
PowerRush∗ : Efficient Transient Simulation for Power Grid
Analysis†

[Invited Special Session Paper]
‡

Jianlei Yang Zuowei Li Yici Cai Qiang Zhou
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology
Tsinghua University, 100084, Beijing, China

yjl09@mails.tsinghua.edu.cn lizuoweirain@gmail.com
caiyc@mail.tsinghua.edu.cn zhouqiang@tsinghua.edu.cn

ABSTRACT
Transient analysis is the most practical and effective ap-
proach for power grid validation, but which is very chal-
lengeable for large scale VLSI chips because it is really time
consuming and requires large memory resources. In this pa-
per we proposed a parallel transient simulation approach
for efficient power grid analysis. Firstly we adopt symmet-
ric formulation for NA equation of RLC power grid to re-
duce memory usage. Meanwhile, fast Cholesky factorization
solver can be used to improve simulation efficiency. Sec-
ondly, we perform partition-based parallel transient simu-
lation for naturally independent subnets without accuracy
lost. Thirdly, we propose a composite simulation flow for
efficient and practical transient analysis for industrial pow-
er grid. Finally, several industrial power grid benchmarks
are evaluated on our approaches for high accurate transient
simulation with extremely low memory consumption.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Simulation

General Terms
Algorithms, Design, Performance, Verification

Keywords
PowerRush, Power Grid, Circuit Simulation, Transient Anal-
ysis

∗PowerRush is denoted as PowerRushTM for TradeMark
declaration.
†This work is supported in part by the National Natu-
ral Science Foundation of China (NSFC) No.60976035 and
No.61274031.
‡This paper is invited by Special Session of 2012 TAU Power
Grid Simulation Contest in ICCAD 2012.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA
Copyright @ 2012 ACM 978-1-4503-1573-9/12/11 ...$15.00.

1. INTRODUCTION
The performance and reliability of power distribution net-

work is degraded due to the higher device densities and
faster switching frequencies which cause large switching cur-
rents to flow on it [1]. Aiming to improve the robustness of
power grid network, designers usually need to perform both
static analysis (DC) and transient analysis. However, it is
really challengeable to analyze power grid with tens or even
hundreds of million nodes which has became the most com-
putation consuming tasks in design verification flow. Many
research efforts have been made to perform efficient simula-
tion in terms of accuracy, runtime as well as memory usage.

Static analysis is required to obtain the static IR-drop or
steady state responses corresponding to the IR-drop caused
by the average current flowing through a power supply net-
work. Due to the symmetric positive and definite (SPD) con-
ductance matrices, static analysis can be performed by many
efficient methods which includes Krylov-subspace method
[2], Hierarchical and Macro-modeling methods [3], Random
Walk [4], Multigrid methods [5][6], and etc.

Due to the growth in power consumption and switching
speeds of modern high performance chips, the Ldi/dt effects
are becoming a growing concern so that transient analysis
is required for determining the dynamic IR-drop and Ldi/dt
noise. But the MNA equation of RLC power grid is not still
SPD because addition current variables are introduced by
inductors. Many efficient solvers for SPD systems were not
still available [7]. General solution techniques such as LU
factorization can be used for the non-SPD system, however,
the large size of the network makes such general solution
infeasible. Partition based macro-modeling approach is pro-
posed in [7] to reformulate the original non-SPD system as
a SPD system which can be solved by Cholesky factoriza-
tion. But it requires too much more additional computa-
tion to practical use. Aiming to overcome this difficulty a
new approach is proposed to reformulate the MNA equation
as a symmetric NA equation by eliminating the additional
current variables [2]. In this paper, PowerRush adopts the
above reformulation to be solved by Cholesky factorization
related methods which can significantly improves the factor-
ization efficiency and reduce the memory consumption since
the Cholesky factorization takes only half of multiplications
and memory references than LU factorization.

Another challengeable topic in transient simulation is that
it requires performing each simulation on each time point so

653

that it can be very time consuming for a long simulation
period. Some parallel approaches have been proposed to
speedup transient simulation, some of which mainly focus
on performing fine-grained parallelization to accelerate sev-
eral kinds of linear solvers [8][9]. But all of them require
fine-grained parallel programming, so it needs high imple-
mentation and debugging effort which may limit its prac-
tical use for large scale power grid analysis. Another kind
of approaches is focused on partitioning power grid to sub-
grids and then simulating them in parallel which can absorb
some heuristic information, such as pad location in Flip-
Chip package based on local effect, to partition power grid
by the weakest coupling direction [10][11]. But all of them
require to smooth errors existed on boundary nodes and thus
its performance can be affected by the original power grid
topologies. In our simulator, naturally separated subnet-
s based coarse-grained application level parallel approach is
adopted to analyze each subnet individually without any ac-
curacy lost because there is no electrical coupling between
each separated subnet.
Meanwhile, there are already many research contributions

to linear solvers for power grid analysis but we believe that
detailed implementation on transient simulation flow is also
important for industrial practical use. In this paper, Power-
Rush is developed as a completely practical simulation flow
and firstly presented in research area. The authors hope
that these works would be helpful for power grid simulation
community.
In this paper, we propose an efficient parallel transien-

t simulation approach. The contributions of our work are:
(i) Symmetric formulation of NA equation for RLC power
grid is adopted to reduce memory usage and improve ma-
trix factorization efficiency; (ii) Naturally separated nets
are identified to solve independently without accuracy lost
for parallel simulation; (iii) Composite simulation flow are
proposed for efficient and practical transient analysis.
The reminder of this paper is organized as follows. Section

2 gives a brief background of transient power grid analysis.
Following that, detailed transient simulation approach for
RLC power grid is presented in Section 3. Experimental
results are provided and numerically illustrated in Section
4. Concluding remarks are given in Section 5.

2. TRANSIENT SIMULATION BACKGROUND

2.1 Power Grid with RLC Model
For modern power grid designs, RLC model is required for

transient simulation but only package inductance is consid-
ered because on-chip inductance effect is relative too small
than off-chip inductance effect [7]. The typical equivalent
circuit of detailed RLC model from IBM power grid [12] is
shown in Figure 1. On-chip power/ground wires are modeled
in lumped resistance and on-chip inductance is traditionally
ignored, because it is smaller than package inductance and
analyzing power network with on-chip inductance requires
huge computational cost or even introducing ill-conditioned
problems. Chip cells are simulated and modeled as equiva-
lent circuits with current source, resistance and capacitance.
Power IOs, which supply current from package to die, are
often modeled in series of an inductance and a resistance.
Firstly we consider the pad model and current loading

model by taking ibmpg1t.spice as an example [12]. As shown
in Figure 2(a), a pad model includes a series of an ideal volt-

Power IO

Cell parasitic capacitance

and well capacitance

Load current source that

models switching gates

Figure 1: Power Grid with RLC Model.

age source Vdd, a lumped self-inductance L and a lumped
resistance r. For convenience, we transform it as a Norton
equivalent model which is shown in Figure 2(b). The pad
resistance r is divided into two smaller resistances whose re-
sistance value is half of r and their conductance is twice of
it. Then pad inductance is located between the two divided
resistances. So the serial of ideal voltage source Vdd and
its neighbored divided resistance r/2 can be transformed as
a current source 2gVdd and a conductance 2g in parallel.
It’s easy to know that the response of transformed circuit is
same as the original circuit. Thus, all of voltage sources have
been transformed as current sources, which can be directly
stamped into MNA equations.

Vdd

L r

(a) In Serial

2gVdd

L

2g

2g

(b) Norton Equivalent Circuit

Figure 2: Pad Model in IBM Power Grid.

Is

R_equiv

C_equiv

+

-

R R

Rcap

C

R R

Rcap

C

Connect to VDD NetEquivalent Model Connect to GND Net

Is Is

Figure 3: Current Source Loading Model in IBM
Power Grid.

And for current source loading, it has been simulated and
modeled as an equivalent circuit which is shown in Figure 3.
A serial of a resistance Requiv and a capacitance Cequiv is
connected with a current source Is in parallel as a companion
model. Current source loading is connected from VDD net
node to GND net node but there is a little different between
them. As shown in Figure 3, the sequence of resistance

654

and capacitance is different between for VDD net and for
GND net. But it’s also easy to figure out that this will not
influence their circuit responses as long as the current source
can be used properly. That is to say, we just only need to
distinguish their current directions as shown in Figure 3.

2.2 Transient Simulation Equation
Transient simulation involves computing waveforms of pow-

er grid as a function of time. For power grid with RLC mod-
el, transient simulation can be performed by formulating it
as a system of differential equations. The practical approach
for solving differential equations is to repeatedly discretize
them and solve the resulting differential algebraic equation-
s (DAEs) [13]. The challenge in transient simulation is to
move time forward by integrating these terms to get sets of
equations at each time step that we have to solve.
By using MNA method which includes KCL and KVL

laws, and considering that only the branch currents running
through inductors have to be kept in the equations, a n-
nodes power grid with RLC model can be formulated as
following [2]:

(
G AT

l

−AT
l 0

)(
vn

il

)
+

(
C 0
0 L

)
dvn

dt

dil
dt

 =

(
AT

i ii
0

)
(1)

where vn is the unknown vector of node voltages, il is the
vector of branch currents running through inductors, ii is
the vector of current source loadings, and G = AT

g GAg,

C = AT
c CAc, L = AT

l LAl, where G is diagonal matrices
whose diagonal elements are conductance value for each re-
sistor, C is diagonal matrices whose diagonal elements are
capacitance value for each capacitor, L is diagonal matri-
ces whose diagonal elements are inductance value for each
inductor, Ai, Ag, Ac, Al are adjacent matrices to present
the connectivity of the power grid circuit, and obviously
each row of the adjacent matrix only contains two non-zero
elements (only one if the branch connects to the ground).
The subscripts i, g, c and l stand for branches which con-
tain independent current sources, resistors, capacitors, and
inductors, respectively.

3. TRANSIENT SIMULATION APPROACH

3.1 Symmetric Representation
As demonstrated in equation (1), although MNA pro-

vides a good solution for general circuits, the introduction of
additional current variables makes the system matrix non-
positive definite, which is crucially necessary for the efficien-
cy and fast convergence of both iterative and direct methods
since the Cholesky factorization takes only half of multipli-
cations and memory references than the LU factorization.
However, it was believed that it is infeasible to use the NA
method for general RLC circuits due to the need of addi-
tional current variables. And by eliminating the current
variables, we can obtain an NA formulation for RLC cir-
cuits, which is a SPD system. Hence the Cholesky factor-
ization and the conjugate gradient method can be still used
for efficient simulation [2].
Noticed that the above transient simulation equations in-

clude dynamic components, usually we transform them as

differential algebraic equations (DAEs) by using a finite d-
ifference approximation. The most common used methods
for solving DAEs in circuit simulation are Backward Euler
differential approximation method and Trapezoidal differ-
ential approximation method (TR). Due to the difference of
efficiency and accuracy between them, both of their formu-
lations are discussed below.

3.1.1 Backward Euler Method
By using backward Euler method, the circuit equation (1)

can be reformulated at time point (t+ h) with differential
step size h as following differential algebraic equation:

(
G AT

l

−Al 0

)(
vn (t+ h)
il (t+ h)

)
+

(
C 0
0 L

) vn (t+ h)− vn (t)

h
il (t+ h)− il (t)

h


=

(
AT

i ii (t+ h)
0

)
by moving the voltage variable vn (t) and current variable
il (t) at time point t to the right hand side, we can obtain

 G+
C

h
AT

l

−Al
L
h

(
vn (t+ h)
il (t+ h)

)
=

 C

h
vn (t) +AT

i ii (t+ h)

L
h
il (t)


by eliminating current variables il (t+ h) we can obtain

(
G+

C

h
+AT

l

h

LAl

)
vn (t+ h) =

C

h
vn (t) +AT

i ii (t+ h)

−AT
l il (t)

and remembering that L = AT
l LAl we can obtain that

(
G+

C

h
+

h

L

)
vn (t+ h) =

C

h
vn (t)+AT

i ii (t+ h)−AT
l il (t)

3.1.2 Trapezoidal Method
For Trapezoidal case, the equation (1) also can be refor-

mulated as differential algebraic equation [2] and finally we
can obtain

(
G+

2

h
C +

h

2L

)
vn (t+ h) =

(
−G+

2

h
C − h

2L

)
vn (t)

+AT
i (ii (t+ h) + ii (t))− 2AT

l il (t)
(2)

The above derived linear equation has been proved to be
a SPD system and also a diagonally dominant system [2].
After obtained the voltage vector vn (t) we can compute the
solution vn (t+ h) of next time point as long as the right
hand side has been constructed. We give a more detailed
discussion about the three terms of right hand side in equa-
tion (2).

The first one is
(
−G+ 2

h
C − h

2L

)
vn (t) which can be ob-

tained from the voltage solution of previous time point, but
there is no need to construct

(
−G+ 2

h
C − h

2L

)
explicitly.

Because this expression can be reformulated as following

(
−G+

2

h
C − h

2L

)
vn (t) = −

(
G+

2

h
C +

h

2L

)
vn (t)

+
4

h
Cvn (t)

655

Noticed that the expression
(
G+ 2

h
C + h

2L

)
vn (t) just is the

right hand side of the previous time point, we can store it
for reuse.
The second term AT

i (ii (t+ h) + ii (t)) is the sum of cur-
rent sources for time point (t+ h) and t which is easy to
compute. The third term 2AT

l il (t) is the current flowing
through the pad branch on previous time point t, which can
be directly obtained according to the Norton equivalent cir-
cuit as shown in Figure 2(b).
And for Backward Euler method, the meanings of the

three items on right hand side are same as Trapezoidal case.
Thus, we have obtained the NA formulation for RLC power
grid which is a SPD system. That’s to say, we have refor-
mulated the non-symmetric MNA equation as a symmetric
NA equation which can be solved by Cholesky factorization
and many other efficient symmetric sparse solvers, such as
AMGPCG [6] which will be discussed in Section 3.2.

3.1.3 Accuracy Analysis
The Euler method is a first-order method, which means

that the local error (error per step) is proportional to the
square of the step size O

(
h2

)
, and the global error (error at

a given time) is proportional to the step size. It also suffers
from stability problems. For these reasons, Euler method
is not often used in practice but just serves as the basis to
construct more complicated methods.
The Trapezoidal method is an implicit second-order method,

which is probably the most often used solution method in
circuit simulation. TR can be viewed as a linear multistep
method and an implicit method with O

(
h3

)
error and excel-

lent stability which has better accuracy than Euler method.

Table 1: Accuracy Comparison of Euler Method and
TR Method. Emax is max error and Eavg is average
error compared with standard solution.

Grid
Euler Method TR Method Improve

Emax Eavg Emax Eavg Emax Eavg

ibmpg1t 1E-03 1E-04 8E-05 7E-06 12X 20X
ibmpg2t 8E-04 1E-04 8E-05 9E-06 10X 16X
ibmpg3t 8E-04 1E-04 7E-05 5E-06 12X 23X
ibmpg4t 2E-03 1E-04 1E-04 9E-06 16X 18X
ibmpg5t 5E-04 9E-05 3E-05 3E-06 16X 23X
ibmpg6t 6E-04 1E-04 5E-05 5E-06 10X 21X

We can use the Euler method to get a fairly good esti-
mation for the solution, which can be adopted as the ini-
tial guess of differential equations. The voltage waveform
of node n1 18333 5432 in ibmpg1.spice is shown in Figure
4, where the step size h = 1ps and total simulation peri-
od T = 1ns. For clarity, the detailed accuracy comparison
between Euler method and TR method is shown in small
window of Figure 4(a) and voltage error is plotted in Figure
4(b). The accuracy comparison between Euler method and
TR method is numerically illustrated in Table 1, from which
we can see that TR method can improve the solution accu-
racy more than 10X compared with Euler method. This
result just exactly validates the theoretical analysis that TR
method has one higher order accuracy than Euler method.
It is worth notice that Euler method is adopted in Power-
Rush of contest submitted version which cannot meet the
accuracy requirements, but finally TR method is properly

introduced into PowerRush to improve simulation accuracy.

0 100 200 300 400 500 600 700 800 900 1000
1.65

1.7

1.75

Time Step / ps

V
o

lt
a

g
e

 W
a

v
e

fo
rm

 /
 V

Transient Simulation Result / 1ns

Std

Euler

TR

915 920

1.6695

1.67

1.6705

(a) Voltage Waveform

0 100 200 300 400 500 600 700 800 900 1000

−1

0

1

2

3

4

5

6

7

8

9

x 10
−4

Time Step / ps

V
o

lt
a

g
e

 E
rr

o
r

/
V

Voltage Error Plot / 1ns

Std

Euler

TR

(b) Voltage Error Plot

Figure 4: Simulation Result of Node n1 18333 5432
in ibmpg1t.spice. Std means standard solution of
golden simulator.

3.2 Transient Simulation Flow
The flow chart shown in Figure 5 is useful to visualize the

overall transient simulation flow inside our transient power
grid simulator PowerRush. The SPICE netlist is parsed into
build-in data structure and then the circuit builder identifies
the existed separated subnets to simulate them in parallel.
Then the DC operation point is computed for static analy-
sis and as preparation for transient simulation. On transient
simulation stage, the simulator repeatedly applies time dis-
cretization for circuits, builds NA equation and RHS, and
then passes them into solver to obtain solutions.

Once the power grid has been solved at time point (t+ h),
we then need to compute voltage solution for every capaci-
tor and current for every inductor. Since we hope to avoid
constructing each term of RHS in equation (2) explicitly,
these are required at the next time point, in order to update
the model parameter values as shown in their companion
models. Obviously the voltage value of every capacitor can
be directly obtained, as simply the difference of its two n-
ode voltages. And current flowing through every inductor,
we can compute it by using its Norton equivalent circuit as
shown in Figure 2(b). This requires knowledge of pad cur-
rents il, which should have been stored at the previous time
point, and therefore at all previous time points, going back
to the beginning of simulation time t = 0, where il |t=0 is

656

required. This generates a requirement that, as part of the
DC analysis is run at t = 0, so we should find and store
the current for every inductor. As we have known that, DC
analysis is adopted as an initialization for transient analysis.
Remembering that the immediate method of performing DC
analysis involves stripping the dynamic components of RL-
C circuit, by disabling all L and C components. Disabling
dynamic components means that every capacitor is replaced
by an open circuit which will lead to no connection between
the two neighbored nodes, and so the voltage across the open
circuit can be easily found from the DC analysis results. It
also means that every inductor is replaced by a short circuit
which will lead the two neighbored nodes to be merged as
an equivalent node, typically represented by a 0V voltage
source, whose current is also easily available from the NA
solution vector. Thus, DC analysis can provide the initial
state of all dynamic components: currents flowing through
inductors and voltages across capacitors.

Euler Discretization for First Time Point as Start

TR Discretization for Remaining Time Point

SPICE File

Netlist Parser

Each Subnet in Parallel

DC Operation Point

Transient Simulation

Report Voltage Waveform

Build DC Matrix and RHS AMGPCG Solver

Build Tran Matrix and RHS AMGPCG Solver

Build Tran Matrix and RHS Cholmod Solver

Figure 5: Overall Transient Simulation Flow.

As demonstrated in Section 3.1.3, TR discretization method
is more accurate than Euler method, and the accuracy of
Euler method is not enough for practical power grid simula-
tion. In our transient simulator, TR discretization method
is mainly used and combined with Euler method for the first
time point as a startup. The detailed description of simula-
tion steps is shown in below:
(1) Netlist parser for power grid with SPICE format;
(2) Circuit builder identifies separated subnets, then sim-

ulate each subnet in parallel;
(3) Static analysis at t = 0 to obtain the DC operation

point:
- Build DC matrix and RHS;
- AMGPCG solver for voltage solutions;

(4) Transient simulation at first time point by using Euler
method:

- Build Tran matrix and RHS;
- AMGPCG solver for voltage solutions;

(5) Transient simulation for remaining time points by us-
ing TR method:

- Rebuild Tran matrix and RHS;
- Cholmod solver for voltage solutions at each time
point.

Noticed that in simulation procedure, there are three ma-
trices to build because of considering different circuit models
or using different discretization methods. As we have known

that [6], AMGPCG is faster than Cholmod when perform-
ing simulation just once because that Cholmod solver needs
much more runtime for Cholesky factorization but AMG-
PCG has a very efficient Multigrid setup step and a very
robust convergence. So AMGPCG solver is called when per-
forming DC analysis and the transient simulation at first
time point as startup, while Cholmod solver is called when
performing the remaining transient simulation steps.

Since Euler discretization method just needs the circuit
status of previous one time point, while TR method need-
s the circuit status of previous two time points, both Eu-
ler discretization method and TR discretization method are
used in our simulator for practical transient simulation. As
shown in Figure 6, the first 4 simulation steps are performed
as following:
(1) DC analysis is performed at the simulation starting

time point t0;
(2) The first time point of transient simulation is per-

formed at time point t1 by using Euler method ac-
cording to the solutions of previous time point t0;

(3) The second time point of transient simulation is per-
formed at time point t2 by using TR method according
to the solutions of previous time point t0 and t1;

(4) The third time point of transient simulation is per-
formed at time point t3 by using TR method according
to the solutions of previous time point t1 and t2;

Later, the TR method is used for simulation at remaining
time points until it arrives at the time point for ending.

t1t0 t2 t3 t4

Euler TR

TR TR

t

Figure 6: Data Dependency in Transient Simulation.

3.3 Nets Level Parallelization (Coarse-Grained)
The existed circuit/topology level parallelization can ab-

sorb heuristic information to partition power grid to acceler-
ate transient simulation. But all of them require to smooth
boundary errors and thus its performance can be affected
by practical power grid. Also for the existed fine-grained
parallel simulation approaches, it is possible to parallelize
the key steps in an existing sparse linear solver. Howev-
er, the solver/algorithm level parallelization requires fine-
grained parallel programming, hence high implementation
and debugging effort which is infeasible for practical use.

In our simulator, we adopt a coarse-grained application
level parallel approach based on power grid partitioning.
Taking IBM power grid as an example, usually there exists
only single GND net while several VDD nets exist without
any electrical connection. That is to say, there is no elec-
trical coupling between each separated subnet so that they
can be analyzed individually without any accuracy lost. As
shown in Figure 7, usually GND net only includes subnet
#0 while VDD net includes three subnets: subnet #1, sub-
net #2 and subnet #3. All of those naturally separated
subnets are identified by our circuit builder and then pass
them to multi-threads for parallel solving. Considering that
if each of them is solved by each thread it will require much
more memory resources because the peak memory is the sum

657

of each memory required by each thread. So we may take
a multi-threads scheduling strategy to optimize the peak
memory usage. Noticed that GND net is usually only in-
cludes one single net, and its total number of nodes is similar
to the sum of all VDD subnets, so we put the GND net into a
thread and put all VDD subnets into another thread. If the
size of subnets is not as the above case, we can firstly reorder
them to obtain an optimized scheduling result according to
their size and the total number of threads.

subnet #1

subnet #0

subnet #2

subnet #3

subnet #0

subnet #1

subnet #2

subnet #3

subnet #0

#1 #2 #3

subnet #0 - GND

subnet #1 - VDD

subnet #2 - VDD

subnet #3 - VDD

thread 0

thread 1

thread 2

thread 3

thread 0

thread 1

Figure 7: Multi-Threads Scheduling of Subnets.

4. EXPERIMENTAL RESULTS
All algorithms in PowerRush are implemented by C/C++

language. The simulation platform is a 64-bit RedHat En-
terprise Linux Advanced Server with 2 Quad-Core Intel X-
eon E5506 CPU@2.13GHz and 24GB RAM. The AMGPCG
solver is same as [6]. Cholmod [14] and KLU [15] are from
SuiteSparse [16]. The system built-in BLAS library is adopt-
ed in PowerRush simulator, while GotoBLAS is not used be-
cause we have found that GotoBLAS is slower than built-in
BLAS because GotoBLAS probably cannot be properly opti-
mized for our used hardware platforms. For Cholmod solver,
two reordering methods of AMD and METIS are provided
for selecting to be optimal according to Cholmod internal an-
alyzing. Meanwhile, the conductance matrix of power grid
is too sparse to allow efficient exploitation of supernodes so
that supernodal technique is disabled for Cholmod solver.
And for KLU solver, AMD reordering method is enabled
but BTF is disabled because BTF pre-ordering can dramat-
ically increase the fill-in in the LU factors when KLU is
applied to power grid cases. The runtime and peak memory
usage in transient simulation is measured by memtime [17].
We have to emphasize that, the peak memory usage given
in this paper is the memory used for total simulator which
includes SPICE parser, circuit builder and linear solver, not
only for linear solver.
Several industrial power grid benchmarks which are drawn

from real designs [12] are evaluated to validate the promising
performance of proposed transient simulator. The simula-
tion step size h = 1ps and total simulation period T = 1ns,
that is to say, transient simulation is performed for 1000
time points. The results of total runtime and memory usage
for six IBM PG benchmarks are listed in Table 2. For all
cases, transient simulation with Cholmod is faster than with
KLU and uses less memory than with KLU solver because
Cholmod just needs to compute the L factor while KLU

needs to compute factor L and U . Also we perform net level
parallelization with sing-thread BLAS for simulation with
Cholmod solver. As shown in Table 2 for simulation with
Cholmod solver, multi-threads simulation with net level par-
allelization can achieve 1.15X∼1.79X speedups. Of course
the memory usage of simulation with multi-threads is more
than simulation with single-thread but which is not relative
significant.

Aiming to present the advantages of symmetric reformu-
lation for transient simulation equations, especially we com-
pare the memory consumption between Cholmod and KLU
solver which are both from SuiteSparse package. Both of
them are called by single-thread with Linux built-in BLAS
library and without net level parallelization. For clarity, on-
ly GND net to be presented and compared because GND net
usually is the largest net for each benchmark. As shown in
Table 3, the peak memory of Cholmod solver just is about
29%∼68% of peak memory of KLU solver. All of these
should benefit from the symmetric reformulation of tran-
sient simulation equation as demonstrated in Section 3.1.

Table 3: Memory Usage Comparison between Tran-
sient Simulation with Cholmod and with KLU.
NGND is node number of GND net. MKLU is peak
memory usage of KLU. MCholmod is peak memory us-
age of Cholmod. The peak memory value (KB) is
fetched by internal function of KLU and Cholmod
solver, which only includes memory used of pure
solver.

Grid NGND MKLU MCholmod
MCholmod

MKLU

ibmpg1t 13977 649.46 443.71 68%
ibmpg2t 83901 9211.77 4164.50 45%
ibmpg3t 530008 117802.00 38121.40 32%
ibmpg4t 604300 156724.00 45352.30 29%
ibmpg5t 528336 48463.00 24786.90 51%
ibmpg6t 746403 53508.80 31349.90 59%

The second annual Power Grid Simulation Contest has
been successfully organized in 2012 TAU workshop by IB-
M Austin Research Lab to focus on transient analysis and
parallel implementation. PowerRush is also evaluated with
other simulators [18][19] on the same HW/SW platforms by
a set of real life industrial benchmarks in this contest [20].
Comparing with the other teams, PowerRush obtained an
extremely low memory consumption with relative fast sim-
ulation speed.

5. CONCLUSIONS
We have presented the detailed implementations of Pow-

erRush for efficient transient simulation. A composite sim-
ulation flow is proposed for practical transient simulation of
industrial power grid. Symmetric formulation for NA equa-
tion of RLC model is adopted in PowerRush to reduce the
memory usage and improve matrix factorization efficiency.
Naturally independent subnets in power grid are analyzed by
multi-threads implementation for parallel simulation with-
out accuracy lost. Also by taking the advantage of effec-
tive SPICE parser and robust circuit builder, PowerRush
has shown to be an efficient and robust transient simulator
for real power grid analysis. We only developed the coarse-
grained parallel simulation, since its parallel efficiency really

658

Table 2: Transient Simulation Results of IBM Power Grid Benchmarks. The runtime (second) and peak
memory value (KB) are measured by memtime [17]. Tpre is the runtime of preparation which includes SPICE
parser and circuit builder procedures. The remaining runtime includes stamping matrix, building RHS,
solving each linear equation and other related issues. T tot

KLU is the total runtime of simulation with KLU
solver. M tot

KLU is the total peak memory usage of simulation with KLU solver. T tot
Cholmod is the total runtime

of simulation with Cholmod solver. M tot
Cholmod is the total peak memory usage of simulation with Cholmod

solver. Cholmod-MT means simulation with Cholmod solver and net level parallelization with multi-threads
implementation. T tot

CMT is the total runtime of multi-threads simulation with Cholmod solver. M tot
CMT is the

total peak memory usage of multi-threads simulation with Cholmod solver.

KLU Cholmod Cholmod-MT

Grid Size Tpre T tot
KLU M tot

KLU T tot
Cholmod M tot

Cholmod T tot
CMT M tot

CMT
T tot
Cholmod

T tot
CMT

Mtot
Cholmod

Mtot
CMT

ibmpg1t 30638 0.19 3.53 22612 3.36 21496 2.52 22600 1.33 1.05
ibmpg2t 127238 0.78 52.73 144316 36.93 115460 23.84 141508 1.55 1.23
ibmpg3t 851584 5.45 600.91 1290600 320.35 764732 213.11 1097936 1.50 1.44
ibmpg4t 953583 6.03 925.87 1618732 405.45 919952 226.44 1291120 1.79 1.40
ibmpg5t 1079310 7.16 308.58 938388 239.53 797112 157.66 926360 1.52 1.16
ibmpg6t 1670494 12.31 416.38 1322868 388.56 1181844 259.97 1557920 1.49 1.32

depends on the number of independent subnets of original
power grid. Due to the rapidly increasing power grid size,
efficient transient simulation is becoming more and more
challengeable for both academic research and industrial ap-
plications. In the future, we plan to explore more practical
and general parallel strategies in PowerRush simulator.

6. ACKNOWLEDGMENTS
The authors would like to thank Zhuo Li from IBM Austin

Research Lab, for his careful organizing effort on 2012 TAU
Transient Power Grid Contest.

7. REFERENCES
[1] R. Berridge, R. M. Averill III, A. E. Barish, and etl.

IBM POWER6 microprocessor physical design and
design methodology. IBM Journal of Research and
Development, 51(6):685–714, November 2007.

[2] Tsung Hao Chen and Charlie Chung-Ping Chen.
Efficient large-scale power grid analysis based on
preconditioned Krylov-subspace iterative methods. In
Proc. IEEE/ACM DAC, pages 559–562, 2001.

[3] Min Zhao, Rajendran V. Panda, Sachin S. Sapatnekar,
and etl. Hierarchical analysis of power distribution
networks. In Proc. IEEE/ACM DAC, pages 150–155,
2000.

[4] Haifeng Qian, Sani R. Nassif, and Sachin S.
Sapatnekar. Power grid analysis using random walks.
IEEE Trans. on Comput.-Aided Design Integr.
Circuits Syst., 24(8):1204–1224, 2005.

[5] Joseph N. Kozhaya, Sani R. Nassif, and Farid N.
Najm. A multigrid-like technique for power grid
analysis. IEEE Trans. on Comput.-Aided Design
Integr. Circuits Syst., 21(10):1148–1160, 2002.

[6] Jianlei Yang, Zuowei Li, Yici Cai, and Qiang Zhou.
PowerRush: A linear simulator for power grid. In
Proc. IEEE/ACM ICCAD, pages 482–487, 2011.

[7] Rajat Chaudhry, Rajendran Panda, Tim Edwards,
and David Blaauw. Design and analysis of power
distribution networks with accurate rlc models. In
Proc. VLSI Design, pages 151–155, 2000.

[8] U. Wever and Q. Zheng. Parallel transient analysis for
circuit simulation. In Proc. 29th Hawaii International
Conference on System Sciences, pages 442–447, 1996.

[9] He Peng and Chung-Kuan Cheng. Parallel transistor
level full-chip circuit simulation. In Proc. DATE,
pages 304–307, 2009.

[10] Ramachandra Achar, Miche S. Nakhla, Harjot S.
Dhindsa, and etl. Parallel and scalable transient
simulator for power grids via waveform relaxation
(PTS-PWR). IEEE Trans. Very Large Scale Integr.
Syst., 19(2):319–332, February 2011.

[11] Chun-Jen Wei, Howard Chen, and Sao-Jie Chen.
Design and implementation of block-based
partitioning for parallel flip-chip power-grid analysis.
IEEE Trans. on CAD of Integrated Circuits and
Systems, 31(3):370–379, March 2012.

[12] S. R. Nassif. IBM power grid benchmarks, [online].
http://dropzone.tamu.edu/∼pli/PGBench.

[13] Farid N. Najm. Circuit Simulation. John Wiley &
Sons, 2010.

[14] Yanqing Chen, Timothy A. Davis, Willam W. Hager,
and etl. Algorithm 887: Cholmod, supernodal sparse
cholesky factorization and update/downdate. ACM
Transactions on Mathematical Software, 35(3):22–35,
October 2008.

[15] Timothy A. Davis and Sivasankaran Rajamanickam.
Algorithm 907: KLU, a direct sparse solver for circuit
simulation problems. ACM Transactions on
Mathematical Software, 37(3):36–52, September 2010.

[16] Timothy A. Davis. Suitesparse 3.7.2, [online].
http://www.cise.ufl.edu/research/sparse/SuiteSparse.

[17] memtime. http://tiger.cs.tsinghua.edu.cn/
Students/yangjl/memtime.

[18] Ting Yu and Martin D. F. Wong. PGT SOLVER: An
efficient solver for power grid transient analysis.

[19] Xuanxing Xiong and Jia Wang. Parallel forward and
back substitution for efficient power grid simulation.

[20] Zhuo Li, Raju Balasubramanian, Frank Liu, and Sani
Nassif. 2012 TAU power grid simulation contest:
Benchmark suite and results.

659

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

