed near-memory computing
dataflow is illustrated in Figure 2(b). The dataflow labeled
1©- 15© represent the iterative procedures. Different from the

traditional approach, the frequently accessed data µ, σ, and
x are pre-cached in additional local memory when necessary
until their life-cycle is end.

Considering the required silicon area efficiency, the capacity
of the additional local memory is somewhat limited. Excessive
memory array squeezes the area of computing units and
aggravates the complexity of the control signals. It can not
only increase corresponding data access latency and power
consumption, but also reduce the performance improvement
brought by our scheme. If the additional local memory is
too small, either the R data imported from the data bus
once cannot be completely processed or the data bus is not
fully occupied. And it results in the waste of computation
or memory resources. The number of computation units and
the bandwidth of data bus should be taken into trade-off
considerations for determining the size of the additional local
memory.

In addition, the sizes of the matrices are different under
different applications. When adopting our architecture for
different applications, the size of the matrices and additional
local memory may be inconsistent, which may cause that the
whole matrix cannot be fully cached. But each element of µ
and σ matrix corresponds to unique element in R so that they
can be divided into sub-matrices and processed respectively.

IV. EVALUATION

A. Experimental Setup

In our experiment, we established a three-layer fully con-
nected neural network (784-200-200-10) based on the Mixed

205

TABLE I: Occupied Resources Percentage of Computation
Units (CU) and Memory Units (MU).

Method Area Energy Time
CU MU CU MU CU MU

Trad. 55.4% 44.6% 87.9% 12.1% 14.3% 85.7%
Prop. 53.2% 46.8% 91% 9% 20% 80%

National Institute of Standards and Technology database
(MNIST), which is a large database of handwritten digits
commonly used for training various image processing systems.
In addition, ten classes were used, and the network is trained
with 20 epochs with Edward library [12]. Meanwhile, we
set count T as 100 in each layer. The BNN inference is
evaluated and compared on the standard implementation and
the proposed near-memory architecture implementation.

And some additional principles are adopted. First, we only
focus the inference process in this work and assume that
the BNN training is already finished outline using Edward
framework. Second, the energy consumption of generating
random numbers is not taken into consideration.

B. Implementation Results

The implementations are evaluated by dividing the system
into computation units part and memory units part for compar-
ison. The core blocks are designed with Verilog language and
synthesized by Synopses Design Compiler on 45 nm FreePDK
technology. The memory area and energy consumption are
estimated by CACTI tool [13]. The evaluation is based on 8-bit
fixed-point number accuracy for BNN inference. Table I de-
scribes the percentage of computation units and memory units
in area, energy and latency consumption. With introducing
the additional memory, the percentage of memory units area
increases from 44.6% to 55.4%. As the computation units take
most of energy consumption for activating adders and multi-
pliers, the data movement reduction could slightly reduce the
percentage of memory units energy cost. In addition, because
the memory access operation is slower than computation, the
reduction in memory access operation could bring benefits for
BNN acceleration, which results in the percentage decreasing
of memory units latency.

TABLE II: Comparison Results of Different Implementations.

Method Accuracy
Area

(mm2)
Energy
(µJ)

Runtime
(µs)

Traditional 95.42% 5.76 172 392
Proposed 95.42% 5.98 157 245

Table II describes the performance comparisons in terms of
accuracy, area, energy consumption, and the total execution
time. Compared with the traditional method, our design re-
quires an increase of 4% of the area. However, the additional
memory could cache the frequently accessed data to reduce the
average access consumption and latency efficiently. As shown
in Table II, the proposed approach could achieve 9% reduction

in energy consumption and a speedup of 1.6× when evaluated
on MNIST dataset.

V. CONCLUSION

This paper analyzes the BNN inference dataflow and clari-
fies the data access characteristics. And subsequently a BNN
customized near-memory computing architecture is proposed
to optimize the data access patterns. The proposed architecture
brings a cut down in average access latency and energy
consumption, which accelerates the BNN process on the
premise that BNN accuracy is not affected significantly. The
proposed architecture is evaluated on the MNIST dataset.
The experimental results show a 9% reduction in the energy
consumption and a 1.6× speedup at the cost of 4% area
overhead. In the future, we will improve our work from the
perspective of improving the data scheduling.

ACKNOWLEDGEMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (61602022, 61501013,
61571023, 61521091 and 1157040329), State Key Labo-
ratory of Software Development Environment (SKLSDE-
2018ZX-07), National Key Technology Program of China
(2017ZX01032101), CCF-Tencent IAGR20180101 and the
International Collaboration Project under Grant B16001.

REFERENCES

[1] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[2] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proceedings of CVPR, 2015, pp. 427–436.

[3] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural net-
works with bernoulli approximate variational inference,” arXiv preprint
arXiv:1506.02158, 2015.

[4] D. Kuzin, O. Isupova, and L. Mihaylova, “Bayesian neural networks for
sparse coding,” in Proceedings of ICASSP, May 2019, pp. 2992–2996.

[5] J. Shi, J. Chen, J. Zhu, S. Sun, Y. Luo, Y. Gu, and Y. Zhou, “Zhusuan:
A library for bayesian deep learning,” arXiv preprint arXiv:1709.05870,
2017.

[6] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in Proceed-
ings of ISCA, 2016, pp. 267–278.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proceedings of NIPS, 2015,
pp. 1135–1143.

[8] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Proceedings of NIPS, 2014, pp. 1269–1277.

[9] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans,
H. Corporaal, and A.-J. Boonstra, “A review of near-memory computing
architectures: Opportunities and challenges,” in Proceedings of DSD,
2018, pp. 608–617.

[10] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for
internet traffic classification,” IEEE Transactions on neural networks,
vol. 18, no. 1, pp. 223–239, 2007.

[11] A. Graves, “Practical variational inference for neural networks,” in
Proceedings of NIPS, 2011, pp. 2348–2356.

[12] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy,
and D. M. Blei, “Deep probabilistic programming,” arXiv preprint
arXiv:1701.03757, 2017.

[13] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in Proceedings of Microarchitecture, 2007, pp. 3–14.

206

