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Abstract—Vectorless power grid verification is a practical
approach for early stage safety check without input current
patterns. The power grid is usually formulated as a linear system
and requires intensive matrix inversion and numerous linear
programming, which is extremely time-consuming for large scale
power grid verification. In this paper, the power grid is repre-
sented in the manner of domain-decomposition approach, and we
propose a selected inversion technique to reduce the computation
cost of matrix inversion for vectorless verification. The locality
existence among power grids is exploited to decide which blocks of
matrix inversion should be computed while remaining blocks are
not necessary. The vectorless verification could be purposefully
performed by this manner of selected inversion while previous
direct approaches are required to perform full matrix inversion
and then discard small entries to reduce the complexity of
linear programming. Meanwhile, constraint locality is proposed
to improve the verification accuracy. Experimental results show
that the proposed approach could achieve significant speedups
compared to previous approaches while still guaranteeing the
quality of solution accuracy.

Keywords—Selected Inversion, Locality, Vectorless Power Grid
Verification, IR Drop, Signal Integrity.

I. INTRODUCTION

With the continuous scaling of process technology, a trend
of decreasing supply voltages, increasing power density and
tighter noise margins has been observed to have a critical
impact on voltage integrity which is becoming a big concern
for high performance integrated circuits design. Excessive
voltage fluctuation on the power grids can result in longer
circuit delays and lead to functional failures. Consequently,
the safety check of the voltage integrity on power grids has
become crucial in reliable chip design.

Power grid verification is traditionally performed by simu-
lation approach, which requires the information of the current
excitations by the circuit loadings. Once the power grid is
simulated and the voltage noise at every node is determined,
it is easy to check the grid safety. Total safety check using
this approach requires the simulation of a comprehensive set
of current patterns which will be extremely time-consuming.
Furthermore, it is impracticable to verify the power grid at an
early stage with uncertainty mode while the circuit behaviors
are unknown. To overcome these issues, the vectorless verifi-
cation is first proposed as a formal approach to verify power
grid with uncertainty mode [1], and later many contributions
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are made to further improvements. It is based on the concept
of current constraints to capture the uncertainty of the circuit
behaviors. The current constraints are a set of upper bounds on
each current drawn and can be obtained from the knowledge
of the overall power dissipation on each circuit block. Under
these constraints, power grid verification becomes a problem
for computing the worst-case voltage fluctuations at each node
subject to current constraints which can cover all possible
current waveforms.

There are several further research topics among the recent
works. On the aspect of power grid modeling method, DC
model is first considered in [1], RC model is introduced to
perform transient verification in [2], and RLC model is adopted
to verify power grid circuits operating at high frequencies in
[3]. On the aspect of current constraints, local constraints and
global constraints are first proposed in [1], transient current
constrains are introduced for practical transient noise predic-
tions in [4], and hierarchical current and power constraints
are adopted for more realistic verification in [5]. Due to
the extremely high complexity of the verification problem,
many contributions are made to reduce the problem size
for efficient verification. They include several efficient sparse
matrix inverse methods, such as SPAI technique [6], AINV
method [7] and H Matrix approach [8]. In [9], the authors
proposed a hierarchical matrix inversion algorithm to speed up
the computation of each row of the inverse. And [10] reduces
the number of LP problems by examining dominance relations
among node voltage drops and branch currents. In [11], a node
elimination approach is utilized to systematically reduce the
grid size and accurately compute the upper bounds while the
node safety criteria is still guaranteed. In [12], model order
reduction (MOR) was adopted to reduce the complexity of
formulating LP problems. Meanwhile, a convex dual algorithm
was proposed to solve LP problems more efficiently in [13].

Despite significant improvements among these approaches,
it is still extremely expensive to verify a large scale pow-
er grid by vectorless approach because the number of LP
problems to be solved and the size of each LP problem are
proportional to the size of the power grid. Therefore, more
efficient approaches should be proposed to perform vectorless
verification for practical use. In this paper, we propose a novel
selected inversion technique for efficient vectorless verification
by exploiting grid locality and constraint locality. This is a
sufficient method that takes advantage of locality across the
power grid. To verify each node, it can capture the current
sources that are most influential on this node, and subsequently
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it selectively computes the matrix inverse to formulate a
reduced-size optimization problem while still guaranteeing the
quality of solution accuracy. Experimental results show that the
proposed approach could achieve significant improvements in
runtime compared to previous approaches.

The rest of this paper is organized as follows. A brief
introduction to the problem formulation and the previous
approaches are provided in Section II. The details of the
proposed selected inversion technique are presented in Section
III. Experimental results are illustrated in Section IV, and
concluding remarks are given in Section V.

II. PRELIMINARIES

A. Vectorless Power Grid Verification

Power grid analysis is usually performed by Kirchoffs Law
which builds the R/RC/RCL network as linear systems. For
clarity, only DC model is presented for static verification in
this paper. And without loss of generality, RC and RCL model
can also be formulated for transient verification. Considering a
n-node power grid with purely resistive model, static analysis
can be formulated using traditional modified nodal analysis
method as the following linear system of equations [14]:

Gv = i (1)

where G ∈ R
n×n is the grid conductance matrix, v ∈ R

n×1

is the vector of node voltage, and i ∈ R
n×1 is the vector

of current sources representing the underlying circuitry. By
properly tackling the voltage sources, the above system can be
reformulated as a revised system equation which can be solved
directly to obtain the voltage drop values [1]. From the revised
system equation, the vector v is to represent the voltage drops
of the circuit nodes.

The vectorless verification approach is proposed for early
verification on power grids when the details of the underlying
circuitry may not be known. Current constraints provide a way
to capture the uncertainty about circuit behavior, which can be
obtained from the knowledge of the design specifications, such
as chip area, power budget and engineering judgments. Under
this formulation of the grid, the verification problem becomes a
linear optimization problem where the vector of voltage drops
is maximized subject to the current constraints.

Following the previous works [1][9], we use two types of
constraints: local constraints and global constraints. Local con-
straints are upper bounds on the individual current excitations
and represent the maximum current drawn by individual cells
or blocks which are connected to the grid nodes. They can be
represented as

0 ≤ i ≤ IL (2)

where IL ∈ R
n×1 is a vector of fixed current values. Global

constraints are introduced to provide an upper bound on the
sum of currents drawn by groups of current sources. They are
typically chosen based on some knowledge of the peak power
dissipation of a group of circuit blocks. Assuming there are m
global constraints, and then can be expressed as matrix form

0 ≤ U i ≤ IG (3)

where U ∈ R
m×n is an Boolean matrix that indicates which

current sources are present in each global constraint, and IG ∈

R
m×1 is a vector of upper bounds on the sum of currents

included in each circuit block.

B. Problem Formulation

The vectorless verification is interested in finding the worst-
case voltage variations at all the nodes, that is, obtaining upper
bounds on the maximum voltage drops of each node under all
the possible current patterns that satisfy the local and global
constraints. Thus, the verification problem has been formulated
as an optimization problem of maximum voltage noise under
linear current constraints in [13]. Consider an RC power grid
of n nodes with conductance matrix G and capacitance matrix
C. Let A = G for DC analysis mode or A = G + C

∆t for
transient analysis mode with time step ∆t . Given local and
global current constraints with parameters IL, IG and U , solve
for each node 1 ≤ j ≤ n,

Maximize vj s.t.
Av = i, 0 ≤ i ≤ IL, 0 ≤ U i ≤ IG

(4)

where i is the decision variables of current sources, v is
the vector of corresponding voltage noises, and vj is the jth
element of v.

Since A is known to be an n×n symmetric positive definite
M matrix, it is invertible while A−1 is also symmetric and
satisfies A−1 ≥ 0. Subsequently, the optimization problem can
be decomposed into two sub-problems as follows [13]:

I : Compute cj by solving Ax = ej
II : Maximize vj = cTj i s.t.

0 ≤ i ≤ IL, 0 ≤ U i ≤ IG

(5)

where cj ∈ R
n×1 is a vector of coefficients, and ej ∈ R

n×1

is a Boolean vector with 0s except for its jth element being
1. Computing cj is equivalent to picking up the jth column
of A−1, which can be obtained by solving linear equations
shown in sub-problem I. It can be considered as the sensitivity
of the jth node to the current sources attached to the circuit
nodes across the grid. The sub-problem I has been studied in
other similar researches, such as equivalent resistance analysis
between each two circuit nodes, and electric static discharge
(ESD) analysis [15]. The problem decomposition (5) provides
a friendly verification approach [13]. For verifying each node,
it requires to solve linear equations once and LP problem once
while both of the problem size is n. The total complexity of
full grid verification is proportional to the number of nodes in
the grid, which is still very challenging or even prohibitive for
practical use.

C. Previous Approaches

The primary goal is to reduce the problem size or improve
the solving efficiency of sub-problem I and sub-problem II.
Sparse approximate inverse (SPAI) technique is utilized to
compute an approximate cj with a small number of nonzero
entries using least square methods, and then the involved linear
programming problem can be much simplified and solved
efficiently [6]. In the later work [9], convex dual algorithms
are adopted to solve the LP problem more efficiently, and a
preconditioned conjugate gradient (PCG) method is utilized
to solve sub-problem I. But as we have observed, the used
SPAI technique and PCG method are still relatively inefficient
in verifying large scale power grids. Since it is obvious that
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direct linear solvers are more efficient than iterative solvers
for transient simulation, such as Cholmod [16], we realize that
direct solvers should also be more efficient when utilized to
solve sub-problem I. Consequently, it is of great necessity to
investigate novel approaches for more potential improvements
in large scale verification.

III. SELECTED INVERSION

The idea of selected inversion originally arose from sev-
eral scientific applications which need to calculate a subset
of the entries of the inverse for a given matrix. Examples
include examining inverse covariance matrices in uncertainty
quantification [17], finding a rational approximation for Fermi-
Dirac functions in the electron density function theory [18],
etc. From a computational viewpoint, it is natural to develop
algorithms for selected inversion that are faster than inverting
the whole matrix. Especially for some model problems, when
A is obtained from a finite difference discretization of a
Laplacian operator or from lattice models in statistical or
quantum mechanics with a local Hamiltonian [19], the spec-
ified diagonal entries of the matrix inverse can be efficiently
extracted by selected inversion. Similarly, it is of great interest
to take the advantage of selected inversion for verifying power
grids because it is also formulated by Laplacian discretization.
In this section, a selected inversion implemented on block level
is demonstrated for efficient vectorless power grid verification.

A. Methodology

The standard approach for computing A−1 is to first
perform Cholesky factorization A = LLT , where L is a lower
triangular matrix. Subsequently, A−1 = (x1,x2, . . . ,xn) can
be obtained by solving a number of triangular systems

Ly = ej , LTxj = y (6)

for j = 1, 2, . . . , n, where ej is the jth column of the identity
matrix. The computational cost of such direct inversion is
generally O

(

n3
)

, with n being the dimension of A.

However, when A is sparse symmetric positive and definite,
we can exploit the sparsity structure of A−1 to perform
selected inversion on block level by exploiting grid locality.
The inverse of a non-singular sparse matrix is dense, especially
for a matrix that results from a mesh structure; its inverse
is almost full. However, the values of the entries among the
inverse are observed to decay exponentially as one moves
away from the diagonal when A is diagonally dominant
and symmetric positive definite. This phenomenon can be
confirmed from the sensitivity analysis among the grid. And
it can be utilized to construct a specific sparsity pattern for
approximate representation. Especially for the power grid with
Flip-Chip package, the locality effect [20] can preserve this
sparsity pattern to be more significant.

Locality means that the absorbing current sources can only
trigger voltage drop within a local area around them. And
beyond this area that is called grid shell in [20], the triggered
voltage drop will attenuate to zero very fast. That is, for such
a grid node, its voltage drop sensitivity is mainly influenced
by the current sources attached to the nodes within the grid
shell. Take a small grid with flip-chip package as an example,
a strong current source is attached to the center node of a

Voltage Drop Contour

 

 

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fig. 1. Locality effect on Flip-Chip (a strong current source attached to the
center node of a sample 100× 120 power grid with 6× 6 pads array).

100 × 120 grid with uniformly distributed 6 × 6 pads array
while small current sources are attached to other nodes. Fig.
1 shows the voltage drop distribution triggered by this strong
current source. The area that contains dominant voltage drop
is around the center part of the grid. Meanwhile, the voltage
drop decreases dramatically with the increasing distance from
the center node. Especially for the area outside the four nearest
pads array, the voltage drop is affected slightly by the strong
current source. And for the area outside the second nearest
pads array, the voltage drop is even much smaller. Hence, the
area bounded by the nearest pads array can be considered as
a local area to exploit sparsity representation.

Considering a power grid with Flip-Chip package, the
conductance matrix A can be reformulated as a domain-
decomposition form. As shown in Fig. 2, the power grid is
partitioned into several subgrids according to the pad distribu-
tion. For each subgrid, the nodes inside the subgrid are denoted
as internal nodes, and the nodes on the subgrid boundaries are
referred as interface nodes or global nodes. Assuming through
possible row and column permutations that the full grid is
partitioned into p subgrids {Ωk} for k = 1, 2, . . . , p, and then
A has the following form

A =













B1 F1

B2 F2

. . .
...

Bp Fp

FT
1 FT

2 · · · FT
p G













:=

(

B F

FT G

)

where Bk ∈ R
nk×nk is the conductance matrix of kth subgrid

Ωk, Fk ∈ R
nk×nG is a negative matrix representing the

conductance links between internal nodes and global interface
nodes, G ∈ R

nG×nG is the conductance matrix represent-
ing the relationship between all global interface nodes, for
k = 1, 2, . . . , p, and nG + nB = n with nB :=

∑p
k=1 nk,

while Bk and Fk are denoted as

B := diag (B1, B2, . . . , Bp)

FT :=
(

FT
1 , FT

2 , . . . , FT
p

)

for intuitive representation. Each Fk represents a set of connec-
tions from the internal nodes of subgrid k to its global interface
nodes. Define nFk

as the number of nonzero columns of Fk,
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Fig. 2. Illustration of Power Grid Partitioning.

consequently it is determined by the number of these global
interface nodes that are adjacent to subgrid Ωk, and it satisfies
∑p

k=1 nFk
≪ nG for a relatively small p.

Before we present the selected inversion approach, it will
be helpful to first review the major operations involved in the
block level LDLT factorization

A =

(

I

HT I

)(

B

G− FTB−1F

)(

I H
I

)

where H := B−1F , and S := G − FTB−1F = G − FTH
is known as the Schur complement. Taking the inverse of the
above matrix yields

A−1 =

(

B−1 +B−1FS−1FTB−1 −B−1FS−1

−S−1FTB−1 S−1

)

A−1 :=

(

B−1 +HS−1HT −HS−1

−S−1HT S−1

)

(7)

Since B is a block diagonal matrix, H ∈ R
nB×nG can be

obtained by solving p sequences of nG linear systems

BkHk = Fk, k = 1, 2, . . . , p (8)

where HT :=
(

HT
1 , H

T
2 , . . . , H

T
p

)

and Hk ∈ R
nk×nG . Notice

that each Hk can be interpreted as a transformed influence of
the local inverse B−1

k on the global interface nodes, and has at
least nFk

nonzero columns. Accordingly, the number of linear
equations to be solved in (8) can be reduced from nG to nFk

for each k.

The global Schur complement S can be computed by

S = G−

p
∑

k=1

FT
k Hk (9)

where each term of the sum can be regarded as a local
contribution, and the sparsity of Fk can be further exploited. If
the dimension nG of Schur complement is not relatively large,
the directly computing S−1 can be efficient because it is known
that S can be generally well-approximated by a sparse matrix.

After that, the term HS−1HT in the upper-diagonal block
of (7) can be obtained by representing it as

A−1 :=

(

B−1 +HL −U
−L S−1

)

(10)

1 2 3 4 5 6 7 8 9

1

2

3

4

5
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7
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9

subgrid

subgrid

1 T

k t
H S H

k

t

Fig. 3. Illustration of the entries in HS−1HT .

where U = LT , and thus it requires to solve a sequence of nB

linear equations of the form SL = HT with L ∈ R
nG×nB ,

which can be carried out locally by distributing S to each
subgrid and solving

SLk = HT
k , k = 1, 2, . . . , p (11)

by a direct method when nG is not relatively large, where
LT :=

(

LT
1 , L

T
2 , . . . , L

T
p

)

and Lk ∈ R
nG×nk . Subsequently,

the resulted HL can be similarly obtained by locally comput-
ing HkLk for k = 1, 2, . . . , p.

B. Grid Locality and Constraint Locality

If the number of global nodes nG is relatively small, S−1

can be formed explicitly and the sparsity can be considered
to perform a well-approximate inverse. Notice that the term
B−1+HS−1HT in the upper-diagonal block in (7) dominates
the most dimensions of A−1, while B−1 can be obtained by
inverting the conductance of each subgrid. The internal details
of HS−1HT can be represented as

HS−1HT =











H1S
−1HT

1 H1S
−1HT

2 · · · H1S
−1HT

p

H2S
−1HT

1 H2S
−1HT

2 · · · H2S
−1HT

p
...

...
. . .

...

HpS
−1HT

1 HpS
−1HT

2 · · · HpS
−1HT

p











where each block HkS
−1HT

t can indicate the relationship
between subgrid Ωk and Ωt for 1 ≤ k, t ≤ p. And the entries
in this term dominate the total number of the entries of the full
inverse. But as we have observed, the entries of the most of the
blocks in this term are significantly small. This phenomenon
has confirmed the existence of the locality effect among the
grid. Taking a power grid with 9 partitions as an example,
the entries of HS−1HT can be illustrated in Fig. 3. The
corresponding entries representing subgrid Ωk and subgrid Ωt

is known as HkS
−1HT

t . If subgrid Ωk is far enough away from
subgrid Ωt, the influence between them is significantly small,
which is called grid locality and can be exploited for selected
inversion. As shown in Fig. 3, if only the influence between
the neighbored subgrids is considered, the entries HkS

−1HT
t

of corresponding blocks are kept, otherwise there is no need
to figure them out.

Even though the values of ignored entries are significant-
ly small, the total number of ignored entries may be very
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large. Generally, their accumulative effects cannot be simply
ignored and subsequently more considerations should be taken
to improve the verification accuracy. From the viewpoint of
verification, the problem can be expressed as

(

B F

FT G

)(

vinner

vinter

)

=

(

iinner
iinter

)

(12)

where vinner and vinter are the grid nodes to be verified for
internal nodes of each subgrid and global interface nodes,
respectively; and iinner and iinter are the current sources
which are attached to internal nodes and interface nodes,
respectively. By employing the represented inverse in (7), the
verification problem can be reformulated as
(

vinner

vinter

)

=

(

B−1 +HS−1HT −HS−1

−S−1HT S−1

)(

iinner
iinter

)

that is, vinner and vinter can be verified independently by

vinner = B−1iinner +HS−1HT iinner −HS−1iinter

vinter = −S−1HT iinner + S−1iinter

Interface nodesInternal nodes

inner
i

inter
i

ˆ
inner
i

Fig. 4. Constraint Locality Demonstration.

Since there are many entries of blocks in HS−1HT

that are not kept due to the grid locality, it will result in
significant errors when verifying the voltage noise. In this
work, a concept of constraint locality is proposed to take
this phenomenon into account for efficient verification. That
is, the sensitivity of voltage drop has a locality characteristic
for global constraint. To verify the internal nodes in subgrid
Ωk, consider if the subgrid Ωt is far away enough from it,
the corresponding entries HkS

−1HT
t will be ignored due to

the grid locality. Aiming to improve the verification accuracy,
the current sources attached to the internal nodes of subgrid
Ωt are considered to be removed and attached on the interface
nodes around them. The constraint locality is that, regardless of
whether the current sources are attached to the internal nodes in
subgrid Ωt or attached to the interface nodes around them, the
influence of them to verify subgrid Ωk is almost the same. As
shown in Fig. 4, the current sinks iinner attached to the internal
nodes are properly moved to the interface nodes around them.
The most exact way to mapping them to the interface nodes
is to compute HkS

−1HT
t , but as we have observed, it should

be sufficient to roughly assign them as îinner on average since
the constraint locality can preserve the verification accuracy.

C. Implementation

Based on the grid locality and constraint locality, the re-
sulted selected inversion technique is implemented as shown in
Algorithm 1. The major computation cost of selected inversion
is first to perform inversion for each subgrid, and subsequently

to compute the resulted H , U and X by matrix multiplication.
However, their sparsity pattern should be carefully further
exploited with a proper threshold for efficient implementation.
The term 〈k | t〉 in line 10 is to decide whether the correspond-
ing entries of HkS

−1HT
t between subgrid Ωk and subgrid

Ωt are computed or ignored. Define a parameter sense level
to control the depth number of neighbored subgrids to be
considered, that is, if abs (k − t) is no more than sense level,
then HkS

−1HT
t cannot be ignored, otherwise ignored. It is

worth mentioning that there is actually no need to explicitly
figure out all of the entries at once and then solve the involved
LP problems, which will require extremely large scale memory
resources. A preferable approach is to first verify the global
interface nodes, and subsequently to compute the entries of
the corresponding inverse for each subgrid one by one while
the involved LP problems are solved one by one.

Algorithm 1: Selected Inversion

1 Partition blocks and determine {Bk}, {Fk} and G ;
2 Set S := G ;
3 for k = 1, 2, . . . , p do

4 Compute Dk := B−1
k ;

5 Compute Hk := B−1
k Fk ;

6 Update S := S − FT
k Hk ;

7 end

8 Compute S−1 ;
9 for k = 1, 2, . . . , p and t = 1, 2, . . . , p do

10 if 〈k | t〉 then

11 Compute Dk := B−1
k ;

12 Compute Uk := HkS
−1 and Lk := UT

k ;

13 Compute Xkt := UkH
T
t ;

14 Update Dk := Dk +Xkk ;
15 end
16 end

17 Set A−1 :=

(

B−1 +X −U
−L S−1

)

D. Complexity Analysis

Similar to SelInv in [18], we also present the computation
advantage of the proposed selected inversion technique com-
pared to the direct inversion method. Without loss of generality,
suppose for a power grid with n × n mesh, the total number
of grid nodes is N = n × n. And suppose that a m × m
pads array is uniformly distributed throughout the power grid,
where m ≪ n and denote M = m×m. It is easy to know that

the power grid can be partitioned into p = (m− 1)
2

subgrids.
The number of global interface nodes is

(

2mn−m2
)

, that
is, the matrix dimension of the Schur complement satisfies

S ∈ R
(2mn−m2)×(2mn−m2). And the matrix dimension of

each subgrid is
n2

−(2mn−m2)
p = (n−m)2

p =
(

n−m
m−1

)2

.

Suppose that the complexity of computing the Cholesky
decomposition is O

(

N3
)

, and substitution of the triangular

matrix is O
(

N2
)

, the total complexity of directly computing

the inverse is about O
(

N3
)

. For inversion of all subgrid-
s, the total complexity of Cholesky factorization is about
(n−m)6

p2 ∝ N3

p2 , and the total complexity of substitution is

about
(n−m)4

p ∝ N2

p . For computing the inversion of Schur
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TABLE I. PERFORMANCE RESULTS OF THE PROPOSED SELECTED INVERSION COMPARED WITH THE DIRECT INVERSION APPROACH. THE RUNTIME IS

ILLUSTRATED IN SECOND. THE VOLTAGE DROP IS ILLUSTRATED IN mV .

Benchmarks Direct Inversion Selected Inversion Speedup

N M Td
inv Td

LP vmax T s
inv T s

LP Emax Eavg Td
inv/T

s
inv Td

LP /T s
LP

7200 12 34.49 9.73 50.41 1.64 10.55 0.67 0.08 21 1

27000 25 688.94 142.78 49.71 26.23 79.65 3.15 1.16 26 2

34200 42 898.42 260.75 46.71 42.15 78.64 3.07 1.36 21 3

50600 56 2157.10 721.33 48.46 94.70 104.38 4.61 2.49 23 7

90000 100 6040.58 4003.01 47.18 329.73 115.18 2.19 1.50 18 35

140000 144 17954.62 14903.61 46.12 881.09 175.31 5.47 2.73 20 85

560000 484 307204.93 3963075.20 45.10 17162.19 858.86 4.43 1.07 18 4614

complement, the total complexity of Cholesky factorization is

about
(

2mn−m2
)3

∝ (MN)
1.5

, and the total complexity

of substitution is about
(

2mn−m2
)2

∝ MN . The total
computation cost of matrix multiplication in step 5, step 6,
step 12 and step 13 can be presented as
[

(n−m)
4 (

2mn−m2
)

p
+ (n−m)

2(
2mn−m2

)2

]

∝
N2.5

p

It can be observed that, the major computation cost of the
selected inversion is to perform matrix inversion of each
subgrid. Consequently, the total complexity of selected in-

version can be roughly estimated as N3

p2 . In practice, the

sparsity pattern of the matrix Bk, Fk, Hk and Uk has been
further utilized for efficient implementation to make the actual
computation costs to be less than such theoretical bounds.
Accordingly, the complexity of direct inversion still remains
greater than selected approach. Consequently, the proposed
selected inversion will be much more efficient than the direct
approach when the grid locality and constraint locality can be
properly exploited.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Various experiments are carried out to validate the propos-
ing performance of the proposed selected inversion technique.
Experiments are carried out on a 64-bit Linux server with Intel
Xeon E5-2650 CPU@2.00GHz and 128GB RAM. Several
structured power grids are generated according to the typical
electrical parameters from industrial designs. The voltage
suppliers/pads array are uniformly distributed throughout the
power grids (Flip-Chip package), while all of the grid nodes
are connected to current sources. Local current constraints are
assigned according to the typical value from industrial power
grids, and global current constraints are generated by scaling
down the total amount of current drawn by groups of current
sources. For each power grid, we specify 9 global constraints
in our experiments.

The proposed selected inversion technique has been imple-
mented by Matlab scripts for evaluation. The direct inversion
approach is to compute an accurate inverse to obtain the exact
upper bounds of voltage noises. The popular direct solver
Cholmod [16] is employed to solve all of the involved linear
equations through Cholesky factorization. And for selected
inversion approach, a threshold of 10−3 is chosen to drop the
extremely small entries of the resulted solution for exploiting
its sparsity pattern. Gurobi optimizer [21] is invoked to solve
all of the involved LP problems for verifying the voltage

noises. It should be noticed that a significant reduction in
computation cost can be achieved by keeping the returned
vbasis and cbasis after each LP optimization and then pass
them to the next LP optimization as an advanced warm start.
Since the constraints information of each LP model is the
same as others, the variable basis and constraint basis could
be reused for verifying different nodes while it is possible to
simply update the objective coefficients.

B. Performance Results

The comprehensive performance results of the proposed
selected inversion are listed in Table I when compared with
the direct inversion approach. N is the number of synthetic
grid nodes. M is the number of voltage suppliers/pads. T d

inv
and T d

LP are the runtime of direct inversion and involved LP
optimization, respectively. T s

inv and T s
LP are the runtime of

selected inversion and involved LP optimization, respectively.
Since the verification accuracy is decided by sense level,
more considerations should be taken for the implementations
of selected inversion. As we have observed, it is accurate
enough to set sense level as 2 for the synthetic benchmarks.
Meanwhile, the drop tolerance is chosen as 10−3 for sparsity
pattern exploiting which is also accurate enough. The runtime
is separately reported by inversion time and LP time for
comprehensive comparison. vmax is the exact solution of
maximum voltage drop across the grid. This golden solution
is computed by the direct inversion approach and listed in
column 5. Emax and Eavg are the maximum solution error
and the average solution error respectively between the above
two approaches. As shown in Table I, the solution errors of
selected inversion approach are about several mV which can
be adopted for practical verification. The proposed selected
inversion approach can improve the runtime efficiency both on
matrix inversion and LP problem solving. For computing the
matrix inversion, it can achieve about 20X speedups compared
with the direct inversion approach, while both of them use
Cholmod [16] as internal linear solver. And for LP problem
solving, it can achieve about tens or hundreds of speedups
since the computed coefficients are much more sparse while
the solution accuracy is still guaranteed by constraint locality.

In addition, the proposed selected inversion is compared
with the hierarchical inversion approach [9] and the perfor-
mance results are listed in Table II. N is the number of
synthetic grid nodes. N̂ is the number of grid nodes used in
[9]. Th

inv and Th
LP are the runtime of hierarchical inversion

and involved LP optimization respectively which are reported
in [9]. Due to different benchmarks used for them, we com-
pare the runtime of verifying each thousand nodes while the
nodes number is almost same for each pair of benchmarks.
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TABLE II. PERFORMANCE RESULTS OF THE PROPOSED SELECTED INVERSION COMPARED WITH THE HIERARCHICAL INVERSION APPROACH [9]. THE

RUNTIME IS ILLUSTRATED IN SECOND.

Selected Inversion Hierarchical Inversion [9] Speedup

N T s
inv,perK T s

LP,perK N̂ Th
inv Th

LP Th
inv,perK Th

LP,perK Th
inv,perK/T s

inv,perK Th
LP,perK/T s

LP,perK

7200 0.23 1.47 5875 10.31 9.91 1.75 1.69 8 1

27000 0.97 2.95 22939 123.60 106.20 5.39 4.63 6 2

34200 1.23 2.30 35668 304.20 233.40 8.53 6.54 7 3

50600 1.87 2.06 51195 636.60 495.00 12.43 9.67 7 5

90000 3.66 1.28 90643 2062.80 1573.20 22.76 17.36 6 14

140000 6.29 1.25 141283 5184.00 3816.00 36.69 27.01 6 22

560000 30.65 1.53 562363 103680.00 69120.00 184.36 122.91 6 80

T s
inv,perK and T s

LP,perK are the runtime for verifying per
thousand nodes by direct inversion and involved LP optimiza-
tion, respectively. Accordingly, Th

inv,perK and Th
LP,perK are

the runtime for verifying per thousand nodes by hierarchical
approach, respectively. Even though disadvantage in hardware
platforms and programming language, the proposed selected
approach still obtains significant improvements. For matrix
inverse computation, the selected approach can achieve several
speedups than hierarchical approach which are listed in column
9. And for LP problem solving, the selected approach still
can achieve about scores of speedups for the largest case.
Consequently, it is worth noting that the proposed approach
should be more efficient in verifying larger power grids, which
make it scalable for large scale power grid verification.

The major advantage of the proposed selected approach is
that it can significantly reduce the problem size by selectively
computing the matrix inverse while the verification accuracy
can still be ensured by constraint locality. For early stage power
grid verification, the proposed approach can be very efficient
for roughly estimating the hotspot regions as a prediction and
subsequently other exact approaches can be further utilized on
these regions for more accurate verification.

V. CONCLUSIONS

In this paper, we presented a selected inversion approach
for efficient vectorless verification of power grids. The o-
riginal power grid is formulated in the manner of domain-
decomposition approach, and grid locality is exploited to selec-
tively compute the matrix inverse while the constraint locality
is utilized to guarantee the verification accuracy. Experimental
results have confirmed the efficiency of the proposed approach.
The selected inversion technique has further improved the
runtime efficiency which will ensure that vectorless verification
can be practical for large scale power grids. Additionally,
since both the proposed selected inversion algorithm and the
involved LP problems can be performed in parallel at different
levels, the verification problem will be conducted by exploiting
parallelism in the future.

REFERENCES

[1] D. Kouroussis and F. N. Najm, “A static pattern-independent technique
for power grid voltage integrity verification,” in Proc. ACM/IEEE

Design Automation Conference (DAC), 2003, pp. 99–104.

[2] M. Nizam, F. N. Najm, and A. Devgan, “Power grid voltage integrity
verification,” in Proc. IEEE International Symposium on Low Power

Electronics and Design (ISLPED), 2005, pp. 239–244.

[3] N. H. A. Ghani and F. N. Najm, “Handling inductance in early power
grid verification,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2006, pp. 127–134.

[4] X. Xiong and J. Wang, “Vectorless verification of RLC power grids
with transient current constraints,” in Proc. IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2011, pp. 548–554.

[5] C.-K. Cheng, P. Du, A. B. Kahng, G. K. H. Pang, Y. Wang, and
N. Wong, “More realistic power grid verification based on hierarchical
current and power constraints,” in Proc. ACM International Symposium

on Physical Design (ISPD), 2011, pp. 159–166.

[6] N. H. A. Ghani and F. N. Najm, “Fast vectorless power grid verification
using an approximate inverse technique,” in Proc. ACM/IEEE Design

Automation Conference (DAC), 2009, pp. 184–189.

[7] M. Avci and F. N. Najm, “Early P/G grid voltage integrity verification,”
in Proc. IEEE/ACM International Conference on Computer-Aided De-

sign (ICCAD), 2010, pp. 816–823.

[8] W. Zhao, Y. Cai, and J. Yang, “A multilevel H-matrix-based approximate
matrix inversion algorithm for vectorless power grid verification,” in
Proc. 18th Asia and South Pacific Design Automation Conference (ASP-

DAC), 2013, pp. 163–168.

[9] X. Xiong and J. Wang, “A hierarchical matrix inversion algorithm for
vectorless power grid verification,” in Proc. IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2010, pp. 543–550.

[10] N. H. A. Ghani and F. N. Najm, “Power grid verification using node and
branch dominance,” in Proc. ACM/IEEE Design Automation Conference

(DAC), 2011, pp. 682–687.

[11] A. Goyal and F. N. Najm, “Efficient RC power grid verification using
node elimination,” in Proc. Design Automation and Test in Europe

(DATE), 2011, pp. 257–260.

[12] Y. Wang, X. Hu, C.-K. Cheng, G. K. H. Pang, and N. Wong, “A realistic
early-stage power grid verification algorithm based on hierarchical con-
straints,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 31, no. 1, pp. 109–120, 2012.

[13] X. Xiong and J. Wang, “An efficient dual algorithm for vectorless power
grid verification under linear current constraints,” in Proc. ACM/IEEE

Design Automation Conference (DAC), 2010, pp. 837–842.

[14] T.-H. Chen and C. C.-P. Chen, “Efficient large-scale power grid analysis
based on preconditioned Krylov-subspace iterative methods,” in Proc.

ACM/IEEE Design Automation Conference (DAC), 2001, pp. 559–562.

[15] J. Rommes and W. H. A. Schilders, “Efficient methods for large resistor
networks,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 29, no. 1, pp. 28–39, 2010.

[16] Timothy A. Davis, Cholmod in Suitesparse 4.1.2. [Online]. Available:
http://www.cise.ufl.edu/research/sparse/SuiteSparse

[17] C. Bekas, A. Curioni, and I. Fedulova, “Low cost high performance un-
certainty quantification,” in Proc. 2nd Workshop on High Performance

Computational Finance, 2009, pp. 1–8.

[18] L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and W. E, “SelInv—An
algorithm for selected inversion of a sparse symmetric matrix,” ACM

Transactions on Mathematical Software, vol. 37, no. 4, 2011.

[19] J. M. Tand and Y. Saad, “Domain-decomposition-type methods for
computing the diagonal of a matrix inverse,” SIAM Journal on Scientific

Computing, vol. 33, no. 5, pp. 2813–2847, 2011.

[20] E. Chiprout, “Fast flip-chip power grid analysis via locality and grid
shells,” in Proc. IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), 2004, pp. 485–488.

[21] Gurobi Optimizer 5.0.2, Gurobi Optimization Inc. [Online]. Available:
http://www.gurobi.com/download/gurobi-optimizer

263


