
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2020) 2:272–281
https://doi.org/10.1007/s42514-020-00038-5

1 3

REGULAR PAPER

An STT‑MRAM based reconfigurable computing‑in‑memory
architecture for general purpose computing

Yu Pan1 · Xiaotao Jia1,2 · Zhen Cheng1,2 · Peng Ouyang1 · Xueyan Wang1 · Jianlei Yang2,3 · Weisheng Zhao1,2

Received: 21 February 2020 / Accepted: 27 May 2020 / Published online: 29 July 2020
© China Computer Federation (CCF) 2020

Abstract
Recently, many researches have proposed computing-in-memory architectures trying to solve von Neumann bottleneck issue.
Most of the proposed architectures can only perform some application-specific logic functions. However, the scheme that sup-
ports general purpose computing is more meaningful for the complete realization of in-memory computing. A reconfigurable
computing-in-memory architecture for general purpose computing based on STT-MRAM (GCIM) is proposed in this paper.
The proposed GCIM could significantly reduce the energy consumption of data transformation and effectively process both
fix-point calculation and float-point calculation in parallel. In our design, the STT-MRAM array is divided into four subarrays
in order to achieve the reconfigurability. With a specified array connector, the four subarrays can work independently at the
same time or work together as a whole array. The proposed architecture is evaluated using Cadence Virtuoso. The simula-
tion results show that the proposed architecture consumes less energy when performing fix-point or float-point operations.

Keywords Computing-in-memory · Reconfigurable · STT-MRAM · General purpose computing

1 Introduction

Over the past decades, as the size of data scale growing
exponentially with time, the computational demands for data
analytics applications are becoming even more forbidding.
However, regarding conventional von Neumann architecture,
the overhead of the data communication between the proces-
sor and the memory units results in huge performance deg-
radation and energy consumption, that called von Neumann
bottleneck (Kim et al. 2003; Wulf and McKee 1995). For

example, when compares the cost of computation (a double-
precision fused multiply add) with communication (a 64-bit
read from an off-chip SRAM), the ratio of communication
energy to computation energy is 50 X at 40 nm (Keckler
et al. 2011). More serious a DRAM access consumes 200
times more energy than a floating-point operation (Kang
et al. 2020). Such off-chip accesses become increasingly
necessary as data scale grow larger, and even the cleverest
latency-hiding techniques cannot conceal their overhead.

In order to overcome this bottleneck, a hopeful approach
is to embed processing capability into the memory, termed
computing-in-memory (CIM). Several in-memory comput-
ing schemes have been proposed by some studies based on
SRAM and DRAM (Wang et al. 2019; Biswas and Chan-
drakasan 2018; Li et al. 2017; Gao et al. 2019). The data
communication overhead has been greatly reduced. How-
ever, as volatile memory, the static power consumption of
SRAM and DRAM has become an important factor affecting
its performance. This makes it difficult to meet the ultra-
low power consumption demand of in future big-data-based
application scenarios.

Recently, a lot of studies have demonstrated that
non-volatile memories (NVMs), such as resistive ran-
dom access memory (RRAM) (Fujiki et al. 2018; Imani
et al. 2019; Cheng et al. 2018; Cai et al. 2019; Liu et al.

 * Xiaotao Jia
 jiaxt@buaa.edu.cn

 * Weisheng Zhao
 weisheng.zhao@buaa.edu.cn

1 Beijing Advanced Innovation Certer for Big Data and Brain
Computing, School of Microelectronics, Fert Beijing
Research Institute, Beihang University, Beijing 100191,
China

2 Beihang-Goertek Joint Microelectronics Institute, Qingdao
Research Institute, Beihang University, Qingdao 266101,
China

3 Beijing Advanced Innovation Certer for Big Data and Brain
Computing, School of Computer Science and Engineering,
Fert Beijing Institute, Beihang University, Beijing 100191,
China

http://orcid.org/0000-0003-2207-6092
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-020-00038-5&domain=pdf

273An STT‑MRAM based reconfigurable computing‑in‑memory architecture for general purpose…

1 3

2013), phase change memory (PCM) (Li et al. 2016),
and spin transfer torque-based magnetoresistive RAM,
(STT-MRAM) (Kang et al. 2015, 2017, 2020; Deng et al.
2013; Jain et al. 2017; Zhang et al. 2019; Chowdhury
et al. 2017; Chen and Wang 2009; Zabihi et al. 2018),
can provide inherent logical computing capabilities that
enable efficient logical computing to be embedded in
memory as their resistance-based storage mechanisms.
At the same time, these non-volatile memory devices have
the advantages of non-volatile, low power consumption
and high density. These advantages make it possible for
CIM architectures based on non-volatile memory to fun-
damentally solve the von Neumann bottleneck problem.

Most of the proposed NVM-based CIM architectures
can only perform some application-specific logic functions.
For example, design in (Deng et al. 2013) can only sup-
port Boolean logic operation and simple 1-bit fulladder,
some studies take advantage of the crossbar structure of
RRAM to achieve matrix vector multiplication efficiently.
Research (Fujiki et al. 2018) said they designed a general-
purpose processor based on RRAM, but this scheme could
only support fixed-point computation and was not applica-
ble to the application of float-point computation. Further,
the architectures proposed in those works do not support
reconfigurable computing which limits their deployment in
many problems. Neural network has more than fixed point
operation and logic operation, so a general computing-in-
memory architecture is more meaningful.

In this paper a reconfigurable CIM architecture for
general purpose computing (GCIM) is proposed based
on STT-MRAM. The contributions of the work are sum-
marized as follows:

• An STT-MRAM array based architecture is proposed
to support data-parallel in-memory computing. In the
proposed architecture, the memory array acts as the
role of both data storage and data processor. Thus it
could resolve the von Neumann bottleneck issue that
significant reduce the energy consumption.

• Simple but efficient peripheral circuits are designed
based on memory unit circuits that make our archi-
tecture supporting general purpose computing of both
fix-point addition/multiplication and float-point addi-
tion/multiplication.

• The proposed architecture is reconfigurable. The
whole memory array is divided into some subarrays.
With a specified array connector, the subarrays can
work independently to finish different tasks at the
same time or work together to finish one task.

• The GCIM architecture is evaluated by Cadence Vir-
tuoso. The simulation results show that the proposed
architecture consumes less energy when performing
fix-point or float-point operations.

2 Background

2.1 Magnetic tunnel junction

Figure 1 is a typical magnetic tunnel junction with perpen-
dicular magnetic anisotropy (PMA-MTJ). It is composed of
three layers: two ferromagnetic layers (CoFeB), and they are
separated by intermediate oxidation layer (MgO). One of the
ferromagnetic layers is reference layer whose magnetiza-
tion direction is fixed. The other ferromagnetic layer is free
layer whose magnetization direction could be anti-parallel
or parallel with that of reference layer. If the magnetization
direction of the free layer is parallel with the reference layer,
MTJ presents a low resistivity state (P), and the resistance
value is represented by RP, representing the binary data “0”.
In contrast, if the magnetization direction of the free layer
is anti-parallel with the reference layer, MTJ presents a high
impedance state (AP), and the resistance is represented by
RAP, representing the binary data “1”. The characteristics
of the resistance difference of the MTJ in two states can be
described by the tunneling magneto-resistance ratio (TMR):
TMR = (RAP − RP)/RP. MTJ state can be flipped by applying
a polarized current injection with spin transfer torque (STT)
mechanism. The MTJ state is switched from P state to AP
state if the injected current (IP→AP) flows through the MTJ
from free layer to reference layer. On the contrary, the MTJ
state is switched from AP state to P state if IAP→P is injected.
If the current through the MTJ is greater than its critical
reverse current IC0, after a period of time, its magnetiza-
tion direction will change with a probability as Fig. 2 shows
(Vincent et al. 2015).

2.2 In‑memory computing mechanism based
on 2T1MTJ STT‑MRAM array

Figure 3a is a 2T1MTJ memory unit consists of two NMOSs
and one MTJ (Chowdhury et al. 2017). SL is used in both
memory mode and computing mode. MBL and MWL are
used in memory mode, CL and CBL are used in computing
mode. In memory mode, the red part does not work while

Fig. 1 Perpendicular magnetic anisotropy magnetic tunnel junction
(PMA-MTJ)

274 Y. Pan et al.

1 3

the blue part dose. According to the MTJ inversion mecha-
nism described in the previous section, the resistance state
of MTJ can be changed by adding a suitable bias voltage
between SL and MBL, that is, write data “0” or “1”. SL
and MBL are connected to pre-charged sensing amplifier
(PCSA) shown in Fig. 4f (Zhao et al. 2009). The resistance
of reference MTJ in PCSA is Rref = (RP + RAP)/2. It can
sense the resistance state of the MTJ connected to SL and

MBL and read out the data from Qm . The inverse of the data
can be output from Qm too.

Figure 3c is a schematic diagram of two input logic com-
puting. And its simplified figure is shown in Fig. 3b. The
MTJ of the two input units input1 and input2 are parallel,
and then connected in series with the MTJ of the result
unit. In computing mode, the blue part in Fig. 3c does not
work while the red part dose. CL0 and CL1 of the two input
cells input1 and input2 are given the same high-voltage Vop
according to the calculation type, and the CL2 voltage of
the result unit is set to gnd. After a period of time, the com-
puting result can be written into the result unit (the result
unit is initialized to a low-resistance state before comput-
ing). Tables 1, 2 and 3 show the truth table and the volt-
age Vop of CL for nor, nand and not operation, respectively.
This in-memory computing mechanism writing the result
into memory array while computing. Then it can output the
result by a regular read operation. It is different from some
in-memory computing mechanisms that compute result by
means of sense amplifier and output the result at the same
time. The in-memory computing method used in this paper
has an advantage in the computing of more complex com-
putings that has lots of intermediate results involved in the
subsequent computing, such as multi-layer neural network.
Because it does not need to write intermediate results into
the memory array so that it can directly carry out the sub-
sequent computing.

3 Proposed computing‑in‑memory
architecture

3.1 Architecture overview

Figure 4a is the reconfigurable CIM architecture for general
purpose computing based on STT-MRAM (GCIM) proposed
in this paper. It consists of 2T1MTJ STT-MRAM array, RD
(row decoders), CD (column decoder), BL Dris (BL driv-
ers), MDACs (modified DACs), PCSA (pre-charged sens-
ing amplifier), Mser&Cor (modified shifter and connector),
RSIC-V controller, parser and register. GCIM could signifi-
cantly reduce the energy consumption of data transformation
and effectively process both fix-point calculation and float-
point calculation in parallel. It can work in both memory
mode and computing mode simultaneously or non-simulta-
neously, which is reconfigurable. The detailed structures that
make up GCIM is described in detail below.

STT-MRAM array: The array size can be configured
based on the application requirements. The larger the array,
the higher the design complexity and the power consump-
tion, while the higher the computing capability. Indeed, the
configuration of array size makes a tradeoff between the
circuit power and computing capability. In this paper, we

Fig. 2 Experimental measurements of the switching probability for
different programming voltages with respect to the duration of the
applied programming pulse (Vincent et al. 2015)

Fig. 3 a 2T1MTJ memory unit. The red part works in computing
mode while the blue part works in memory mode. The brown line
works in both computing and memory mode. b Simplified diagram of
two-input logic computing. c Schematic diagram of two-input logic
computing

275An STT‑MRAM based reconfigurable computing‑in‑memory architecture for general purpose…

1 3

chose a 128 × 128 array size to evaluate the architecture. In
previous works, the STT-MRAM array is usually treated as
a whole unit which makes it able to handle high complex
computation but limits its reconfigurability. In our design, it
is divided into four 32 × 128 subarrarys as shown in Fig. 4b.
Thanks to the division of four subarrays, GCIM can support
shift operation between two subarrarys based on the modi-
fied shifters. Furthermore, it is beneficial to have stronger
parallelism and reconfigurability with the proposed connec-
tor as described below.

Modified shifter and connector: As you can see, there
is a modified shifter and connector between two adjacent
subarrays. The modified shifter consists of a barrel shifter
and PCSAs as shown in Fig. 4d and it allows to shift data

Fig. 4 a Proposed computing-in-memory-computing architecture. b 2T1MTJ STT-MRAM Subarrary. c Modified DAC that can output five volt-
age levels: Vnor, Vnand, Vnot, Vmin and ground. d Modified shifter. e Connector. f Pre-charged sensing amplifier circuit

Table 1 Truth table of nor operation

R
A
∕∕R

B
 is parallel resistance of R

A
 and R

B
 ,

R
A
∕∕R

B
=
(

R
A
*R

B

)

∕
(

R
A
+ R

B

)

Input1 Input2 nor (In1,
In2)

Vop = Vnor

0 (P) 0 (P) 1 V
nor

∕[(R
P
∕∕R

P
) + R

P
] > I

C0

0 (P) 1 (AP) 0 V
nor

∕[(R
AP
∕∕R

P
) + R

P
] < I

C0

1 (AP) 0 (P) 0
1 (AP) 1 (AP) 0

Table 2 Truth table of nand operation

R
A
∕∕R

B
 is parallel resistance of R

A
 and R

B
 ,

R
A
∕∕R

B
=
(

R
A
*R

B

)

∕
(

R
A
+ R

B

)

Input1 Input2 nand (In1,
In2)

Vop = Vnand

0 (P) 0 (P) 1 V
nand

∕[(R
AP
∕∕R

P
) + R

P
] > I

C0

0 (P) 1 (AP) 1
1 (AP) 0 (P) 1
1 (AP) 1 (AP) 0 V

nand
∕[(R

AP
∕∕R

AP
) + R

P
] < I

C0

Table 3 Truth table of not operation

Input1 not (In1) Vop = Vnot

0 (P) 1 V
not
∕(R

P
+ R

P
) > I

C0

0 (P) 1
1 (AP) 0 V

not
∕(R

AP
+ R

P
) < I

C0

1 (AP) 0

276 Y. Pan et al.

1 3

between two subarrays. Figure 4e shows the connector that
can regulate the connection between two subarrays. They
can work in the following three states reconfigurability
according to its input data: (1) the modified shifter is con-
nected between the two subarrays to perform shift opera-
tions, (2) two adjacent subarrays are connected and work
like an array, (3) the two subarrays are independent to each
other and work separately.

Row decoder: The output of row decoders is connected to
MWLs and its function is the same as the row decoders used
in conventional memories. In order to support shift opera-
tion and leverage underlying parallelism, each subarray is
equipped with a 5–32 row decoder in this design.

Column decoder: In order to support 8-bit computation,
the 128 columns of the memory array are divided into 16
groups. Each group consists of eight columns. In our archi-
tecture, a 4–16 column decoder is used to enable eight adja-
cent columns simultaneously to support 8-bit computations.

BL driver: BL drivers provide corresponding voltage for
SLs, WBLs and CBLs based on operation mode like com-
puting, reading, writing “0” and writing “1”.

Modified DAC: It consists of a 2-bit DAC and two MOSs.
The output of modified DACs is connected to CWLs as
shown in Fig. 4c. It can provide five distinguished voltage
levels for CWLs: Vnor, Vnand, Vnot, Vmin and Gnd.

PCSA: PCSAs as shown in Fig. 4f are used for read oper-
ations as described in the previous section.

RSIC-V controller: This kind of connection described
above increases the reconfigurability and parallelism of the
architecture. But more powerful controller is needed to sup-
port its reconfigurability and parallelism, therefore a RSIC-V
is used to control the data flow and control the above devices
to work in order under different operation needs.

Parser: The parser parses the commands of RSIC-V and
sends them to each device separately.

Register: Registers are used in the judgment steps of
complex computations (e.g., floating-point fulladder).

The arrows in Fig. 4a represent the data flow of GCIM.
The green arrows are the communication with outside.
CComM [0:4] (complex computing mode) tells RSIC-V
what kind of computing will do next, like floating-point
multiplication, fixed-point multiplication, floating-point

fulladder, etc. Data [0:7] tells RSIC-V the 8-bit data that
need to be stored. Black arrows represent the communi-
cation between internal devices and RSIC-V. Adr0 [0:3]
(Address0) is 4-bit-input of column decoder and Adri
(Addressi), i = 1, 2, 3 or 4, is 5-bit-input of row decoders.
OpM [0:2] (Operation mode) is 3-bit-singnal to BL driver.
SCi [0:9] (shifter and connector), i = 1, 2, 3 or 4, is 10-bit
input signal to Mser&Cors and the lower 8 bits are inputs
for shifter (S1–S8 in Fig. 4d) while the high two bits are
inputs for connector (C1 and C2 in Fig. 4e). LComM&CellM
[0:2] (logic computing mode and cell mode) is 3-bit input to
MDAC (2 bits for L1 and L2, and 1 bit for CellM in Fig. 4c).
And 1-bit-SEN is for PCSA. Red arrow is the communica-
tion between PCSAs and register.

3.2 General computing methods based
on the proposed architecture

3.2.1 Full adder and ripple‑carry adder

GCIM can work as a full adder (FA) based on Eqs. (1) and
(2). It figures out carry Cout in two steps (MIN operation
and not operation) and needs two xnor operations to get
sum S. Table 4 shows the process of computing R = xnor
(A, B) which needs three steps. Memory unit UA and UB
store the input operands A and B. Memory unit UR0 and
 UR store intermediate results and final results respectively,
and they are initialized to 0 before computing. Step 1 writes
the result R0, of nand (A, B) to UR0. A not (R0) operation
makes memory unit UR get the result of and (A, B). Finally,
the xnor (A, B) result can be written to memory unit UR
after step3. Based on the simulation in Sect. 4, it needs only
13.328 pJ to calculate 8-bit full add in parallel:

The proposed architecture can also work as a ripple-carry
adder (RCA). It can be used to complete the unsigned fixed-
point addition based on Eqs. (3) and (4) (in which, “i” rep-
resents the i-th element of the operand), which is similar

(1)Cout = (MIN(A + B + Cin))
�
,

(2)S = A xnor B xnor Cin.

Table 4 The process of
computing xnor (A, B)

Memory unit UA UB Initial Step1 nand
(A, B)

Step2 not (R0) Step3
nor (A,
B)

UR0 UR UR0 UR UR

Data stored in the memory unit 0 0 0 0 1 0 1
0 1 0 0 1 0 0
1 0 0 0 1 0 0
1 1 0 0 0 1 1

277An STT‑MRAM based reconfigurable computing‑in‑memory architecture for general purpose…

1 3

to Eqs. (1) and (2). Table 5 shows the process of comput-
ing 8-bit unsigned fixed-point addition A + B. In the table,
Row0 and Row1 store the 8-bit-operands A and B, and Row2
is used to store carrays. The MIN operation results of data
in Row0, Row1 and Row2 are stored in Row3. In step1, it
needs to finish MIN operation to get Ci+1

� and output Ci+1
from Qm of PCSAs, then write Ci+1 to corresponding unit to
next column, which is a serial procedure. Next, 8-bit Sum S
can be figured out after two 8-bit xnor operations, which is
8-bit-parallel procedure that needs 6 steps. Step 2 and 5 are
nand operations, step 3 and 6 are not operations, and step
4 and 7 are nor operations, operands of all these operations
are A and B, and operation results are stored in correspond-
ing rows as shown in the table. As reported in Sect. 4, it
needs only 21.037 pJ to calculate 8-bit unsigned fixed-point
addition:

3.2.2 Signed fixed‑point addition and subtraction

In this design, signed fixed-point addition and subtraction
are computed based on Eqs. (5) and (6):

It needs the following steps to achieve 8-bit-[D + E] based
on the proposed architecture.

Step 1: Computing complements of D and E, respectively.
Since the rules for the complement of positive and negative
numbers are different, the sign bits need to be read out and
stored in the register, and RISC-V determine if “Invert” and
“ + 1” for the operands based on it. It executes “ + 1” by
the following rules: Reading data from low bit to high bit,

(3)Ci+1 = (MIN(Ai + Bi + Ci))
�
,

(4)Si = Ai xnor Bi xnor Ci.

(5)[D + E]complement = [D]complement + [E]complement,

(6)[D − E]complement = [D]complement + [−E]complement.

when the first “0” presents, write “1” in its position as well
as write “0” in its lower position and other bits remain the
themselves.

Step 2: Computing unsigned fixed-point addition
[D]complement + [E]complement as described in Sect. 3.2.1.

Step 3: Getting the result of D + E by computing the com-
plement of the result in Step2. The computing of 8-bit signed
fixed-point subtraction D − E needs to invert the sign bit of E
before Step1, and other steps is the same as 8-bit-D + E. As
reported in Sect. 4, it need only 26.757 pJ to achieve 8-bit
signed fixed-point addition.

3.2.3 Floated‑point addition

A floated-point data N can be presented as N = 2
NE × NM ,

NE and NM are exponent and mantissa of N. GCIM stores
binary NE and NM as data N. There are four steps to
achieve a floated-point addition R = X + Y (R = 2

RE × RM ,
X = 2

XE × XM , Y = 2
YE × YM) as described below. As

reported in Sect. 4, it need only 85.803 pJ to achieve 8-bit
floated-point addition.

Step 1: The exponent bits of two operands XE and YE
are subtracted (XE − YE) based on the methods described in
Sect. 3.2.2.

Step 2: Read out the result of Step1 and store it in register
to prepare for the judgment in the next step.

Step 3: According to the sign bit of XE − YE in the register,
RSIC-V decides the exponential bit of the result RE and
which operand’s mantissa bits should be shifted as well as
the shift length. For example, if XE > YE , then GCIM will
copy XE as RE and shift YM right by |XE − YE| bits under the
control of RSIC-V. For ease of description, we use MM to
represent the mantissa of Y after shift. Thanks for the subar-
ray design of the architecture, it can achieve shift operation
directly within the array.

Step 4: Add the shifted mantissa of operand Y and
mantissa of operand X (MM + XM) as the mantissa of its
result RM. According to the ripple-carry adder described in
Sect. 3.2.1, RM can be calculated easily. Furthermore, if the

Table 5 Computing process
of 8-bit unsigned fixed-point
addition A + B

Col0 Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 op

Row0 A0 A1 A2 A3 A4 A5 A6 A7
Row1 B0 B1 B2 B3 B4 B5 B6 B7

Step1 Row2 C0 C1 C2 C3 C4 C5 C6 C7 write
Row3 C1′ C2′ C3′ C4′ C5′ C6′ C7′ CO′ min

Step2 Row4 (AiBi)′ nand
Step3 Row5 AiBi not
Step4 Row5 Ai nxor Bi nor
Step5 Row6 ((Ai nxor Bi)Ci)′ nand
Step6 Row7 (Ai nxor Bi)Ci not
Step7 Row7 Si = Ai xnor Bi xnor Ci CO nor

278 Y. Pan et al.

1 3

operands are signed data, it takes the sign bit of X and Y as
the sign bit of MM and XM respectively to execute signed
fixed-point addition according to Sect. 3.2.2.

3.2.4 Fixed‑point and float‑point multiplication

Figure 5 shows a dot notation representation for a 4 × 4 wal-
lace tree multiplier. GCIM can achieve fixed-point multi-
plication based on the rules shown in Fig. 5. Firstly, GCIM
worked as fulladder to figure out S and Cout of first three
partial products as shown in orange part. Next, GCIM also
worked as fulladder to get S and Cout of first S and Cout as
well as the fourth partial product as shown in purple part.
Finally, GCIM worked as RCA to compute the final result.
Thanks to our modified shifter and connector, which moves
data to align the corresponding bits so that it makes sure the
results of fulladder and RCA are correct. Making use of the
computing described above, GCIM can figure out the result
of float-point multiplication easily. Firstly, the symbol bit
of result is calculated by an xnor operation on the symbol
bit of two operands. Secondly, the exponential bits of two
operands are calculated by signed addition to get the expo-
nential bits of the result. Finally, mantissa bits of the result
are figured out by a fixed-point multiplication.

4 Experiments and results

The MTJ/CMOS devices hybrid GCIM architecture is evalu-
ated by Cadence Virtuoso with 45 nm CMOS and 40 nm
MTJ technologies. We used the advanced MTJ to evaluate
the proposed architecture and the MTJ parameters are shown

in Table 6. We set the TMR to 500 present based on the dis-
cussion in (Zabihi et al. 2018). And (Hirohata et al. 2015)
predicted that a TMR of 1000% at room temperature will be
attainable by 2024. Benefit from the high TMR of advanced
MTJ, the error rate is greatly reduced. We evaluate the runt-
ime and energy required when using GCIM to support gen-
eral purpose computings, such as Boolean logic computings,
fixed-point and float-point addition and multiplication, etc.

We firstly evaluate the performance of the peripheral cir-
cuits using Verilog language and Cadence Virtuoso and the
detailed results are shown in Table 7. Compared to regular
2T1MTJ memory, the design needs extra DAC and BLdriver
to support computing, needs Mser&Cor to explore its recon-
figurability and parallelism, and needs RSIC-V to provide
a powerful controller. Both GCIM and regular 2T1MTJ
memory need row decoder and column decoder to provide
addresses. Regular memory needs sensing circuits to read

Fig. 5 Dot notation representation for a 4 × 4 wallace tree multiplier

Table 6 Main parameters of
MTJ

MTJ type PMA-MTJ

MTJ area 10 nm × 10 nm
TMR 500%
RA product 1 Ωμm2 (Mae-

hara et al.
2011)

tox 0.8 nm

Table 7 The power consumption of peripheral circuits

Spec Power (mW) Area (μm2)

DAC (Fujiki et al.
2018)

2-bit
DAC + 2MOSs

0.000051 0.000006

Row decoder 5–32 0.0721 123
Column decoder 4–16 0.0431 67
BLdriver – 0.0074 24
Mser&Cor 8 level 0.61 100
RSIC-V – 0.1 11,601
PCSA (Zhao et al.

2009)
– 0.077 4

Table 8 The evaluation results of 8-bit basic Boolean logic comput-
ings used in this design

not nand nor MIN

V (mV) 220 90 48 60
Time (ns) 3 5 20 6
Array energy (fJ) 3.27 1.835 2.14 1.351
Total energy (pJ) 0.63451 1.0292 4.0685 1.2293
Power (mW) 0.21129 0.2056 0.20336 0.20457
Error rate 0 0 0.65% 1.95%

279An STT‑MRAM based reconfigurable computing‑in‑memory architecture for general purpose…

1 3

data while GCIM needs sensing circuit (PCSA) to read
data or sensing computing results. It could be found from
Table 7 that the power of modified shifter and connector
is very high. It is because the modified shifter consists of
conventional barrel shifter and PCSAs. The 8-level conven-
tional barrel shifter themselves consume lots of power, but
it can shift 8 bits data simultaneously and can shift data up
to 8 units distance. The good news is that computings that
need shift data is only multiplication and the multiplication
frequency is not very high. So, it only has slight influence on
the performance of the proposed architecture. As for the area
breakdown, the RSIC-V occupies the largest area, followed
by Mser&Cor and decoders.

Table 8 shows the voltage, time, energy, power and
error rate of GCIM to perform the basic Boolean logic
operations that used in this design. The operands are
8-bit data in this evaluation. One 8-bit not operation
needs ~ 0.633e − 12 J. That is average a 1-bit not opera-
tion needs only ~ 0.079e − 12 J energy and the power
is ~ 0.027 mW. Monte Carlo method is used to evaluate the
error rate and we took 3000 experiments for one operation.
Because the error rates of nand, nor and not operations are
lower than and and not operations (Zabihi et al. 2018). We
use two basic operations (nand plus not, or nor plus not) to
achieve and and or operations.

Table 9 shows some common general purpose comput-
ings. Operands of the computings in the table are 8-bit
data. GCIM can not only support fix-point computing, but
also support float-point computing. The power of most
computings are between 0.15 and 0.25 mW. The power
of shift computing is a little high which is about 0.8 mW.

That is because the high power of the Modified shifter
circuit.

5 Conclusion

In this paper, a reconfigurable computing-in-memory
architecture for general purpose computing based on STT-
MRAM is proposed. It can work as both memory and In-
memory computing processor. General purpose comput-
ing, such as fixed-point and float-point addition, can be
supported by GCIM. And the subarrays can work inde-
pendently to finish different tasks at the same time or work
together to finish one task, which improves the parallelism
and reconfigurability of the architecture greatly. The MTJ/
CMOS devices hybrid GCIM architecture is evaluated by
Cadence Virtuoso. It needs only 85.803 pJ to achieve 8-bit
floated-point addition.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China under Grant 61701013, in part
by State Key Laboratory of Software Development Environment under
Grant SKLSDE-2018ZX-07, in part by National Key Technology Pro-
gram of China under Grant 2017ZX01032101, in part by State Key
Laboratory of Computer Architecture under Grant CARCH201917 and
in part by the 111 Talent Program under Grant B16001.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Table 9 Evaluations of some
common general purpose
computings

8-bit com Time (ns) Energy (e − 12 J) Power (mW)

not 3 0.63451 0.2113
and 8 1.6638 0.2080
or 23 4.7031 0.2045
xor 31 6.3599 0.2052
Logical shift left 4 3.2639 0.8154
Logical shift right 4 3.2639 0.8154
Arithmetic shift left 4 3.2639 0.8154
Arithmetic shift right 7 3.9721 0.5672
Select 18 3.7165 0.2064
Unsigned fixed-point addition 136 21.037 0.1547
Unsigned fixed-point subtraction 160 26.757 0.1673
Signed fixed-point addition 160 26.757 0.1673
Signed fixed-point subtraction 164 27.714 0.1733
Absolute value subtraction 167 28.422 0.1733
Unsigned fixed-point multiplication 662 177.16 0.2675
Signed fixed-point multiplication 680 173.41 0.2549
Float-point addition 426 85.803 0.2014

280 Y. Pan et al.

1 3

References

Biswas, A., Chandrakasan, A.P.: Conv-RAM: an energy-efficient
SRAM with embedded convolution computation for low-power
CNN-based machine learning applications. In: IEEE interna-
tional solid-state circuits conference-(ISSCC). IEEE, pp. 488–490
(2018)

Cai, F., Correll, J.M., Lee, S.H., et al.: A fully integrated reprogramma-
ble memristor–CMOS system for efficient multiply–accumulate
operations. Nat. Electron. 2(7), 290–299 (2019)

Chen, Y., Wang, X.: Compact modeling and corner analysis of spin-
tronic memristor. In: IEEE/ACM international symposium on
nanoscale architectures, pp. 7–12 (2009)

Cheng, M., Xia, L., Zhu, Z., et al.: Time: A training-in-memory archi-
tecture for rram-based deep neural networks. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 38(5), 834–847 (2018)

Chowdhury, Z., Harms, J.D., Khatamifard, S.K., et al.: Efficient in-
memory processing using spintronics. IEEE Comput. Archit. Lett.
17(1), 42–46 (2017)

Deng, E., Zhang, Y., Klein, J.O., et al.: Low power magnetic full-adder
based on spin transfer torque MRAM. IEEE Trans. Magn. 49(9),
4982–4987 (2013)

Fujiki, D., Mahlke, S., Das, R.: In-memory data parallel processor.
ACM SIGPLAN Not. 53(2), 1–14 (2018)

Gao, F., Tziantzioulis, G., Wentzlaff, D.: ComputeDRAM: in-memory
compute using off-the-shelf DRAMs. In: Proceedings of the 52nd
annual IEEE/ACM international symposium on microarchitecture,
pp. 100–113 (2019)

Hirohata, A., Sukegawa, H., Yanagihara, H., et al.: Roadmap for emerg-
ing materials for spintronic device applications. IEEE Trans.
Magn. 51(10), 1–11 (2015)

Imani, M., Gupta, S., Kim, Y., et al.: Floatpim: in-memory acceleration
of deep neural network training with high precision. In: Proceed-
ings of the 46th international symposium on computer architec-
ture. ACM, pp. 802–815 (2019)

Jain, S., Ranjan, A., Roy, K., et al.: Computing in memory with spin-
transfer torque magnetic ram. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 26(3), 470–483 (2017)

Kang, W., Zhang, Y., Wang, Z., et al.: Spintronics: emerging ultra-
low-power circuits and systems beyond MOS technology. ACM J.
Emerg. Technol. Comput. Syst. (JETC) 12(2), 16 (2015)

Kang, W., Wang, H., Wang, Z., et al.: In-memory processing paradigm
for bitwise logic operations in STT–MRAM. IEEE Trans. Magn.
53(11), 1–4 (2017)

Kang, W., Deng, E., Wang, Z., et al.: Spintronic logic-in-memory para-
digms and implementations, pp. 215–229. Springer, Singapore
(2020)

Keckler, S.W., Dally, W.J., Khailany, B., et al.: GPUs and the future of
parallel computing. IEEE Micro 31(5), 7–17 (2011)

Kim, A., Austin, T., Baauw, D., et al.: Leakage current: Moore’s law
meets static power. Computer 36(12), 68–75 (2003)

Li, S., Xu, C., Zou, Q., et al.: Pinatubo: a processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile
memories. In: Proceedings of the 53rd annual design automation
conference. ACM, p. 173 (2016)

Li, S., Niu, D., Malladi, K. T., et al.: Drisa: a dram-based reconfigur-
able in-situ accelerator. In: 2017 50th annual IEEE/ACM inter-
national symposium on microarchitecture (MICRO). IEEE, pp.
288–301 (2017)

Liu, B., Hu, M., Li, H., et al.: Digital-assisted noise-eliminating train-
ing for memristor crossbar-based analog neuromorphic comput-
ing engine. In: Proceedings of the 53rd annual design automation
conference, pp. 1–6 (2013)

Maehara, H., Nishimura, K., Nagamine, Y., et al.: Tunnel Magnetoresist-
ance above 170% and resistance–area product of 1 Ω (µm) 2 attained
by in situ annealing of ultra-thin MgO tunnel barrier. Appl. Phys.
Express 4(3), 033002 (2011)

Vincent, A.F., Locatelli, N., Klein, J.-O., Zhao, W.S., Galdin-Retailleau,
S., Querlioz, D.: Analytical macrospin modeling of the stochastic
switching time of spin-transfer torque devices. IEEE Trans. Electron
Devices 62(1), 164–170 (2015)

Wang, J., Wang, X., Eckert, C., et al.: A compute SRAM with bit-serial
integer/floating-point operations for programmable in-memory
vector acceleration. In: 2019 IEEE international solid-state circuits
conference-(ISSCC). IEEE, pp. 224–226 (2019)

Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the
obvious. ACM SIGARCH Comput. Archit. News 23(1), 20–24
(1995)

Zabihi, M., Chowdhury, Z., Zhao, Z., et al.: In-memory processing on the
spintronic CRAM: from hardware design to application mapping.
IEEE Trans. Comput. 68(8), 1159–1173 (2018)

Zhang, H., Kang, W., Cao, K., et al.: spintronic processing unit in spin
transfer torque magnetic random access memor. IEEE Trans. Elec-
tron. Devices 66(4), 2017–2022 (2019)

Zhao, W., Chappert, C., Javerliac, V., et al.: High speed, high stability and
low power sensing amplifier for MTJ/CMOS hybrid logic circuits.
IEEE Trans. Magn. 45(10), 3784–3787 (2009)

Yu Pan received the B.S. degree
in physics from Shandong Uni-
versity, Jinan, Shandong, China,
in 2018. She is currently a mas-
ter student with the School of
Microelectronics in Beihang
University, Beijing, China. Her
research interests include com-
puting-in-memory architecture
and circuit design.

Xiaotao Jia received the B.S.
degree in mathematics from Bei-
jing Jiao Tong University, Bei-
jing, China, in 2011, and the
Ph.D. degree in computer sci-
ence and technology from Tsin-
ghua University, Beijing, China,
in 2016. He is currently an
Assistant Professor with the
School of Microelectronics in
Beihang University, Beijing,
China. From 2016 to 2019, he
was a post-doctor researcher
with the Microelectronics in Bei-
hang University, Beijing, China.
His current research interests

include spintronic circuits, stochastic computing and Bayesian deep
learning.

281An STT‑MRAM based reconfigurable computing‑in‑memory architecture for general purpose…

1 3

Zhen Cheng received the B.S.
degree in communication engi-
neering from Taiyuan University
of Technology, Shanxi, China, in
2019. He is currently a master
student with the School of
Microelectronics in Beihang
University, Beijing, China. His
research interests include circuit
design and EDA.

Peng Ouyang received the B.S.
degree in electronic and informa-
tion technology from Central
South University, Changsha,
Hunan, China, in 2008, and the
Ph.D. degree in electronic sci-
ence and technology from Tsin-
ghua University, Beijing, China,
in 2014. He holds a postdoctoral
position with the School of
Information, Tsinghua Univer-
sity. His research interests
include the embedded deep
learning, neuron computing, and
reconfigurable computing.

Xueyan Wang received the B.S.
degree in computer science from
Shandong University, Jinan,
China, in 2013, and the Ph.D.
degree in computer science and
technology from Tsinghua Uni-
versity, Beijing, China, in 2018.
From 2015 to 2016, she was a
visiting student in University of
Maryland, College Park, MD,
USA. She is currently a post-
doctoral researcher with the
School of Microelectronics in
Beihang University, Beijing,
China. Her current research
interests include hardware secu-

rity and processing-in-memory architectures.

Jianlei Yang received the B.S.
degree in microelectronics from
Xidian University, Xi’an, China,
in 2009, and the Ph.D. degree in
computer science and technol-
ogy with Tsinghua University,
Beijing, China, in 2014. He
joined Beihang University, Bei-
jing, China, in 2016, where he is
currently an Associate Professor
with the School of Computer
Science and Engineering. From
2014 to 2016, he was a post-
doctoral researcher with the
Department of Electrical and
Computer Engineering, Univer-

sity of Pittsburgh, Pittsburgh, Pennsylvania, United States. From 2013
to 2014, he was a research intern at Intel Labs China, Intel Corporation.
His current research interests include spintronics and neuromorphic
computing systems. Dr. Yang was the recipient of the first place on
TAU Power Grid Simulation Contest in 2011, and the second place on
TAU Power Grid Transient Simulation Contest in 2012. He was a
recipient of IEEE ICCD Best Paper Award in 2013, IEEE ICESS Best
Paper Award in 2017, and ACM GLSVLSI Best Paper Nomination in
2015.

Weisheng Zhao received the
Ph.D. degree in physics from
University of Paris Sud, Paris,
France, in 2007. He is currently
the Professor with the School of
Microelectronics in Beihang
University, Beijing, China. In
2009, he joined the French
National Research Center
(CNRS), as a Tenured Research
Scientist. Since 2014, he has
been a Distinguished Professor
with Beihang University, Bei-
jing, China. He has published
more than 200 scientific articles
in leading journals and confer-

ences, such as Nature Electronics, Nature Communications, Advanced
Materials, IEEE Transactions, ISCA and DAC. His current research
interests include the hybrid integration of nano-devices with CMOS
circuit and new nonvolatile memory (40-nm technology node and
below) like MRAM circuit and architecture design. He is currently the
Editor-In-Chief for the IEEE Transactions on Circuits and Systems I:
Regular Paper. He is an IEEE Fellow.

	An STT-MRAM based reconfigurable computing-in-memory architecture for general purpose computing
	Abstract
	1 Introduction
	2 Background
	2.1 Magnetic tunnel junction
	2.2 In-memory computing mechanism based on 2T1MTJ STT-MRAM array

	3 Proposed computing-in-memory architecture
	3.1 Architecture overview
	3.2 General computing methods based on the proposed architecture
	3.2.1 Full adder and ripple-carry adder
	3.2.2 Signed fixed-point addition and subtraction
	3.2.3 Floated-point addition
	3.2.4 Fixed-point and float-point multiplication

	4 Experiments and results
	5 Conclusion
	Acknowledgements
	References

