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Abstract—Elliptic curve cryptography (ECC) plays a piv-
otal role in safeguarding data integrity and authentication
in contemporary communication contexts, particularly within
the domain of Intelligent Transport Systems (ITS). In the
realm of ITS, vehicles communicate via the V2X (vehicle-to-
everything) protocol, necessitating low-latency responses and
minimal power consumption. Given the evolving nature of V2X
protocol standards across the globe, programmability becomes
a rigid requirement. However, existing strategies cannot meet
all these vehicular equipment demands. This paper introduces
a novel framework tailored for ECC acceleration to address
the issues. Specifically, we propose the design of an Application
Specific Instruction Set Processor (ASIP), augmented by pipeline
and dual-issue techniques. Furthermore, the envisioned ASIP
integrates a hybrid control framework founded on Finite State
Machines (FSM), facilitating agile and effective management. No-
tably, a general GF(p256) Barrett modular multiplier is specially
devised to optimize latency and area utilization. Experimental
results on Xilinx Kintex Ultrscale+ FPGA demonstrate that the
proposed ECC accelerator generates a signature within 131us
and verifies a message within 181us, and the performance meets
the requirements of today’s V2X standard.

Index Terms—Elliptic Curve Cryptography (ECC), Hardware
Acceleration, Programmable, V2X

I. INTRODUCTION

Although post-quantum cryptography has achieved exten-
sive development [1], [2], classical public-key cryptography
algorithms still remain the mainstream security approach
currently. Elliptic Curve Cryptography (ECC) is a widely
used public-key cryptography system, offering various security
functions such as data integrity and authentication, among
others. Currently, ECC has been deployed in various cyber-
physical system applications, such as Intelligent Transportation
Systems (ITS) [3]. In ITS, vehicles need to communicate with
other members through V2X (vehicle-to-everything) protocols.
Specifically, vehicles can communicate with other vehicles
through V2V (vehicle-to-vehicle) protocol, which may involve
messages containing private information like position [4].
Digital signature algorithms based on ECC have been widely
used to guarantee authentication and data integrity.

For V2V, different standards are adopted across the globe.
China [5], the United States [6], and Europe [7] recommend
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Xueyan Wang’s work was supported in part by the Young Elite Scientists
Sponsorship Program by CAST (2023QNRC001), Beihang Frontier Cross-
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TABLE I: ECDSA verification schemes in previous work.
Scheme Throughput Power Latency Programmability

CPU [11] % % ! !

GPU [12] ! % % !

FPGA [7] ! ! ! %

ASIC [13] ! ! ! %

This work ! ! ! !

different curves (SM2, NIST P256r1, and Brainpool P256r1)
and algorithms (SM2 and ECDSA). As the standards are still
evolving, Ghosal and Conti [8] suggest that the communication
and security architecture should be compatible with upcoming
vehicular technologies. For example, Secp256k1 has been used
in decentralized V2X [9]. Therefore, a critical requirement is
supporting both mainstream and potential algorithms as well
as curves while providing compatibility for future vehicular
technologies. Another crucial requirement is low latency for
rapid response and high throughput. In the worst-case scenario,
each vehicle should be able to verify 4000 messages per
second, with each verification requiring a latency of less than
20 ms [10].

There have been several attempts at elliptic curve cryptog-
raphy accelerator (ECCA) for V2V on different platforms, as
shown in TABLE I. Regarding the programmability discussed
in this article, we consider it reflects the extent to which
the system supports various curves and algorithms. However,
none of them can concurrently meet all the requirements
for V2V. Although CPU [11] and GPU [12] can offer good
programmability, the throughput or latency limits their deploy-
ment on automotive platforms. Some customized designs [7],
[10], [13]–[15] based on FPGA or ASIC achieve promising
performance for specific curves or algorithms. However, these
designs generally lack programmability for future security
algorithms.

Regarding the above key issues, this paper proposes a
low-latency, programmable, and multi-curve-supported ECC
accelerator. Our main contributions can be summarized as
follows:

● We present an Application Specific Instruction Set Pro-
cessor (ASIP) for flexible ECC acceleration. The pipeline
and pseudo-dual-issue architecture is designed to further
improve the parallelism of computation.

● A hybrid control mechanism for operator scheduling in
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ASIP to achieve efficient programmability.
● A novel Barrett modular multiplier is designed based on

a truncated multiplier and multiple reduction units, which
enables efficient pipelined modular multiplication.

● The proposed strategies are implemented and verified on
FPGA platform, which has demonstrated highly promis-
ing results.

The remainder of this paper is structured as follows: Sec-
tion II presents essential background information. Section III
details the architecture of the ECC accelerator and the program
approach. Section IV introduces the proposed finite field
multiplier. Section V presents the experimental results. Finally,
Section VI concludes the article.

II. PRELIMINARY
A. Modular Operation

A finite field, or Galois field (GF), is a mathematical con-
struct containing a finite set of elements. Take the prime num-
ber 7 as an example, the elements in GF(7) are {0,1,⋯,6}. All
operations within GF(7) are performed mod 7, encompassing
multiplication (MM), addition (MA), subtraction (MS), and
inversion (MI). This modular arithmetic ensures that the results
remain within the defined set of elements.

MM is the main modular operation in ECC. MM contains
a standard multiplication and a reduction. Both of these
operations are timing-consume operations. The classical al-
gorithms for MM are Montgomery [16] and Barrett (BMM)
[17]. These algorithms aim to accelerate MM by incorporating
hardware-friendly Mod/Div 2n operation, as Algorithm 1
shows. They have no modulus restrictions but require at
least three multiplications. Moreover, Montgomery reduction
leads to the consumption for the conversion between the
Montgomery domain and normal number presentation. The
Barrett reduction needs pre-calculation of variable u. Another
method is to optimize the reduction algorithm for specific
modules like pseudo-Mensen prime [18], which is suitable
for a fast reduction algorithm. For example, NIST P256r [16]
and SM2 suit these methods. Unfortunately, Brainpool P256r1
does not possess such properties.
Algorithm 1: Barrett reduction Algorithm

Input: p, b ≥ 3, k = ⌊logbp⌋ + 1,0 ≤ z < b2k, µ = ⌊b2k/p⌋.
Output: z mod p.

1 q = ⌊⌊z/bk−1⌋ ∗ µ/bk+1⌋.
2 r = (z mod bk+1) − (q ∗ p mod bk+1).
3 If r < 0 then r = r + bk+1.
4 While r ≥ p do: r = r − q.
5 Return r.

B. ECC Backgroud

V2V protocols typically utilize the Weierstrass Curve form.
The elliptic curve E over GF(p256) is defined by Weierstrasβ
form [10], as Eq. (1) shows, a, b ∈ GF(p256).

E ∶ y2
= x3

+ ax + b mod p256 (1)
The most time-consuming operations are point multiplication

(PM) and double point multiplication (DPM) for signature
generation/verification, respectively. Let P1 and P2 be two
points in E, and let k and l be random scalar numbers. The

Fig. 1: Shamir’trick and Comb Methods for PM/DPM

PM result is another point Q1 in E that Q1 = kP1, and the
DPM result is also a point Q2 in E that Q2 = kP1 + lP2. In
[16], Shamir’s trick and comb methods are introduced to boost
PM and DPM, as shown in Fig. 1. It is feasible to reuse the
precomputed points if the curve parameters are not changed.

(x, y) → {(X,Y,Z)∣X = x,Y = y,Z = 1} (2)
{(X,Y,Z)∣Z ≠ 0} → (X/Z−2, Y /Z−3) (3)
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3
pa,

Zpa = Z1Z2Tpa.

(4)

Both PM and DPM heavily rely on Point Addition (PA) and
Point Double (PD) operations. Generally, PM and DPM results
are in Affine coordinates represented as Eq. (2). It’s worth
using Jacobian coordinate, represented as Eq. (3), to reduce
time-consuming MI operations, and we only need one-time
MI computation when Jacobian converts to Affine by Eq. (3).
In the Jacobian coordinate representation, the PA operation is
described by Eq. (4), and the PD operation is described by
Eq. (5). To adapt to Comb PM/DPM, we employ the repeated
point doubling algorithm (MPD) described in [16] with ω = 4.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Xpd = (3X
2
1 + aZ

4
1)

2
− 8X1Y

2
1 ,

Ypd = (3X
2
1 + aZ

4
1)(4X1Y

2
1 −X3) − 8Y

4
1 ,

Zpd = 2Y1Z1.

(5)

C. Digital Signature Scheme

Generally, digital signature schemes consist of signature
generation and signature verification. They can be used to
provide data origin authentication, data integrity, and non-
repudiation proofs [16]. In the USA and Europe, ECDSA [19]
is considered for V2V communication. There are many other
signature schemes used in V2X, such as SM2 [20] in China.

III. ECCA ARCHITECTURE
A. Design Concept

As emphasized in Section I, programmability stands as a
critical feature in the evolution of future vehicle technologies.
Finite State Machines (FSMs) offer a simple way to design
systems without complex control logic, making them suitable
for smaller designs with fixed functions. For instance, in top-
level Elliptic Curve Cryptography (ECC) applications like
Signature generation, which involve specific operations with
straightforward control logic, FSM-designed modules work
well. Complementing the simplicity of FSMs, the concept
of an Application Specific Instruction Set Processor (ASIP)
stands out for its capacity to accommodate complex function-
alities through diverse program execution. It facilitates using
classic techniques like pipelining for enhanced performance
and dual-issuing for parallelism. Furthermore, ASIPs afford
the programmability of incorporating user-defined instructions,
thereby facilitating compatibility with various protocols.
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Fig. 2: Proposed overall ECC accelerator architecture.

Fig. 3: Instruction format.

We develop a hybrid framework that combines the strengths
of both FSMs and ASIPs. The true innovation lies in a pseudo-
dual-issue pipeline ASIP, optimized for low-level operations,
alongside an FSM tailored for high-level applications. The
proposed framework achieves a good balance between per-
formance, programmability, and ease of use, which are all of
great importance for modern vehicle communication systems.
B. The ASIP Specification

All instructions are in the same 16-bit format, and each
instruction consists of four parts: rs1, rs2, rd, and opcode,
each of which is 4 bits long, as shown in Fig. 3. The rs and
rd are the indices of registers in the Register file (RF). The
opcode determines the function of an instruction. TABLE II
demonstrates that our architecture supports three kinds of
instructions: arithmetic, branch and system. For programmabil-
ity, we reserve some instruction space for user implementation.

TABLE III details the names and functions of regis-
ters in RF. The T0 register supplies constant numbers
(a,0,2−1 mod p) controlled by sys instructions. The RF is
designed by a 16×258-bit register array with four read ports.
Thus, it supports four simultaneous read requests generated by
two instructions. Our design effectively supports simultaneous
writing to the RF, leveraging the varying pipeline depths of
the BMM and MA/MS to enable writing to all registers in 1
cycle, thus providing significant parallelism and meeting the
high concurrency write requirements of the Datapath.
C. Datapath

1) Fetch Unit and Firmware Memory: All the program
information is stored in the firmware memory (FM) and
the Fetch Unit chooses the appropriate segment of code for
execution. For firmware memory, it’s combined with vector
table (VT) and instruction memory (IM). The VT, imple-
mented by a 32×9 bit register file, provides the program start
address (Entry) in IM. The IM, which a 32 × 1024bit SRAM
implements, stores the code for basic function programs like
PM, PD, etc. The user-defined program follows the basic
function program. By changing VT and user-defined programs,
users can add their functions to their application. The fetch
unit reads instructions from the instruction memory (IM) each
cycle, incrementing the memory address (program counter,

TABLE II: Proposed instruction set for ECCA.
Type Name Opcode Explanation

Arith

add 0xA rd = rs1 + rs2 Mod p
sub 0xB rd = rs1 − rs2 Mod p
bmm-a 0x4 rd = rs1 × rs2 Div 2254

bmm-b 0x6 rd = rs1 × p Mod 2258

bmm-c 0x7 rd = rs1 × u Div 2258

bmm-d 0x2 rd = rs1 × rs2 Mod 2254

cor 0x3 rd = BMMCorrection(rs1, rs2)
Branch branch 0x9 Branch,Jump condition depend on rd

System sys 0x0 Program success/fail, change system
parameter

Reserved Reserved others leave for user-define

TABLE III: Register name and function in assembly
Index Name Function
0 T0 Constant Nums can be configed
1-6 X1, Y1, Z1,X2, Y2, Z2 Input parameter; Save temp data
7-9,14,15 X3, Y3, Z3, T5, T6 Output result; Save temp data
10-13 T1, T2, T3, T4 Save temp data

PC) one by one during normal program execution. When
encountering a branch instruction, the PC may jump to a new
section of the program. Finally, when a section of the program
is completed, followed by a sys instruction, the PC will be
held and await the start of a new program.

2) Decode Unit: Decode Unit parses the instruction and
allocates the data and specific operations to the corresponding
compute unit. It is worth noting that as the ASIP adopts
a pseudo-dual-issue architecture, the Decode Unit receives
two instructions per cycle, assuming that they are named
Instr1 and Instr2. Among them, Instr2 is a bmm-series
instruction (bmm-a/b/c/d), while Instr1 must not be a bmm-
series instruction, such as bmm − c, t5, p, t5;add, z1, t1, t3.

To facilitate data input and output, we have designed a data
matrix, as depicted in Fig. 4. During program initialization,
input parameters are loaded into input functional registers
in RF via the matrix. After the program finishes, results
are retrieved from the output functional registers through
the matrix. Encoding mux selection as a binary sequence
efficiently meets specific data input requirements. Moreover,
the Decode Unit controls the pre-computed memory, which
saves pre-computed points in Fig. 1. It contains two sets of pre-
computed points (P1 and P2), each comprising three blocks
for (X,Y,Z) in Jacobian coordinates. Thus, a total of six
15×258-bit SRAM memories are required.

3) Execute Unit: As Fig. 4 shows, our proposed Execute
Unit (EU) consists of several Compute Units (CUs), like MA.
The execution of the instructions relies on the corresponding
CUs, as TABLE IV demonstrates. Almost all the CUs operate
in pipeline mode, except for the Iteration Unit used for MI.
Given the varying pipeline depths of the CUs, we have chosen
to optimize the code to prevent data conflicts, rather than
developing complex hardware pipeline control logic. However,
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Fig. 4: Datapath architecture
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TABLE IV: Matching for instructions and Compute Units
Compute Unit Latency Instruction Writeback

Mod Add 1 add yes
Mod Sub 1 sub yes
BMM-Cor 1 cor yes

BMM 2 bmm-(a/b/c/d) yes
Ctrl Branch 2 branch no

Iteration Unit ∼500 / yes
MI is controlled by a FSM, since it is not a frequent operation.
The sys instruction executing in the control part controls the
program and sets parameters in the RF, which bridges the gap
between the control and calculation parts.

To leverage the parallelism of low-level operators, the pro-
posed architecture employs a pseudo-dual-issue architecture,
which supports launching two instructions per cycle with
almost the same area, provided that the two instructions
are executed on different compute units in TABLE IV. For
instance, the bmm − a cannot be issued concurrently with
bmm − b, but it can be issued concurrently with add.
D. Control Mechanism

Our proposed control mechanism is divided into FSM and
ASIP two parts. Fig. 5 (a) illustrates our understanding of the
hierarchy of compute abstract level. The hierarchy is divided
into three levels: application level (layerapp), point operation
level (layerpoint) and modular operation level (layermod).

In our architecture, the layerapp is implemented by the Sys-
tem Control Unit (Sysctrl), whereas the layerpoint and layermod
are implemented by the System Compute Unit (Syscomp), as
Fig. 2 illustrates. From a control perspective, PM/DPM in the
layerpoint are both scheduling tasks that do not participate in
computing; however, they are also sub-level operators relative
to layerapp. Therefore, we implement PM/DPM using an
FSM model, and the remaining components in Syscomp are
implemented using an ASIP model.

For low-level and highly reusable operators, the compute
flow is that Fetch→IM→Decode→RF→CU→RF. Until the pro-
gram finishes, the compute flow continues. It is worth noting
that the compute flow is fixed and there is no branch require-
ment in these functions except for the input check. Therefore,
it is feasible to optimize performance by considering the
pipeline depths of various operators in the accelerator architec-
ture during code compilation, whether it is done automatically
by software with constraints or manually.

For high-level operators, we adopt a design model based
on FSM. The order of control flow is as follows: FSM in
Sysctrl→FSM in Syscomp→EU, as demonstrated in Fig. 5 (b).
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Fig. 5: Computation hierarchy for ECC acceleration. (a) con-
trol mechanism decomposition and (b) control flow example
E. An Illustrative Example

Our idea to support user-defined programs is to make user-
defined programs a specific function in our compute abstract

architecture. In detail, we leave some entries for the user’s
program, corresponding to different program startup addresses
in the VT and users can launch it from layerapp. Next, we use
a user-defined function example to show how the controller
works with FSM and ASIP control mechanism as Fig. 5 (b).
We set the function (x3 = x1 × y1 + x2 × y2 + z1 mod p) as a
single task and change VT’s entry for this function. The Sysctrl
schedules data and launches sub-level FSM, transmitting the
command until the lowest-level FSM in Syscomp. The lowest-
level FSM looks up the VT for a specific program entry (single
task), sets the PC as the entry value, launches the Fetch Unit,
and waits for the program to finish.

As mentioned in Section III-A, we have constructed a
pseudo-dual-issue architecture intended to take advantage of
parallel computing. The code presented in TABLE V serves as
the demo of the user-defined function. Steps 4/6 demonstrate
the pipeline advantage, where x2 ×y2 begins execution before
x1 × y1 completes. And steps 7/8 highlights the pseudo-
dual-issue advantage, where two instructions are executed
simultaneously.

TABLE V: Example for pipeline and pseudo-dual-issue
(Step.)Code Assembly (Step.)Code Assembly
(1).124e000a bmm-a,x1,y1,t5;nop (7).456ffe3a bmm-d,x2,y2,t6;

cor,t6,t5,t1
(2).126f000a bmm-d,x1,y1,t6;

nop
(8).e02e3aac bmm-c,t5,p,t5;

add,z1,t1,t3
(3).e07e000a bmm-b,t5,u,t5;nop (9).000a000a nop;nop
(4).454d000a bmm-a,x2,y2,t4;nop (10).000afe3b nop; cor,t6,t5,t2
(5).e02e000a bmm-c,t5,p,t5;nop (11).000acba7 nop;add,t3,t2,x3
(6).d07e000a bmm-b,t4,u,t5;nop (12).000a0080nop;FINISH

IV. BARRETT MODULAR MULTIPLIER

To support a wide range of curves, we choose to implement
the Modular Multiplication based on the Barrett reduction
algorithm. However, directly implementing the algorithm can
lead to high latency and large area overhead. While decompos-
ing the multiplier in BMM with smaller multipliers is feasible,
it complicates the reduction operation. The key problem lies
in designing a suitable decomposition method with an efficient
reduction strategy. Our idea involves using small multipliers to
directly generate partial products (PR) and employing Carry-
Save Adder (CSA) technology [21] to produce the reduction
result. This entails extracting carry-out information from the
PR without accumulating them. This section will introduce
the BMM in our design, encompassing both the multiplier
and BMM reduction units.

A. Proposed Multiplier
Our proposed BMM is based on the Algorithm 1 with

parameter b = 4, k = 128. Therefore, the bit length of u
is 257 bits. Let the input of BMM as A,B < p. With
z = A ∗ B < p2 < 2512, the bit length of z mod bk+1 is
258 bits. To reduce the accelerator area, our design reuses one
multiplier for all multiplication in the Barrett Algorithm. The
multiplier is a 258 bit × 257 bit multiplier (Mul258×257) to
accommodate the maximum bit width of operands in BMM.
The input of Mul258×257 is Ina (258 bits) and Inb (257 bits).
Fig. 7 demonstrated our decomposition strategy. The compute
task for this stage is shown in Eq. 6.
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Fig. 6: Hardware architecture for BMM. (a) BMM architecture
(b)Div 2254 unit and (c) correction unit.

To balance the multiplier area and avoid the occurrence of
the large multiplier, we design our Mul258×257 based on 128-
bit multipliers. In this stage, we pre-calculate Premsb and
Precal and save the multiplier result such as a1b1 without
accumulating PRab. All the PRs in this stage are registered
for the next reduction unit.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ina =msba2
256
+ a =msba2

256
+ a12

128
+ a0,

Inb =msbb2
256
+ b =msbb2

256
+ b12

128
+ b0,

PRab = a1b12
256
+ a1b02

128
+ a0b12

128
+ a0b0,

P remsb =msba ×msbb,

P recal =msbaB2256 +msbbA2256.

(6)

B. Proposed Reduction Unit
The Barrett reduction contain Mod 2258, Div 2258,

Div 2254 and correction operation. Since it’s easy to imple-
ment Div 2258 operation based on Div 2254 operation, the key
problem is to handle Mod 2258 and Div 2254 operation. The
partial product for Mod 2258 involves four parts, highlighted in
yellow in Fig. 7 (b). Since a0b0[127 ∶ 0] is equal to Mod 2256

result[127:0], we use CSA (also named as 3:2 compressor) to
compress high 130 bit, the accumulate part in Fig. 7 (b), to
two output and use only a 130bit adder to get the Mod 2256

result[257:128]. In this method, the timing path for Mod 2258

is equal to Tmod 2258 = 2TCSA + TAdder−130bit.
Mod 2258 operation does not need the carry-out value, while

Div 2254 operation needs the carry-out value generated by the
low 254 bit. In Fig. 7 (b), the green part is the low 254 bits and
the blue part is the high 261 bits. The Fig. 6 (b) demonstrates
the Div 2254 architecture. We use CSA1 to compress the low
254 bit and add the CSA1 output to get carry-out info (co). The
Carryout[254] of CSA1 can be absorbed in the compression
of high 261 bits by CSA3. The summation of the high 261
bits is Tmpdiv254. To reduce the critical path delay (CPD), we
calculate Tmpdiv254 +1 parallel and select the right Div 2254

result by CSA1’s co bit. In this method, the timing path is
Tmod 2258 = 2TCSA + TAdder−261bit + TMUX .

The reduction unit depicted in Fig. 6 (c) corresponds to steps
2-4 outlined in Algorithm 1. Let In1 = z mod bk+1 and In2 =

q ∗ p mod bk+1 be the input of reduction unit. Considering
the steps 2 and 3 in Algorithm 1, the equivalent operation is
r = ((z mod bk+1)−(q∗p mod bk+1))mod bk+1. Hankerson et
al. [16] have proved that when z < b2k, bk > p ≥ bk−1 satisfied,
at most two subtractions at step 4 are required to make sure
0 ≤ r < q. Therefore, to unroll the loop in step 4, we calculate
r− q, r−2q in parallel. Finally, according to the priority order
of r, r − q, r − 2q, select the number that is positive itself but
the subsequent number is negative as the output.
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Fig. 7: Decomposition strategy for BMM. (a) multiplication
decomposition and (b)decomposition for Mod /Div .

V. EXPERIMENTAL RESULTS
A. Experimental Setup

We implement our design on Xilinx Virtex-7 and Kintex Ul-
traScale+ (Kintex US+) platforms using Vivado Design Suite
2023.2. Since PM/DPM operations are the main performance
overhead in the signature schemes, we focus on comparing
their latency with previous works. To ensure a fair comparison,
we use two PMs as a substitute for those works that did not
incorporate DPM. As elucidated in Section II-B, our PM/DPM
method necessitates precomputed points. We define the best-
case performance scenario as when precomputation is prepared
(without pre-cal), whereas the worst-case scenario entails the
need to calculate precomputation points before PM/DPM (with
pre-cal). Furthermore, we relied on data from [22] for the hash
function, which entails 80 cycles for reference purposes.
B. Effect of Pseudo-Dual-Issue Techniques

Since the PM and DPM are influenced by the underlying
PM/DPM algorithm, we compare the basic point operations
PA, PD and MPD over Brainpool P256r1 to evaluate the
optimal outcome of the pseudo-dual-issue design. TABLE VI
shows that in comparison with the only pipeline optimization,
PA decreases cycle counts by 22, achieving a performance
surge of +24.4%. Likewise, PD cuts down 22 cycles, leading
to a performance enhancement of +30.5%. Furthermore, MPD
reduces cycles by 68, boosting performance by +30.3%.

TABLE VI: Pseduo-dual-issue performance improvement
Operation Pipe. Pipe.+pseudo-dual-issue Improve.

Point Addition 90 68 +24.4%
Point Double 72 50 +30.5%

Repeated Point
Doubling (ω=4) 224 156 +30.3%

Fig. 8 demonstrates that SystemIO, SystemCtrl and System-
Comp account for ∼7%, ∼7% and ∼86% of this implementa-
tion’s total LUT resource on the Xilinx Virtex-7 and Kintex
US+ platforms, respectively.

Fig. 8: The LUT resource utilization of submodules on FPGA.

C. Comparison With Previous Work

TABLE VII represents the utilization and maximum clock
frequency of our proposed design in different platforms. TA-
BLE VIII demonstrates the performance of our implementa-
tion on the Kintex US+ platform operating at 120.2 MHz. For
optimal performance, our design can sign 7610 messages/s
and verify 5530 messages/s. Additionally, the power analysis
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TABLE VII: Comparing PM and DPM performance on FPGA platform
Work Curve Platform Slice Lut(k) FF(k) DSP Freq.(MHz) PM Perf. DPM Perf. Programmable

TOIT’22 [10] NIST P256r1 Virtex-7 - 29.3k 10.2 384 162 458.8µs 917.6µs %

Brainpool P256r1 Virtex-7 - 29.4k 10.7 384 162 504.8µs 1009.6µs %

TC’20 [23] Secp256k1 Virtex-7 13.26k 46.96 29 280 125 324µs 648µs %

Integration’18 [24] Any Virtex-7 4611 18.8 - 1036 86.6 730µs 1460µs %

TCAS-I’24 [7] NIST P256r Virtex-7 4227 16.9 10.7 48 120 140.3µs 174.7µs %

This work
(After Place&Route)

Any (w/ pre-cal) Virtex-7 14264 57.1 17.1 256 66.7 226.3µs 305.8µs

!
Any (w/o pre-cal) Virtex-7 14264 57.1 17.1 256 66.7 211.3µs 275.8µs
Any (w/ pre-cal) Kintex US+ 13818 55.3 16.0 200 120.2 125.5µs 169.6µs

Any (w/o pre-cal) Kintex US+ 13818 55.3 16.0 200 120.2 117.2µs 153µs

TABLE VIII: ECDSA and SM2 performance on Kintex US+
Algorithm Operations w/ pre-cal (µs) w/o pre-cal (µs)

ECDSA Sign 131.4 123.3
Verify 180.8 164.5

SM2 Sign 131.4 123.3
Verify 176.3 159.9

report from Vivado indicates that the total on-chip power is
1.013W , which is acceptable for the vehicular environment.

As mentioned in Section I, the vehicles in V2V must have
the ability to verify at least 4000 messages/s in extreme
situations. The work in [10] designs a PM accelerator for V2V
based on RNS, compatible with NIST P256r and Brainpool
P256r1. On Kintex UltraScale+ FPGA, it computes PM in
458µs for NIST P256r and 504µs for Brainpool P256r1 but
verifies only 1087 messages/s. Our implementation outper-
forms theirs by 5× in verification. Our proposed architecture
can process PM/DPM over the secp256k1 curve with at least
30% and 52% performance improvement, respectively, while
consuming almost the same resources on Virtex-7 as compared
to the work presented in [23]. The work presented in [7] can
achieve ∼40% performance improvement with fewer resources
compared to ours. However, it only supports the ECDSA
algorithm over the NIST P256r1 curve. In contrast, our design
(on the Kintex US+ platform) can meet the performance
requirements for extreme V2V scenarios and support generic
Weierstrass curves with programmability for additional func-
tions, such as the SM2 algorithm. [24] proposed a generic
PM acceleration architecture implemented on the Virtex-7 plat-
form, which executes a PM/DPM in 730µs/1460µs, consuming
1036 DSPs. However, our implementation uses only ∼25% of
DSP resources while achieving at least 3.2×/4.7× performance
improvement.

VI. CONCLUSION
We propose a low-latency framework for ECC acceleration

utilizing ASIP for operator scheduling and program protocol,
complemented by FSM for ECC application implementation.
Meanwhile, the proposed pipeline Barrett modular multiplier
reduces latency through truncated multiplication, while our
pseudo-dual-issue architecture enhances performance by at
least 24%. Implemented on Xilinx Kintex UltraScale+ plat-
forms, for the ECDSA algorithm, our design can sign 7610
messages/s and can verify 5530 messages/s, satisfying the
requirement of V2V. Finally, compared with previous work,
our design exhibits superior programmability.
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