
PowerRush∗ : A Linear Simulator for Power Grid†

[Invited Paper]
‡

Jianlei Yang Zuowei Li Yici Cai Qiang Zhou
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology
Tsinghua University, Beijing, China

yjl09@mails.tsinghua.edu.cn lizuoweirain@gmail.com
caiyc@mail.tsinghua.edu.cn zhouqiang@tsinghua.edu.cn

ABSTRACT
As the increasing size of power grids, IR drop analysis has
become more computationally challenging both in runtime
and memory consumption. In this paper, we propose a linear
complexity simulator named PowerRush, which consists of
an efficient SPICE Parser, a robust circuit Builder and a lin-
ear solver. The proposed solver is a pure algebraic method
which can provide an optimal convergence without geomet-
ric information. It is implemented by Algebraic Multigrid
Preconditioned Conjugate Gradient method, in which an ag-
gregation based algebraic multigrid with K-Cycle accelera-
tion is adopted as a preconditioner to improve the robust-
ness of conjugate gradient iterative method. In multigrid
scheme, double pairwise aggregation technique is applied
to the matrix graph in coarsening procedure to ensure low
setup cost and memory requirement. Further, a K-Cycle
multigrid scheme is adopted to provide Krylov subspace ac-
celeration at each level to guarantee optimal or near optimal
convergence. Experimental results on real power grids have
shown that PowerRush has a linear complexity in run-
time cost and memory consumption. The DC analysis of a
60 Million nodes power grid can be solved by PowerRush
for 0.01mV accuracy in 170 seconds with 21.89GB memory
used.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Simulation

General Terms
Algorithms, Design, Performance, Verification

Keywords
PowerRush, Power Grid, Algebraic Multigrid, Aggrega-
tion, K-Cycle

1. INTRODUCTION
The design and analysis of extremely large scale power

grids is a very computationally challenging task for VLSI
design. Many contributions have been developed, such as

∗PowerRush is denoted as PowerRushTM for TradeMark
declaration.
†This work is supported by National Natural Science Foun-
dation of China (NSFC) No.60976035.
‡This paper is invited by Special Session of 2011 TAU Power
Grid Simulation Contest in ICCAD 2011.

Krylov-subspace method [1], Hierarchical and Macro-modeling
methods [2], Random Walk [3], Domain Decomposition [4],
SPAI [5], H-Matrix [6]. Geometric based multigrid like tech-
nique was exploited to efficient power grid analysis [7]. And
in order to further handle irregular power grids, algebraic
multigrid (AMG) based techniques [8][9] were also devel-
oped.

For algebraic multigrid approaches, there exists a trade-
off between setup cost and efficiency of error components
reduction. The grid reduction methods in some AMG-like
multigrid approaches [8] are also somewhat geometrically
based which may degrade the efficiency due to the irregu-
larity. A pure algebraic multigrid method [10] was proposed
to improve the efficiency whose grid reduction was based on
matrix graph. But its denser prolongation matrices increase
setup costs and memory requirements. To overcome the bot-
tleneck of limited convergence by controlling of the number
of coarsening levels, smoothed aggregation method [11] is
developed recently which is robust and efficient over a wide
variety of problems. Aggregation based algebraic multigrid
is also introduced to power grid analysis [12]. In [13], Fouri-
er analysis has been explored for several aggregation based
two-grid schemes for a model anisotropic problem. But in
practice it is too difficult to hope for optimal order conver-
gence with the V-Cycle or even with the standard W-Cycle.

Aiming to obtain an optimal convergence with low set-
up cost, in this work, we propose a pure algebraic multigrid
solver for irregular power grid simulation. The contributions
of our work are: (i) In our multigrid approach, double pair-
wise aggregation strategy [14] is introduced to reduce the
grids effectively to small size by multilevel matrices represen-
tation which requires no explicit knowledge of the problem
geometry. Further, the restriction and prolongation matri-
ces are easy to construct with very low memory consump-
tion. (ii) In order to increase the robustness of standard
multigrid approaches, AMG is adopted as an inexplicit pre-
conditioner for conjugate gradient iteration routine instead
of stand-alone solver [15]. In this scheme, the main iteration
routines smooth out high frequency errors rapidly and AMG
uses a projection of the fine-grid problem on a coarser grid to
remove the low frequency error components. (iii) Compared
with previous aggregation based multigrid methods [12] in
power grid analysis, the scalability is enhanced by K-Cycle
multigrid scheme to provide Krylov subspace acceleration at
each level. Related works have shown that K-Cycle multi-
grid can provide optimal or near optimal convergence under
mild assumptions on the two-grid scheme [16].

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 482

The reminder of this paper is organized as follows. Section
2 gives a brief background of power grid analysis. In Sec-
tion 3 we present a simulation flow of our simulator Power-
Rush. Following that, AMG-PCG solver and its practical
implementation use is discussed in Section 4. Experimental
results are provided and numerically illustrated in Section
5. Concluding remarks are given in Section 6.

2. BACKGROUND

2.1 Power Grid Analysis
In this section, we give the basic modeling and analy-

sis techniques for efficient and accurate analysis. Typically,
power grid on die is designed from top-level metal layer,
which is connected to the package, down through inter-layer
vias and finally to the active devices, as illustrated in Fig-
ure 1. For DC simulation, power grid can be modeled as
linear resistive network system. By using Modified Nodal
Analysis (MNA) method, a n-node circuit network can be
formulated as a linear system equations [1]. After reformu-
lation by Norton’s Law this system equations can result in
a symmetric, positive definite problem whose system matrix
is a non-singular M-matrix [8]:

Gu = I (1)

where u ∈ Rn×1 is an unknown vector of node voltages,
G ∈ Rn×n is the conductance matrix, I ∈ Rn×1 is a vector
of node current sources. The diagonal entries of matrix G
are defined by gii =

∑
j∈Ni

|gij |, where Ni = {j |gij ̸= 0} is

the set of neighbors of node i, gij defines the conductance
between the two neighboring nodes i and j, thus gij = gji
which results in the G matrix being symmetric.

Connect to devices

Connect to Power Supplier

Figure 1: Power Grid Model.

As the VLSI technology scaling associated with signifi-
cantly increasing device numbers in a die, the number of
nodes in the power grid may easily exceed many million-
s. The most accurate and stable methods for solving such
huge linear systems are sparse direct solvers such as Super-
LU and Cholmod, but both of them are time expensive and
memory inefficient. Another state of art approach is iter-
ative methods especially preconditioned iterative methods
which can be used to solve such linear systems with mem-
ory efficiently. However, preconditioned iterative methods
are not stable for many cases because of either expensive
cost or unsatisfactory performance of their preconditioners.

2.2 Algebraic Multigrid Method
Multigrid methods [17] are called scalable and optimal

which are expected to solve a linear system within linear

complexity. Multigrid methods achieve optimality through
the effect of a smoother and a coarse grid correction. In
multigrid scheme as shown in Figure 2, the smoother is
fixed and generally based on a simple iterative relaxation
method. The coarse grid correction involves transferring
information to a coarse grid through restriction and com-
puting an approximate solution to the residual equation on
a coarser grid, which is to say, solving a linear system of
smaller size. This solution is then transferred back to the
original grid by means of an appropriate interpolation which
is also called prolongation. In the classical multigrid setting,
smoothing reduces high frequency error, whereas coarse grid
correction eliminates low frequency error.

(Pre-smooth)

Relax on fine grid

Compute the residual
R

estrict residual to

co
arse g

rid

Relax on coarse grid to obtain an

Approximate error

(P
os

t-
sm

oo
th

)

In
te

rp
ol

at
e

co
ar

se
 g

rid

co
rr
ec

tio
n

Correct fine grid solution

Figure 2: Essence of Multigrid.

Due to the irregularity of real power grid designs [18],
AMG methods have been well developed in power grid sim-
ulation area. AMG method [19] determines coarse grid-
s, inter-grid transfer operators, and coarse-grid equations
based solely on the matrix entries. Although the classical
AMG methods work remarkably well for a wide variety of
problems, some of the assumptions make in its derivation
limit its applicability. The smoothed aggregation method
[11] is a highly successfully AMG method that is robust and
efficient over a wide variety of problems. The most inter-
esting aspect of aggregation based AMG is its approach to
define interpolation. The aggregation algorithm first parti-
tions the grid by aggregation grid points into small disjoint
sets and then builds a preliminary interpolation operator to
coarsen power grids by system matrix level. Thus, the pro-
longation matrices with at most one nonzero entry per row
are much sparser than the ones obtained by the classical
AMG approach. Numeric analysis has shown that for two-
dimensional anisotropic model problem aggregation based
two-grid methods [13] may have optimal order convergence
properties.

3. SIMULATION FLOW
This work presents a friendly fast simulator with linear

complexity for power grid network. The simulator consists
of a smart SPICE Parser, a robust circuit Builder and a
linear complexity Solver. The detailed simulation flow of
our simulator PowerRush is shown in Figure 3.

In parser procedure, it hashes each node name to index.
The hash function we used in our approach ensures the av-
erage search length of each node is about 1.16 and the max-
imum search length is no more than 6. As we have known

483

Benchmark

SPICE Parser

Circuit Builder

Linear Solver

Voltage Solution

SPICE File

Node List and Wire Map

Graph

Solver

Ckt1 Ckt2

Solver

Figure 3: Simulation Flow of PowerRush.

that the complexity of hash method to find an element in a
table is expected to O(1). So, the total complexity of our
parser is expected to O(N) which N is the size of grid nodes.
After parser process for the SPICE file, the circuit is stored
as nodes list and wires map which are linked to present their
topologies.
The most important part of building circuit is to create a

graph to handle all wires map and nodes list. The most fre-
quently appearance in this procedure is short path between
two nodes which must be merged as one equivalent node.
The number of unknowns can be reduced by nodes merging
for short path, such as vias with very small resistance value
or zero resistance value. The disjoint data structure is used
to find and union nodes sets whose complexity is O(logN).
Further, it is noticeable that there exist several separated
nets for each benchmark in real power grid designs [18]. So
our builder identifies all separated nets by DFS (Depth-
First Search) algorithm whose complexity is O(N) and then
solve each net independently. Thus, the total solving cost
can be added linearly by each net.
After building the graph of power grid, we build the con-

ductance matrix G by MNA method and the corresponding
vector of current sources. Then a linear solver AMG-PCG
is used to solve the linear systems, which aggregation based
algebraic multigrid with K-Cycle acceleration is adopted as
a preconditioner to improve the robustness of conjugate gra-
dient iterative method [20].

K-Cycle Multigrid Preconditioner

Setup

Aggregation

Coarsening

CG Iteration Method

Figure 4: AMG-PCG Solver.

As shown in Figure 4, the application of AMG-PCG to
a given problem is a three part process. The first part,
which is a fully automatic setup phase, consists of recur-
sively choosing the coarser levels and defining the transfer
and coarse-grid operators. The second part, which is the
preconditioning phase, just uses the resulting components
in order to perform acceleration recursively on all levels by
the use of K-Cycle scheme. Thirdly, aggregation based alge-
braic multigrid with K-Cycle accelerating is adopted as an

inexplicit preconditioner for CG iteration method to solve
the power grid. The details of this linear solver are demon-
strated in Section 4.

4. AMG-PCG SOLVER
In this work, we use aggregation based algebraic multi-

grid method with K-Cycle acceleration to improve the con-
vergence. This procedure is fully algebraic, that is, it works
with the information present in the system matrix only.

4.1 Aggregation Coarsening
As demonstrated in Figure 4, the aggregation scheme con-

tains two steps. First, we need to partition the unknowns
into disjoint subsets to generate the prolongation matrices.
Then, the prolongation matrices are used to formulate the
coarse matrix.

As described in [14], we focus on schemes that use coars-
ening by aggregation where the strongest connection is fa-
vored in forming pairs. With aggregation scheme, the fine
grid unknowns are grouped into disjoint subsets, and each
such subset is associated to a unique coarse level unknown.
Prolongation from coarse level to fine level is a vector defined
on the coarse variable set by assigning the value at a giv-
en coarse variable to all fine grid variables associated to it.
The prolongation operator P is a Boolean matrix with ex-
actly one nonzero entry in each row and piecewise constant
in each column. The restriction operator R is chosen to be
the transpose of the prolongation. The coarse grid matrices
are then cheap to compute and generally as sparse as the
original fine grid matrix. As we have denoted the conduc-
tance matrix G as fine grid matrix Af which is symmetric
and positive definite, the coarse grid matrix is computed
from the Galerkin formula Ac = RAfP = PTAfP which
implies that Ac is cheap to construct using

(Ac)ij =
∑
k∈Gi

∑
l∈Gj

akl (2)

That is, the entries in the coarse grid matrix are obtained
by summing the entries in Af that connect the different
aggregates.

The above simple pairwise aggregation coarsening is still
relatively slow, which cannot guarantee an optimal perfor-
mance of multilevel methods. This work adopts the dou-
ble pairwise aggregation algorithm which begins by forming
pairs in the scaled problem matrix [20]. This fast coarsening
technique is implemented in our simulator by repeating the
simple pairwise aggregation process, defining aggregates by
forming pairs of pairs.

Furthermore, preliminary numerical results indicate that
aggregation based multigrid methods may then indeed ex-
hibit convergence that is independent or near-independent
of the number of levels [13].

4.2 Multilevel Preconditioning
Although AMG strategy has been tried to capture all rel-

evant influences by accurate coarsening and interpolation,
its interpolation will hardly ever be optimal. Multilevel er-
ror reduction technique can smooth the majority of the er-
ror components very quickly but inefficiency for just a few
exceptional error components. Thus, its total convergence
property is degraded by this non-ideal phenomenon. In or-
der to improve the robustness of our approaches, AMG is

484

used as an inexplicit preconditioner for conjugate gradients
method instead of stand-alone solver [15].
The AMG preconditioner at each level on a given vector

is computed according to the following algorithm [20]:

Algorithm 1: AMG as preconditioner at level k,
AMGprecond (rk, k)

Input: The residual rk of level k
Output: The preconditioned vector zk

1 Pre-smoothing: relax the input residual rk to vk by
using smoother of several iterations on Akvk = rk;

2 Compute a new residual r̃k = rk −Akvk and restrict it

to coarser grid by rk−1 = PT
k r̃k;

3 Compute an (approximate) solution yk−1 on coarser
grid by Ak−1yk−1 = rk−1 which is recursively obtained
by yk−1 = AMGprecond (rk−1, k − 1) until the coarsest
level with k = 1;

4 Interpolate coarse grid correction by yk = Pkyk−1 and
compute new residual r̄k = r̃k −Akyk;

5 Post-smoothing: relax the new residual r̄k to wk by
using smoother of several iterations on Akwk = r̄k;

6 Obtain preconditioned vector zk = vk + yk + wk;

The multigrid preconditioning is called by the main itera-
tion routine at the top level, and it recursively calls itself in
step 3 with a smaller index until the coarsest level. We stop
the coarsening when the coarse grid matrix has 400 rows, al-
lowing fast direct solver with sparse Cholesky factorization.
For k > 1, the AMG preconditioner at level k computes yk−1

approximately by using AMG preconditioner at level k − 1.
The way this is done defines the cycling strategy which will
be detailed discussed in next subsection.

4.3 K-Cycle Multigrid
This paper adopts a K-Cycle multigrid [16], with which

Krylov subspace acceleration is applied at every level to en-
hance robustness and scalability.
As shown in Figure 5, it illustrates Krylov subspace ac-

celeration recursively on each level. The Krylov-subspace
smoothing is performed at the end of every recursive cycle
on each level to reduce the residual, in which it is called
inner iteration.

Coarse Level

Krylov Smoothing

Coarest Level

Fine Level

Figure 5: K-Cycle Multigrid.

In this scheme, the residual on coarse grid system is s-
moothed by several steps of a Krylov subspace iterative
method. This approach is followed recursively until the
coarsest level where an exact solver is performed. In prac-

tice, the K-Cycle with only 2 inner iterations at each level
is observed to be optimal.

Theoretical analysis [13][16] have been shown that aggre-
gation based multigrid with K-Cycle can achieve a guaran-
teed convergence which is independent or near-independent
of the number of levels. K-Cycle multigrid appears more
robust than V-Cycle or even standard W-Cycle. This en-
hanced robustness is obtained nearly for free since the K-
Cycle has roughly the same computational complexity as
the V-Cycle or W-Cycle.

5. EXPERIMENTAL RESULTS
All algorithms in PowerRush are implemented using C

language with single thread. The simulation platform is a
Red Hat Enterprise Linux Advanced Server with 2 Quad-
Core Intel Xeon E5506 CPU@2.13GHz and 24GB RAM on
HP ProLiant DL380 G6 Server.

The runtime in simulation flow is measured by system
clock counter. The peak memory usage is measured by a
friendly toolMemtime whose memory usage is fetched from
a PID information of /proc/[PID]/stat. In our simulator,
the tolerance of linear solver is set as 10−6 on the relative
residual norm to guarantee that all voltage solution error is
less than 0.01mV .

As shown in Table 1, various experiments on real power
grids are carried out to validate the promising performance
of the proposed simulator PowerRush. Each benchmark
is carefully checked in parser procedure to merge the short
path as equivalent node then its original grid size is reduced
to a smaller one. Experimental results in Table 1 have shown
that PowerRush is effective and robust with high accuracy
for real power grids analysis.

Aiming to present the promising linear complexity of Power-
Rush, a serious of larger scale power grid benchmarks are
generated by our power grid planner, in which the grid size is
from 5 Million to 60 Million as shown in Table 2. Among
them, there exists only one single net in each benchmark,
which means that there are no separated nets in a same
benchmark. That is to say, it cannot take the advantage
of divide and conquer strategy in circuit building process as
described in Section 3.

In Table 2, it illustrates the behavior of our proposed sim-
ulator PowerRush on our generated power grids. The com-
plexity character of each step in PowerRush is shown in
Figure 6. The parsing time, building time, solving time and
peak memory usage are all linear complexity with the in-
creasing size of power grids.

0 1 2 3 4 5 6 7

x 10
7

0

50

100

150

200

250

Grid Size

T
im

e
 (

s
e
c
o
n
d
)

CPU Runtime

Parse

Build

Solve

0 1 2 3 4 5 6 7

x 10
7

0

5

10

15

20

25

Grid Size

M
e
m

o
ry

 (
G

B
)

Peak Memory

Memory

Figure 6: Runtime and Memory Complexity of
PowerRush.

Also in Table 4, it presents the grid reduction efficiency of
double pairwise aggregation strategy. For all benchmarks,

485

Table 1: Simulation results of IBM Power Grid Benchmarks

Grid Size Simulation Time (second) Peak Memory
(MB)

Max Error
(mV)

Average Error
(mV)

Benchmark Before† After∗ Parse Build Solve

ibmpg3 851581 286299 2.79 0.52 2.48 230.03 0.07 0.0124
ibmpg4 953580 610103 2.89 0.80 3.31 309.82 0.23 0.0290
ibmpg5 1079307 540497 2.94 0.83 2.64 301.88 0.06 0.0117
ibmpg6 1670491 834633 4.82 1.38 6.67 466.20 0.09 0.0122

ibmpgnew1 1461038 531777 4.27 1.27 5.08 384.31 0.07 0.0124
ibmpgnew2 1461038 531777 4.82 1.00 5.06 397.84 0.07 0.0124

† Before means the original grid size.
∗ After means the grid size after merging the short path as equivalent node.

Table 2: Simulation results of THU Power Grid Benchmarks

Grid Size Simulation Time (second)

Benchmark Before† After∗ Parse Build Iterations Solve Peak Memory

thupg1 4974439 3261850 15.78 3.53 6 11.41 1.86GB
thupg2 8989132 6014504 28.89 6.57 6 23.24 3.39GB
thupg3 11778121 7856200 38.25 8.88 7 30.52 4.43GB
thupg4 15209208 10259771 49.86 11.73 6 44.48 5.76GB
thupg5 19231049 13627506 65.46 15.78 7 55.59 7.52GB
thupg6 23505915 17216192 80.34 21.05 6 64.04 9.40GB
thupg7 28468261 18690184 93.63 23.13 7 79.42 10.60GB
thupg8 39784463 27661623 143.62 42.79 6 118.98 15.37GB
thupg9 51810571 31518068 188.16 56.07 6 146.34 18.38GB
thupg10 60351149 38415188 226.72 68.24 6 169.42 21.89GB

† Before means the original grid size.
∗ After means the grid size after merging the short path as equivalent node.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000000 10000000 15000000 20000000 25000000

Runtime

Node Size

Team 1

Team 3

Team 2

0

5

10

15

20

25

0 5000000 10000000 15000000 20000000 25000000

Memory

Node Size

Team 1

Team 2

Team 3

Figure 7: Runtime and Memory Chart of Top 3
Teams (Team 1 represents PowerRush) [21].

the total average reduction rate is about 0.2689 which the
scale factor is about 3.7184. Considering a scaling rule for
this reduction scheme with 400× (3.7184)10 ≈ 202125475, it
can reduce a power grid of about 200 Million nodes easily to
400 nodes within 11 levels. Thus, the double pairwise aggre-
gation technique reduces the memory consumption rapidly
which ensures a linear complexity in memory usage.
The first annual Power Grid Simulation Contest has been

successfully organized in TAU workshop by IBM Austin Re-
search Lab to boost the academic research in power grid
verification [21]. PowerRush is also evaluated with other
nine simulators on the same HW/SW platforms by a set of
real life industrial benchmarks in this contest. The runtime
and memory chart of top three teams is shown in Figure 7.
Comparing with the other teams, PowerRush obtained a
best convergence and extremely low memory consumption
[22]. As shown in Table 3, PowerRush uses only about

Table 3: Results on all eleven benchmarks for top 3
teams (Team 1 represents PowerRush) [21].

Team ID CPU Score Memory Score Error Score

1 136 260 0
2 397 330 0
3 242 634 0

40% runtime and 75% memory respectively compared with
the second place performance of other simulators. Excitedly
PowerRush is expected to explore a widely practical use
in industrial world.

6. CONCLUSIONS
We have presented the detail implementation of Power-

Rush. Aggregation based algebraic multigrid with K-Cycle
accelerating is adopted as an inexplicit preconditioner for
CG iteration method to solve the power grid. The double
pairwise aggregation scheme uses two passes of a pairwise
matching algorithm to ensure low setup cost both in run-
time and memory usage. The K-Cycle scheme is a recur-
sively accelerated W-Cycle where acceleration is performed
by finding the optimal linear combination of two iterations.
Thus a linear complexity solver is realized fully with alge-
braic information in the system matrix only. Also by taking
the advantage of effective SPICE Parser and robust circuit
Builder, PowerRush has shown to be an effective and ro-
bust simulator with a linear complexity for real power grid
analysis.

486

Table 4: Grid reduction efficiency of Double Pairwise Aggregation scheme

Reduction Level Reduction
Rate∗Benchmark Initial Size 1 2 3 4 5 6 7 8 9

ibmpg3/GND† 151148 42535 11817 3250 880 239 - - - - 0.2753
ibmpg4/GND† 303712 78876 21527 5822 1552 407 105 - - - 0.2650
ibmpg5/GND† 291559 75523 20095 5320 1412 377 - - - - 0.2645
ibmpg6/GND† 430586 114936 31314 8657 2421 663 174 - - - 0.2720

ibmpgnew/GND† 272655 75804 21113 5804 1574 416 108 - - - 0.2711
thupg1 3261850 1016250 302693 82384 21244 5404 1369 347 - - 0.2715
thupg2 6014504 1876044 559178 152303 39264 9973 2524 640 163 - 0.2694
thupg3 7856200 2448528 729549 198959 51293 13032 3310 838 213 - 0.2694
thupg4 10259771 3198126 952769 259647 66915 16990 4303 1089 275 - 0.2691
thupg5 13627506 4246482 1265492 344802 88799 22548 5720 1445 366 - 0.2691
thupg6 17216192 5365326 1598894 435519 112230 28500 7207 1824 460 117 0.2674
thupg7 18690184 5824651 1735814 473105 121978 30992 7852 1985 502 128 0.2676
thupg8 27661623 8620564 2568323 700007 180413 45840 11607 2941 744 188 0.2674
thupg9 31518068 9817025 2925390 797496 205484 52169 13205 3342 847 215 0.2675
thupg10 38415188 11967133 3566144 972293 250721 63664 16109 4074 1030 264 0.2677

† GND means that only the single net of ground network is used.
∗ Average reduction rate of all reduction levels

7. ACKNOWLEDGEMENTS
The authors would like to thank Zhuo Li for his careful

organizing effort on the contest, and to thank Sani R. Nassif
for introducing this contest for us.

8. REFERENCES
[1] Tsung Hao Chen and Charlie Chung-Ping Chen.

Efficient large-scale power grid analysis based on
preconditioned Krylov-subspace iterative methods. In
Proceedings of DAC, pages 559–562, 2001.

[2] Min Zhao, Rajendran V. Panda, Sachin S. Sapatnekar,
Tim Edwards, Rajat Chaudhry, and David Blaauw.
Hierarchical analysis of power distribution networks.
In Proceedings of DAC, pages 150–155, 2000.

[3] Haifeng Qian, Sani R. Nassif, and Sachin S.
Sapatnekar. Power grid analysis using random walks.
ACM Transactions on CAD, 24(8):1204–1224, 2005.

[4] Kai Sun, Quming Zhou, Kartik Mohanram, and
Danny C. Sorensen. Parallel domain decomposition for
simulation of large-scale power grids. In Proceedings of
ICCAD, pages 54–59, 2007.

[5] Stephen Cauley, Venkataramanan Balakrishnan, and
Cheng Kok Koh. A parallel direct solver for the
simulation of large-scale powerground networks. ACM
Transactions on CAD, 29(4):636–641, April 2010.

[6] J. M. S. Silva, Joel R. Phillips, and L. Miguel Silveira.
Efficient simulation of power grids. ACM Trans. on
CAD, 29(10):1523–1532, October 2010.

[7] Joseph N. Kozhaya, Sani R. Nassif, and Farid N.
Najm. Fast power grid simulation. In Proceedings of
DAC, pages 156–161, 2000.

[8] Joseph N. Kozhaya, Sani R. Nassif, and Farid N.
Najm. A multigrid-like technique for power grid
analysis. ACM Transactions on CAD,
21(10):1148–1160, 2002.

[9] H. Su, E. Acar, and S. R. Nassif. Power grid reduction
based on algebraic multigrid principles. In Proceedings
of DAC, pages 109–112, 2003.

[10] Cheng Zhuo, Jiang Hu, Min Zhao, and etc. Power grid

analysis and optimization using algebraic multigrid.
ACM Trans. on CAD, 27(4):738–751, 2008.

[11] Petr Vaněk. Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic
problems. Computing, 56:179–196, 1996.

[12] Pei Yu Huang, Huang-Yu Chou, and Yu-Min Lee. An
aggregation-based algebraic multigrid method for
power grid analysis. In Proceedings of ISQED, pages
159–164, 2007.

[13] YADRIAN C. MURESAN and YVAN NOTAY.
Analysis of aggregation-based multigrid. SIAM J.
SCI. COMPUT., 30(2):1082–1103, 2008.

[14] Yvan Notay. Aggregation-based algebraic multilevel
preconditioning. SIAM J. MATRIX ANAL. APPL.,
27(4):998–1018, 2006.

[15] C. W. Oosterlee and T. Washio. On the use of
multigrid as a preconditioner. In Proceedings of Ninth
International Conference on Domain Decomposition
Methods, pages 441–448, 1996.

[16] Yvan Notay and Panayot S. Vassilevski. Recursive
krylov-based multigrid cycles. Numer. Linear Algebra
Appl., 0:0–20, 2006.

[17] U. Trottenberg, C. W. Oosterlee, and A. Schüller.
Multigrid. Academic Press, 2001.

[18] S. R. Nassif. IBM power grid benchmarks. [Online],
http://dropzone.tamu.edu/∼pli/PGBench.

[19] Willian L. Briggs, Van Emden Henson, and Steve F.
McCormick. A Multigrid Tutorial, Second Edition.
SIAM Press, 2000.

[20] YVAN NOTAY. An aggregation-based algebraic
multigrid method. Electronic Transactions on
Numerical Analysis, 37:123–146, 2010.

[21] Zhuo Li. TAU 2011 power grid analysis contest.
www.tauworkshop.com/PREVIOUS/tau 2011 contest.pdf.

[22] Zhuo Li, Raju Balasubramanian, Frank Liu, and Sani
Nassif. 2011 TAU Power Grid Simulation Contest:
Benchmark Suite and Results. In In Proceedings of
ICCAD, to appear, 2011.

487

