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Abstract— Spiking neural network (SNN) has emerged as 

one of the popular architectures in complex pattern recognition 

and classification tasks. However, hardware implementation of 

such algorithms using conventional CMOS based neuron 

consume resources and power that are orders of magnitude 

higher than that in human brain. This can be attributed to the 

mismatch of the computational architecture between biological 

brain and the current Boolean logic computing platform. 

Magnetic skyrmions have been intensively studied as a 

prospective information carrier in neuromorphic computing 

hardware design. In this work, a compact time-domain 

skyrmion-racing winner-takes-all (SR-WTA) leaky-integrate-

fire (LIF) spiking neuron network is presented for the first time. 

The skyrmion motion dynamics in the LIF neuron and the 

behaviors of the neuron network was investigated 

comprehensively. Both SPICE and micromagnetic simulations 

are performed to evaluate the functionality and performance of 

the proposed SR-WTA based SNN. 

Keywords— Skyrmion, Spiking Neural Network, SR-WTA, 

LIF neuron, Bio-inspired. 

I. INTRODUCTION  

Neural networks have been widely adopted for a range of 
classification and recognition applications due to their 
superior performances over traditional machine learning 
algorithms [1-6]. In order to effectively implement a neuron 
network in hardware, artificial neurons with ideal energy 
performance are essential [7-9]. In the last decades, the leaky-
integrate-fire (LIF) neuron model originated from Hodgkin-
Huxleyh model has attracted extensive attention for building 
bio-inspired spiking neuron network (SNN) [10]. 
Nevertheless, most reported LIF neurons still relies on 
semiconductor-based circuits via integrating transistors 
[11,12], greatly sacrificing integration density. Therefore, a 
compact and energy-efficient single-device implementation of 
LIF neuron is preferable for mimicking the biological neuron 
and the computing capacity be fully utilized.  

Magnetic skyrmion are topologically stable spin 
configurations which can be stabilized by Dzyaloshinskii-
Moriya interactions (DMI) in chiral bulk magnets or in thin 
films with broken inversion symmetry [13,14]. Owing to their 
ultra-small size (<10 nm), high drifting velocity(∼75 m/s) 
with ultra-low depinning current density (~106 A/m2) and high 
defect tolerance [15], skyrmion have emerged as prospective 
information carriers in neuromorphic computing hardware 
design. Recent experiments have demonstrated the existence, 
stability, current-induced motion and detection of skyrmions 
at room temperature [16-18]. Meanwhile, a variety of 
skyrmion-based devices have been proposed. In particular, 

several proposals attempt to employ skyrmions in neural 
networks: a skyrmion-based artificial synapse has been 
proposed in [19], in which both the short-term plasticity and 
long-term potentiation functionalities were demonstrated. 
Afterwards, skyrmion-based artificial neurons have also been 
designed in [20, 21], in which the neuronal activation function 
is achieved, mimicking the activity of a biologic neuron. 
These studies demonstrated the critical functions of skyrmion-
based neurons and paved a new way for advanced 
neuromorphic computing applications such as pattern 
recognition. The intrinsic properties of skyrmions may enable 
us to build SNN with improved LIF neuron performance 
which is inaccessible to conventional electronic devices. 

In this work, we propose a compact time-domain 
skyrmion-racing winner-takes-all (SR-WTA) neural network 
based on single-device leaky-integrate-fire (LIF) spiking 
neurons. The LIF spiking neuron exploits the tunable current-
driven skyrmion motion dynamics along a nanotrack and 
translates the received spike current from other connected pre-
neurons into the skyrmion racing velocity. A strong input 
spike current (amplitude or/and frequency) will lead to a fast 
skyrmion racing velocity. The skyrmion racing distance 
follows an “integrate-leaky” behavior depending on the 
temporal on/off duration of the input spike current pulse. Once 
the skyrmion reaches the finishing line (i.e. pre-defined 
threshold distance), it will be quickly detected and the neuron 
will “fire” an output spike and then reset. Only the first spiking 
neuron, in which the skyrmion first reaches the finishing line, 
will ever spike, (i.e. win over the others), by sharing a global 
reset signal for all the post-neurons via a feedback network. 
The skyrmion motion dynamics for the LIF artificial neuron 
and the WTA network are studied through micromagnetic and 
SPICE simulations, respectively. The rest of this paper is 
organized as follows: Section II discusses the background of 
the cortical LIF neuron model and skyrmion based neuron. 
Section III presents the proposed implementation of SR-WTA. 
In Section IV, micromagnetic and SPICE simulation methods 
are employed to carefully analyze the proposed SR-WTA 
SNN. Section V summarizes the work. 

II.  BACKGROUND 

A. LIF neuron 

In Fig. 1(a), we show a pair of biological neurons along 
with the interconnecting synapses. A form of sharp electrical 
pulses known as spikes are sent on a pre-neuron’s axon to the 
dendrites of post-neurons. The dendrites and axon blocks are 
implemented using interconnect circuits which model the 
spiking signal. Upon the reception of a particular spike, the 
membrane potential (Vmem) of the associated neuron rises by  

This work was supported by the China Postdoctoral Science Foundation 

(2018M640044) and the National Natural Science Foundation of China 

(61871008). 

978-1-7281-0397-6/19/$31.00 ©2019 IEEE 



a certain amount and then decays slowly until the next spike 
is received. When the membrane potential exceeds a certain 
threshold, the associated neuron will emit a spike signal. Thus, 
the neuron exhibits the LIF dynamics, which is altered by the 
weights of the synaptic interconnections between the neurons. 
Once a neuron fires, it remains non-responsive for a certain 
period of time known as the refractory period [22]. 

This LIF neuron can be described by (1): 

              𝐶𝑚𝑒𝑚 
𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
= −

𝑉𝑚𝑒𝑚

𝑅𝑚𝑒𝑚
+ ∑𝑗𝛿(𝑡 − 𝑡𝑗)𝑤𝑗       (1) 

where 𝑉𝑚𝑒𝑚  is the membrane potential, 𝑅𝑚𝑒𝑚  is the 
membrane resistance, 𝐶𝑚𝑒𝑚 is the membrane capacitance, 

𝑤𝑗  is the synaptic weight for the j-th input, and 𝛿(𝑡 − 𝑡𝑗) is 

the spiking event occurring at time instant 𝑡𝑗. 

B. Skyrmion Neuron 

Correspondingly, the schematic diagram of the skyrmion 
neuron is shown in Fig.1(b). A skyrmion is initially nucleated 
at an origin position and then move forward along the 
nanotrack under the drive force of the accumulated spike 
current. During the movement, the skyrmion motion dynamics 
depends on the competition between the repulsive force from 
the nanotrack edge and the driving force of the accumulated 
input spike current, which depends then on the amplitude of 
the driving current [23]. The model of the skyrmion-based 
neuron is given as equation (2): 

𝜏𝑚𝑒𝑚 
𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
= −(𝑉𝑚𝑒𝑚 − 𝑉𝑟𝑒𝑠𝑒𝑡) + ∑𝑗𝛿(𝑡 − 𝑡𝑗)𝑤𝑗    (2) 

where 𝜏𝑚𝑒𝑚  is the decay time constant, 𝑉𝑚𝑒𝑚  denotes the 
membrane potential (location of the skyrmion Xc), 𝑉𝑟𝑒𝑠𝑒𝑡  is 

the resting potential, ∑𝑗𝛿(𝑡 − 𝑡𝑗)𝑤𝑗  is the sum of the input 

weighted spikes from input terminal.  

III. PROPOSED IMPLEMENTATION 

A. Skyrmion Spiking Neuron Network Design 

Fig. 2 illustrates the schematic of the proposed SR-WTA 
LIF spiking neuron network, which is composed of a set of 
LIF spiking neurons and WTA modules. The key component 
of the LIF spiking neuron is a synthetic antiferromagnetic 
exchange coupled bilayer nanotrack (see Fig. 2(b)), in which 
a skyrmion can move back and forth driven by an electrical 

current pulse flowing through the heavy metal under the 
nanotrack via the spin Hall effect. 

The nanotrack, which consists of a top ferromagnetic (FM) 
layer and a bottom FM layer separated by an insulating spacer 
layer, has a linear perpendicular magnetic anisotropy (PMA) 
to induce gradient anisotropy energy [21]. More importantly, 
this bilayer nanotrack supports two coupled skyrmions with 
opposite topological numbers in the top and bottom FM layers. 
In this configuration, the skyrmion Hall effect [23] can be 
completely suppressed owing to the cancellation of 
backaction forces acting on each individual skyrmion, 
resulting in a straight and fast motion of skyrmions along the 
current direction [24]. This property is essential in our design 
for ensuring the accurate translation between the intensity 
(amplitude or/and frequency) of the input spike current and 
the skyrmion racing distance. 

 
Fig.1 (a) Illustration of a biological LIF post-neuron receives inputs from pre-neuron by interconnected synapses. (b) A representative skyrmion neuron for 

accumulating inputs generated by different pre-neurons. 

 

Fig. 2. Illustration of the proposed SR-WTA LIF spiking neuron network:(a) 

Overall schematic of the SR-WTA LIF spiking neuron network; (b) 

Schematic of the skyrmion-based single-device LIF artificial spiking neuron.  
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In addition, a skyrmion generation unit and a detection unit 
(e.g., spin-valve or magnetic tunnel junction [14, 25]) are 
placed at the two ends of the nanotrack, respectively. The 
received spike currents from other connected pre-neurons are 
utilized to drive the skyrmion motion along the nanotrack. 

B. WTA Module 

 The WTA module consists of a set of trigger-suppression- 
reset (TSR) circuits sharing a global reset signal line, as shown 
in Fig. 3. Here for example, three skyrmion-racing spike 
signals from the pre-connected LIF artificial neurons arrive at 
time 𝑡0 , 𝑡1  and 𝑡2 , respectively. In contrast to conventional 
WTA designs that decide the winner bit-by- bit or one-by-one, 
we only need to choose the first arrival spiking signal as the 
winner and shut off the others. The concept of the proposed 
WTA circuit is to use a pull-down switch to turn off the losers 
by activating a global reset signal line once the winner is 
detected. Initially, the global reset signal line is discharged to 
a low potential (Gnd) by turning on the NMOS transistors 

(N0-N2), which makes the PMOS transistors P0, P2, and P4 
on, while P1, P3, and P5 off. Once the first neuron spikes, then 
the spiking signal will propagate forward to the inverter IV0 
and makes the global reset signal line be pulled up to a high 
potential (Vdd) by charging through P6. Meanwhile, P0, P2-P5 
are turned off, making the other spiking signals from later 
spiking neurons disconnected from the TSR circuit. As can be 
seen, only the first spiking neuron will ever spike, i.e., win 
over the others. 

IV. SIMULATION AND DISCUSSION 

Our simulation framework consists of two main parts: (a) 
micromagnetic simulations for studying the skyrmion motion 
dynamics and for validating the functionality of the LIF 
spiking neuronal behavior; and (b) SPICE circuit simulations 
of the SR-WTA LIF spiking neuron network. 

A. Micromagnetic Simulation 

Micromagnetic simulations were performed using the 
Object Oriented Micro-Magnetic Framework (OOMMF) 
software [26] by solving the Landau-Lifshitz-Gilbert (LLG) 
equation including the DMI module [27] as (3).  

𝑑𝑚

𝑑𝑡
= −𝛾𝑚 × ℎeff + 𝛼 (𝑚 ×

𝑑𝑚

𝑑𝑡
) 

                                       −
𝛾ℏ𝑃𝑗𝑑

2𝜇0𝑒𝑀𝑠𝑡𝑓
[𝑚 × (𝑚 × 𝑚𝑝)]   (3) 

The key parameters summarized in Table.1 are as 
following: the width and length of the bilayer nanotrack are 
80 nm and 300 nm, respectively, Gilbert damping 𝛼 = 0.3, 
exchange stiffness 𝐴 = 15 pJ/m, spin polarization 𝑃 = 0.4, 
saturation magnetization 𝑀𝑠 = 580 kA/m, and DMI value 
𝐷 = 3 mJ/m2. Furthermore, the PMA value of the nanotrack 
satisfies a linear relationship, i.e., 𝐾𝑢(𝑙𝑥) = 𝐾𝑢0 + ∆𝐾𝑢 ⋅ 𝑙𝑥, 
in which 𝐾𝑢0 = 0.7 MJ/m3, ∆𝐾𝑢 is the PMA increasing rate 
at 7.0 × 10−4 MJ/m3 ∙ nm , and 𝑙𝑥  is the relative distance 
from the nanotrack origin. All samples are discretized into 
cells of 2 nm × 2 nm × 1 nm in the simulation, which is 
sufficiently smaller than the typical exchange length and the 
skyrmion size to ensure the numerical accuracy. More details 
on the micromagnetic simulations can refer to [14, 24]. The 
skyrmion racing velocity is linearly proportional to the density 
of the input spike current, as shown in Fig. 4. Therefore, the 
skyrmion racing velocity or distance can well correspond to 
the intensity of the input spike current. Initially, a skyrmion is 
generated under the generation unit. Then if any connected 
pre-neurons spike, the accumulated spike current drives the 

 

Fig. 3. Schematic of the TSR WTA circuit. 

 

Fig. 4. Skyrmion racing velocity as function of input spike current density.  

 

TABLE. 1 KEY PARAMETERS IN SIMULATION. 

Parameter Description Value 

𝑴𝐒 Sat. magnetization       580 kA/m 

𝑨 Exchange constant        15 pJ/m 

𝑫 DMI factor        3 mJ/m2 

𝜶 Gilbert damping factor 0.3 

𝑲𝒖𝟎 Magnetic anisotropy 0.7 MJ/m3 

𝑷 Spin polarization 0.4 

𝒍 × 𝒘 Length and width 300nm × 80nm 

 



skyrmion racing along the nanotrack, depending on the 
competition between the gradient PMA energy and the driving 
force of the spike current pulse, which depends then on the 
intensity of the input spike current pulse.  

The skyrmion racing distance exhibits an “integrate-leaky” 
behavior, as shown in Fig. 5, mimicking the membrane 
potential of a biological neuron. Fig. 5 illustrates the skyrmion 

racing velocity (or distance) as a function of the density (Fig. 
5(a)) and frequency (Fig. 5(b)) of the input spiking current, 
respectively. In Fig. 5(a), we set a constant frequency of 500 
MHz but vary the density (among 5 MA/cm2, 10 MA/cm2, 
and 15 MA/cm2 ) of the input spike current pulse. On the 
other hand, in Fig. 5(b), we set a constant amplitude of 
5 MA/cm2 but wary the frequency (500 MHz, 312.5 MHz, 
and 666.7 MHz) of the input spike current pulse. As can be 
seen, either the density or frequency should exceed a 
threshold to drive the skyrmion moving forward, i.e., 
integrate before “leaky” to the original position. The neuron 
associated with a high-intensity input-spike current will win 
over others. That is, if the amplitude or/and the frequency of 
the input spike current is large enough to overcome the 
gradually increased PMA energy (or repulsive force), the 
skyrmion moves forward; otherwise the skyrmion moves 
backward. Once the skyrmion reaches the finishing line under 
the detection unit (located at a pre-defined threshold distance), 
it will be detected via, e.g., the topological Hall effect or the 
magnetoresistance effect [13], and finally the neuron “fires” 
an output spike and then reset. The output spike signal is 
further propagated to the WTA module.  

B. SPICE Simulation 

A SPICE electrical model of the LIF spiking neuron was 
developed in Verilog-A language. Hybrid skyrmion/CMOS 
SPICE simulations were performed under the 40 nm 
technology node to investigate the functionality and 
performance of the SR-WTA LIF spiking neuron network. 

Fig. 6 shows the SPICE simulation waveforms with three 
neurons as an example, validating the functionality. Here the 
three input spike currents are with amplitudes of 46.6 μA,18.8 
μA, and 9.4 μA, respectively, and with the same pulse width 
of 1.5 ns. The skyrmion diameter is about 24 nm under the 
default parameters. Obviously, the neuron with the biggest 
input spike current first reaches the finishing line and wins 
over the others. Thanks to the high-speed and low-power 
current-induced skyrmion motion, the delay and energy of the 
proposed SR-WTA ILF spiking neuron network are rather 
small, about 0.75 ns and 0.65 mW in this example, which are 
much below conventional WTA circuits based on silicon 
integration. Furthermore, the resolution and capacity of the 
proposed SR-WTA ILF spiking neuron network is scalable 
and reconfigurable through tuning the nanotrack length or/and 
the intensity of the input spike current pulse.  

V. CONCLUSIONS 

In this work, we proposed for the first time a time-domain 
SR-WTA network based on the LIF spiking neurons, which 
offers a single-device implementation of the neurons with 
compact area, high-speed and lower energy consumption. 
Based on micromagnetic and SPICE simulations, the 
functionality and performance of the SR-WTA LIF spiking 
neuron network were investigated. This preliminary result 
suggests new possibilities for utilization of SNN and will 
encourages us on promoting skyrmion-based devices in more 
complex neuromorphic applications 

 

 

 

 

Fig. 5. Illustration of the skyrmion racing velocity (or distance) as a function 

of the density (a) and frequency (b) of the input spiking current, respectively. 

Here the X-distance to time (i.e., the slop angle 𝜃) denotes the skyrmion 

racing velocity. 

 

Fig. 6. Hybrid skyrmion/CMOS SPICE simulation waveforms of 

the proposed SR-WTA LIF spiking neuron network (three spike 

outputs as an example) under the 40 nm technology node. 
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