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Abstract
Recently, many researches have proposed computing-in-memory architectures trying to solve von Neumann bottleneck issue. 
Most of the proposed architectures can only perform some application-specific logic functions. However, the scheme that sup-
ports general purpose computing is more meaningful for the complete realization of in-memory computing. A reconfigurable 
computing-in-memory architecture for general purpose computing based on STT-MRAM (GCIM) is proposed in this paper. 
The proposed GCIM could significantly reduce the energy consumption of data transformation and effectively process both 
fix-point calculation and float-point calculation in parallel. In our design, the STT-MRAM array is divided into four subarrays 
in order to achieve the reconfigurability. With a specified array connector, the four subarrays can work independently at the 
same time or work together as a whole array. The proposed architecture is evaluated using Cadence Virtuoso. The simula-
tion results show that the proposed architecture consumes less energy when performing fix-point or float-point operations.
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1 Introduction

Over the past decades, as the size of data scale growing 
exponentially with time, the computational demands for data 
analytics applications are becoming even more forbidding. 
However, regarding conventional von Neumann architecture, 
the overhead of the data communication between the proces-
sor and the memory units results in huge performance deg-
radation and energy consumption, that called von Neumann 
bottleneck (Kim et al. 2003; Wulf and McKee 1995). For 

example, when compares the cost of computation (a double-
precision fused multiply add) with communication (a 64-bit 
read from an off-chip SRAM), the ratio of communication 
energy to computation energy is 50 X at 40 nm (Keckler 
et al. 2011). More serious a DRAM access consumes 200 
times more energy than a floating-point operation (Kang 
et al. 2020). Such off-chip accesses become increasingly 
necessary as data scale grow larger, and even the cleverest 
latency-hiding techniques cannot conceal their overhead.

In order to overcome this bottleneck, a hopeful approach 
is to embed processing capability into the memory, termed 
computing-in-memory (CIM). Several in-memory comput-
ing schemes have been proposed by some studies based on 
SRAM and DRAM (Wang et al. 2019; Biswas and Chan-
drakasan 2018; Li et al. 2017; Gao et al. 2019). The data 
communication overhead has been greatly reduced. How-
ever, as volatile memory, the static power consumption of 
SRAM and DRAM has become an important factor affecting 
its performance. This makes it difficult to meet the ultra-
low power consumption demand of in future big-data-based 
application scenarios.

Recently, a lot of studies have demonstrated that 
non-volatile memories (NVMs), such as resistive ran-
dom access memory (RRAM) (Fujiki et al. 2018; Imani 
et al. 2019; Cheng et al. 2018; Cai et al. 2019; Liu et al. 
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2013), phase change memory (PCM) (Li et al. 2016), 
and spin transfer torque-based magnetoresistive RAM, 
(STT-MRAM) (Kang et al. 2015, 2017, 2020; Deng et al. 
2013; Jain et al. 2017; Zhang et al. 2019; Chowdhury 
et al. 2017; Chen and Wang 2009; Zabihi et al. 2018), 
can provide inherent logical computing capabilities that 
enable efficient logical computing to be embedded in 
memory as their resistance-based storage mechanisms. 
At the same time, these non-volatile memory devices have 
the advantages of non-volatile, low power consumption 
and high density. These advantages make it possible for 
CIM architectures based on non-volatile memory to fun-
damentally solve the von Neumann bottleneck problem.

Most of the proposed NVM-based CIM architectures 
can only perform some application-specific logic functions. 
For example, design in (Deng et al. 2013) can only sup-
port Boolean logic operation and simple 1-bit fulladder, 
some studies take advantage of the crossbar structure of 
RRAM to achieve matrix vector multiplication efficiently. 
Research (Fujiki et al. 2018) said they designed a general-
purpose processor based on RRAM, but this scheme could 
only support fixed-point computation and was not applica-
ble to the application of float-point computation. Further, 
the architectures proposed in those works do not support 
reconfigurable computing which limits their deployment in 
many problems. Neural network has more than fixed point 
operation and logic operation, so a general computing-in-
memory architecture is more meaningful.

In this paper a reconfigurable CIM architecture for 
general purpose computing (GCIM) is proposed based 
on STT-MRAM. The contributions of the work are sum-
marized as follows:

• An STT-MRAM array based architecture is proposed 
to support data-parallel in-memory computing. In the 
proposed architecture, the memory array acts as the 
role of both data storage and data processor. Thus it 
could resolve the von Neumann bottleneck issue that 
significant reduce the energy consumption.

• Simple but efficient peripheral circuits are designed 
based on memory unit circuits that make our archi-
tecture supporting general purpose computing of both 
fix-point addition/multiplication and float-point addi-
tion/multiplication.

• The proposed architecture is reconfigurable. The 
whole memory array is divided into some subarrays. 
With a specified array connector, the subarrays can 
work independently to finish different tasks at the 
same time or work together to finish one task.

• The GCIM architecture is evaluated by Cadence Vir-
tuoso. The simulation results show that the proposed 
architecture consumes less energy when performing 
fix-point or float-point operations.

2  Background

2.1  Magnetic tunnel junction

Figure 1 is a typical magnetic tunnel junction with perpen-
dicular magnetic anisotropy (PMA-MTJ). It is composed of 
three layers: two ferromagnetic layers (CoFeB), and they are 
separated by intermediate oxidation layer (MgO). One of the 
ferromagnetic layers is reference layer whose magnetiza-
tion direction is fixed. The other ferromagnetic layer is free 
layer whose magnetization direction could be anti-parallel 
or parallel with that of reference layer. If the magnetization 
direction of the free layer is parallel with the reference layer, 
MTJ presents a low resistivity state (P), and the resistance 
value is represented by RP, representing the binary data “0”. 
In contrast, if the magnetization direction of the free layer 
is anti-parallel with the reference layer, MTJ presents a high 
impedance state (AP), and the resistance is represented by 
RAP, representing the binary data “1”. The characteristics 
of the resistance difference of the MTJ in two states can be 
described by the tunneling magneto-resistance ratio (TMR): 
TMR = (RAP − RP)/RP. MTJ state can be flipped by applying 
a polarized current injection with spin transfer torque (STT) 
mechanism. The MTJ state is switched from P state to AP 
state if the injected current (IP→AP) flows through the MTJ 
from free layer to reference layer. On the contrary, the MTJ 
state is switched from AP state to P state if IAP→P is injected. 
If the current through the MTJ is greater than its critical 
reverse current IC0, after a period of time, its magnetiza-
tion direction will change with a probability as Fig. 2 shows 
(Vincent et al. 2015).

2.2  In‑memory computing mechanism based 
on 2T1MTJ STT‑MRAM array

Figure 3a is a 2T1MTJ memory unit consists of two NMOSs 
and one MTJ (Chowdhury et al. 2017). SL is used in both 
memory mode and computing mode. MBL and MWL are 
used in memory mode, CL and CBL are used in computing 
mode. In memory mode, the red part does not work while 

Fig. 1  Perpendicular magnetic anisotropy magnetic tunnel junction 
(PMA-MTJ)
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the blue part dose. According to the MTJ inversion mecha-
nism described in the previous section, the resistance state 
of MTJ can be changed by adding a suitable bias voltage 
between SL and MBL, that is, write data “0” or “1”. SL 
and MBL are connected to pre-charged sensing amplifier 
(PCSA) shown in Fig. 4f (Zhao et al. 2009). The resistance 
of reference MTJ in PCSA is Rref = (RP + RAP)/2. It can 
sense the resistance state of the MTJ connected to SL and 

MBL and read out the data from Qm . The inverse of the data 
can be output from Qm too. 

Figure 3c is a schematic diagram of two input logic com-
puting. And its simplified figure is shown in Fig. 3b. The 
MTJ of the two input units input1 and input2 are parallel, 
and then connected in series with the MTJ of the result 
unit. In computing mode, the blue part in Fig. 3c does not 
work while the red part dose.  CL0 and  CL1 of the two input 
cells input1 and input2 are given the same high-voltage Vop 
according to the calculation type, and the  CL2 voltage of 
the result unit is set to gnd. After a period of time, the com-
puting result can be written into the result unit (the result 
unit is initialized to a low-resistance state before comput-
ing). Tables 1, 2 and 3 show the truth table and the volt-
age Vop of CL for nor, nand and not operation, respectively. 
This in-memory computing mechanism writing the result 
into memory array while computing. Then it can output the 
result by a regular read operation. It is different from some 
in-memory computing mechanisms that compute result by 
means of sense amplifier and output the result at the same 
time. The in-memory computing method used in this paper 
has an advantage in the computing of more complex com-
putings that has lots of intermediate results involved in the 
subsequent computing, such as multi-layer neural network. 
Because it does not need to write intermediate results into 
the memory array so that it can directly carry out the sub-
sequent computing.

3  Proposed computing‑in‑memory 
architecture

3.1  Architecture overview

Figure 4a is the reconfigurable CIM architecture for general 
purpose computing based on STT-MRAM (GCIM) proposed 
in this paper. It consists of 2T1MTJ STT-MRAM array, RD 
(row decoders), CD (column decoder), BL Dris (BL driv-
ers), MDACs (modified DACs), PCSA (pre-charged sens-
ing amplifier), Mser&Cor (modified shifter and connector), 
RSIC-V controller, parser and register. GCIM could signifi-
cantly reduce the energy consumption of data transformation 
and effectively process both fix-point calculation and float-
point calculation in parallel. It can work in both memory 
mode and computing mode simultaneously or non-simulta-
neously, which is reconfigurable. The detailed structures that 
make up GCIM is described in detail below.

STT-MRAM array: The array size can be configured 
based on the application requirements. The larger the array, 
the higher the design complexity and the power consump-
tion, while the higher the computing capability. Indeed, the 
configuration of array size makes a tradeoff between the 
circuit power and computing capability. In this paper, we 

Fig. 2  Experimental measurements of the switching probability for 
different programming voltages with respect to the duration of the 
applied programming pulse (Vincent et al. 2015)

Fig. 3  a 2T1MTJ memory unit. The red part works in computing 
mode while the blue part works in memory mode. The brown line 
works in both computing and memory mode. b Simplified diagram of 
two-input logic computing. c Schematic diagram of two-input logic 
computing
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chose a 128 × 128 array size to evaluate the architecture. In 
previous works, the STT-MRAM array is usually treated as 
a whole unit which makes it able to handle high complex 
computation but limits its reconfigurability. In our design, it 
is divided into four 32 × 128 subarrarys as shown in Fig. 4b. 
Thanks to the division of four subarrays, GCIM can support 
shift operation between two subarrarys based on the modi-
fied shifters. Furthermore, it is beneficial to have stronger 
parallelism and reconfigurability with the proposed connec-
tor as described below.

Modified shifter and connector: As you can see, there 
is a modified shifter and connector between two adjacent 
subarrays. The modified shifter consists of a barrel shifter 
and PCSAs as shown in Fig. 4d and it allows to shift data 

Fig. 4  a Proposed computing-in-memory-computing architecture. b 2T1MTJ STT-MRAM Subarrary. c Modified DAC that can output five volt-
age levels: Vnor, Vnand, Vnot, Vmin and ground. d Modified shifter. e Connector. f Pre-charged sensing amplifier circuit
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between two subarrays. Figure 4e shows the connector that 
can regulate the connection between two subarrays. They 
can work in the following three states reconfigurability 
according to its input data: (1) the modified shifter is con-
nected between the two subarrays to perform shift opera-
tions, (2) two adjacent subarrays are connected and work 
like an array, (3) the two subarrays are independent to each 
other and work separately.

Row decoder: The output of row decoders is connected to 
MWLs and its function is the same as the row decoders used 
in conventional memories. In order to support shift opera-
tion and leverage underlying parallelism, each subarray is 
equipped with a 5–32 row decoder in this design.

Column decoder: In order to support 8-bit computation, 
the 128 columns of the memory array are divided into 16 
groups. Each group consists of eight columns. In our archi-
tecture, a 4–16 column decoder is used to enable eight adja-
cent columns simultaneously to support 8-bit computations.

BL driver: BL drivers provide corresponding voltage for 
SLs, WBLs and CBLs based on operation mode like com-
puting, reading, writing “0” and writing “1”.

Modified DAC: It consists of a 2-bit DAC and two MOSs. 
The output of modified DACs is connected to CWLs as 
shown in Fig. 4c. It can provide five distinguished voltage 
levels for CWLs: Vnor, Vnand, Vnot, Vmin and Gnd.

PCSA: PCSAs as shown in Fig. 4f are used for read oper-
ations as described in the previous section.

RSIC-V controller: This kind of connection described 
above increases the reconfigurability and parallelism of the 
architecture. But more powerful controller is needed to sup-
port its reconfigurability and parallelism, therefore a RSIC-V 
is used to control the data flow and control the above devices 
to work in order under different operation needs.

Parser: The parser parses the commands of RSIC-V and 
sends them to each device separately.

Register: Registers are used in the judgment steps of 
complex computations (e.g., floating-point fulladder).

The arrows in Fig. 4a represent the data flow of GCIM. 
The green arrows are the communication with outside. 
CComM [0:4] (complex computing mode) tells RSIC-V 
what kind of computing will do next, like floating-point 
multiplication, fixed-point multiplication, floating-point 

fulladder, etc. Data [0:7] tells RSIC-V the 8-bit data that 
need to be stored. Black arrows represent the communi-
cation between internal devices and RSIC-V. Adr0 [0:3] 
(Address0) is 4-bit-input of column decoder and Adri 
(Addressi), i = 1, 2, 3 or 4, is 5-bit-input of row decoders. 
OpM [0:2] (Operation mode) is 3-bit-singnal to BL driver. 
SCi [0:9] (shifter and connector), i = 1, 2, 3 or 4, is 10-bit 
input signal to Mser&Cors and the lower 8 bits are inputs 
for shifter (S1–S8 in Fig. 4d) while the high two bits are 
inputs for connector (C1 and C2 in Fig. 4e). LComM&CellM 
[0:2] (logic computing mode and cell mode) is 3-bit input to 
MDAC (2 bits for L1 and L2, and 1 bit for CellM in Fig. 4c). 
And 1-bit-SEN is for PCSA. Red arrow is the communica-
tion between PCSAs and register.

3.2  General computing methods based 
on the proposed architecture

3.2.1  Full adder and ripple‑carry adder

GCIM can work as a full adder (FA) based on Eqs. (1) and 
(2). It figures out carry Cout in two steps (MIN operation 
and not operation) and needs two xnor operations to get 
sum S. Table 4 shows the process of computing R = xnor 
(A, B) which needs three steps. Memory unit  UA and  UB 
store the input operands A and B. Memory unit  UR0 and 
 UR store intermediate results and final results respectively, 
and they are initialized to 0 before computing. Step 1 writes 
the result R0, of nand (A, B) to  UR0. A not (R0) operation 
makes memory unit  UR get the result of and (A, B). Finally, 
the xnor (A, B) result can be written to memory unit  UR 
after step3. Based on the simulation in Sect. 4, it needs only 
13.328 pJ to calculate 8-bit full add in parallel: 

The proposed architecture can also work as a ripple-carry 
adder (RCA). It can be used to complete the unsigned fixed-
point addition based on Eqs. (3) and (4) (in which, “i” rep-
resents the i-th element of the operand), which is similar 

(1)Cout = (MIN(A + B + Cin))
�
,

(2)S = A xnor B xnor Cin.

Table 4  The process of 
computing xnor (A, B)

Memory unit UA UB Initial Step1 nand 
(A, B)

Step2 not (R0) Step3 
nor (A, 
B)

UR0 UR UR0 UR UR

Data stored in the memory unit 0 0 0 0 1 0 1
0 1 0 0 1 0 0
1 0 0 0 1 0 0
1 1 0 0 0 1 1
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to Eqs. (1) and (2). Table 5 shows the process of comput-
ing 8-bit unsigned fixed-point addition A + B. In the table, 
Row0 and Row1 store the 8-bit-operands A and B, and Row2 
is used to store carrays. The MIN operation results of data 
in Row0, Row1 and Row2 are stored in Row3. In step1, it 
needs to finish MIN operation to get Ci+1

� and output Ci+1 
from Qm of PCSAs, then write Ci+1 to corresponding unit to 
next column, which is a serial procedure. Next, 8-bit Sum S 
can be figured out after two 8-bit xnor operations, which is 
8-bit-parallel procedure that needs 6 steps. Step 2 and 5 are 
nand operations, step 3 and 6 are not operations, and step 
4 and 7 are nor operations, operands of all these operations 
are A and B, and operation results are stored in correspond-
ing rows as shown in the table. As reported in Sect. 4, it 
needs only 21.037 pJ to calculate 8-bit unsigned fixed-point 
addition:

3.2.2  Signed fixed‑point addition and subtraction

In this design, signed fixed-point addition and subtraction 
are computed based on Eqs. (5) and (6):

It needs the following steps to achieve 8-bit-[D + E] based 
on the proposed architecture.

Step 1: Computing complements of D and E, respectively. 
Since the rules for the complement of positive and negative 
numbers are different, the sign bits need to be read out and 
stored in the register, and RISC-V determine if “Invert” and 
“ + 1” for the operands based on it. It executes “ + 1” by 
the following rules: Reading data from low bit to high bit, 

(3)Ci+1 = (MIN(Ai + Bi + Ci))
�
,

(4)Si = Ai xnor Bi xnor Ci.

(5)[D + E]complement = [D]complement + [E]complement,

(6)[D − E]complement = [D]complement + [−E]complement.

when the first “0” presents, write “1” in its position as well 
as write “0” in its lower position and other bits remain the 
themselves.

Step 2: Computing unsigned fixed-point addition 
[D]complement + [E]complement as described in Sect. 3.2.1.

Step 3: Getting the result of D + E by computing the com-
plement of the result in Step2. The computing of 8-bit signed 
fixed-point subtraction D − E needs to invert the sign bit of E 
before Step1, and other steps is the same as 8-bit-D + E. As 
reported in Sect. 4, it need only 26.757 pJ to achieve 8-bit 
signed fixed-point addition.

3.2.3  Floated‑point addition

A floated-point data N can be presented as N = 2
NE × NM , 

NE and NM are exponent and mantissa of N. GCIM stores 
binary NE and NM as data N. There are four steps to 
achieve a floated-point addition R = X + Y ( R = 2

RE × RM , 
X = 2

XE × XM  , Y = 2
YE × YM  ) as described below. As 

reported in Sect. 4, it need only 85.803 pJ to achieve 8-bit 
floated-point addition.

Step 1: The exponent bits of two operands XE and YE 
are subtracted (XE − YE) based on the methods described in 
Sect. 3.2.2.

Step 2: Read out the result of Step1 and store it in register 
to prepare for the judgment in the next step.

Step 3: According to the sign bit of XE − YE in the  register, 
RSIC-V decides the exponential bit of the result  RE and 
which operand’s mantissa bits should be shifted as well as 
the shift length. For example, if XE > YE , then GCIM will 
copy XE as RE and shift YM right by |XE − YE| bits under the 
control of RSIC-V. For ease of description, we use MM to 
represent the mantissa of Y after shift. Thanks for the subar-
ray design of the architecture, it can achieve shift operation 
directly within the array.

Step 4: Add the shifted mantissa of operand Y and 
mantissa of operand X ( MM + XM ) as the mantissa of its 
result  RM. According to the ripple-carry adder described in 
Sect. 3.2.1,  RM can be calculated easily. Furthermore, if the 

Table 5  Computing process 
of 8-bit unsigned fixed-point 
addition A + B

Col0 Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 op

Row0 A0 A1 A2 A3 A4 A5 A6 A7
Row1 B0 B1 B2 B3 B4 B5 B6 B7

Step1 Row2 C0 C1 C2 C3 C4 C5 C6 C7 write
Row3 C1′ C2′ C3′ C4′ C5′ C6′ C7′ CO′ min

Step2 Row4 (AiBi)′ nand
Step3 Row5 AiBi not
Step4 Row5 Ai nxor Bi nor
Step5 Row6 ((Ai nxor Bi)Ci)′ nand
Step6 Row7 (Ai nxor Bi)Ci not
Step7 Row7 Si = Ai xnor Bi xnor Ci CO nor
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operands are signed data, it takes the sign bit of X and Y as 
the sign bit of MM and XM respectively to execute signed 
fixed-point addition according to Sect. 3.2.2.

3.2.4  Fixed‑point and float‑point multiplication

Figure 5 shows a dot notation representation for a 4 × 4 wal-
lace tree multiplier. GCIM can achieve fixed-point multi-
plication based on the rules shown in Fig. 5. Firstly, GCIM 
worked as fulladder to figure out S and Cout of first three 
partial products as shown in orange part. Next, GCIM also 
worked as fulladder to get S and Cout of first S and Cout as 
well as the fourth partial product as shown in purple part. 
Finally, GCIM worked as RCA to compute the final result. 
Thanks to our modified shifter and connector, which moves 
data to align the corresponding bits so that it makes sure the 
results of fulladder and RCA are correct. Making use of the 
computing described above, GCIM can figure out the result 
of float-point multiplication easily. Firstly, the symbol bit 
of result is calculated by an xnor operation on the symbol 
bit of two operands. Secondly, the exponential bits of two 
operands are calculated by signed addition to get the expo-
nential bits of the result. Finally, mantissa bits of the result 
are figured out by a fixed-point multiplication.

4  Experiments and results

The MTJ/CMOS devices hybrid GCIM architecture is evalu-
ated by Cadence Virtuoso with 45 nm CMOS and 40 nm 
MTJ technologies. We used the advanced MTJ to evaluate 
the proposed architecture and the MTJ parameters are shown 

in Table 6. We set the TMR to 500 present based on the dis-
cussion in (Zabihi et al. 2018). And (Hirohata et al. 2015) 
predicted that a TMR of 1000% at room temperature will be 
attainable by 2024. Benefit from the high TMR of advanced 
MTJ, the error rate is greatly reduced. We evaluate the runt-
ime and energy required when using GCIM to support gen-
eral purpose computings, such as Boolean logic computings, 
fixed-point and float-point addition and multiplication, etc.

We firstly evaluate the performance of the peripheral cir-
cuits using Verilog language and Cadence Virtuoso and the 
detailed results are shown in Table 7. Compared to regular 
2T1MTJ memory, the design needs extra DAC and BLdriver 
to support computing, needs Mser&Cor to explore its recon-
figurability and parallelism, and needs RSIC-V to provide 
a powerful controller. Both GCIM and regular 2T1MTJ 
memory need row decoder and column decoder to provide 
addresses. Regular memory needs sensing circuits to read 

Fig. 5  Dot notation representation for a 4 × 4 wallace tree multiplier

Table 6  Main parameters of 
MTJ

MTJ type PMA-MTJ

MTJ area 10 nm × 10 nm
TMR 500%
RA product 1 Ωμm2 (Mae-

hara et al. 
2011)

tox 0.8 nm

Table 7  The power consumption of peripheral circuits

Spec Power (mW) Area (μm2)

DAC (Fujiki et al. 
2018)

2-bit 
DAC + 2MOSs

0.000051 0.000006

Row decoder 5–32 0.0721 123
Column decoder 4–16 0.0431 67
BLdriver – 0.0074 24
Mser&Cor 8 level 0.61 100
RSIC-V – 0.1 11,601
PCSA (Zhao et al. 

2009)
– 0.077 4

Table 8  The evaluation results of 8-bit basic Boolean logic comput-
ings used in this design

not nand nor MIN

V (mV) 220 90 48 60
Time (ns) 3 5 20 6
Array energy (fJ) 3.27 1.835 2.14 1.351
Total energy (pJ) 0.63451 1.0292 4.0685 1.2293
Power (mW) 0.21129 0.2056 0.20336 0.20457
Error rate 0 0 0.65% 1.95%
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data while GCIM needs sensing circuit (PCSA) to read 
data or sensing computing results. It could be found from 
Table 7 that the power of modified shifter and connector 
is very high. It is because the modified shifter consists of 
conventional barrel shifter and PCSAs. The 8-level conven-
tional barrel shifter themselves consume lots of power, but 
it can shift 8 bits data simultaneously and can shift data up 
to 8 units distance. The good news is that computings that 
need shift data is only multiplication and the multiplication 
frequency is not very high. So, it only has slight influence on 
the performance of the proposed architecture. As for the area 
breakdown, the RSIC-V occupies the largest area, followed 
by Mser&Cor and decoders.

Table  8 shows the voltage, time, energy, power and 
error rate of GCIM to perform the basic Boolean logic 
operations that used in this design. The operands are 
8-bit data in this evaluation. One 8-bit not operation 
needs ~ 0.633e − 12 J. That is average a 1-bit not opera-
tion needs only ~ 0.079e − 12  J energy and the power 
is ~ 0.027 mW. Monte Carlo method is used to evaluate the 
error rate and we took 3000 experiments for one operation. 
Because the error rates of nand, nor and not operations are 
lower than and and not operations (Zabihi et al. 2018). We 
use two basic operations (nand plus not, or nor plus not) to 
achieve and and or operations.

Table 9 shows some common general purpose comput-
ings. Operands of the computings in the table are 8-bit 
data. GCIM can not only support fix-point computing, but 
also support float-point computing. The power of most 
computings are between 0.15 and 0.25 mW. The power 
of shift computing is a little high which is about 0.8 mW. 

That is because the high power of the Modified shifter 
circuit.

5  Conclusion

In this paper, a reconfigurable computing-in-memory 
architecture for general purpose computing based on STT-
MRAM is proposed. It can work as both memory and In-
memory computing processor. General purpose comput-
ing, such as fixed-point and float-point addition, can be 
supported by GCIM. And the subarrays can work inde-
pendently to finish different tasks at the same time or work 
together to finish one task, which improves the parallelism 
and reconfigurability of the architecture greatly. The MTJ/
CMOS devices hybrid GCIM architecture is evaluated by 
Cadence Virtuoso. It needs only 85.803 pJ to achieve 8-bit 
floated-point addition.
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Table 9  Evaluations of some 
common general purpose 
computings

8-bit com Time (ns) Energy (e − 12 J) Power (mW)

not 3 0.63451 0.2113
and 8 1.6638 0.2080
or 23 4.7031 0.2045
xor 31 6.3599 0.2052
Logical shift left 4 3.2639 0.8154
Logical shift right 4 3.2639 0.8154
Arithmetic shift left 4 3.2639 0.8154
Arithmetic shift right 7 3.9721 0.5672
Select 18 3.7165 0.2064
Unsigned fixed-point addition 136 21.037 0.1547
Unsigned fixed-point subtraction 160 26.757 0.1673
Signed fixed-point addition 160 26.757 0.1673
Signed fixed-point subtraction 164 27.714 0.1733
Absolute value subtraction 167 28.422 0.1733
Unsigned fixed-point multiplication 662 177.16 0.2675
Signed fixed-point multiplication 680 173.41 0.2549
Float-point addition 426 85.803 0.2014
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