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ABSTRACT
Buffered clock tree synthesis (CTS) is increasingly critical as
VLSI technology continually scales down. Many researches
have been done on this topic due to its key role in CTS, but
current approaches either lack the obstacle-avoiding func-
tionality or lead to large clock latency and/or skew. This
paper presents a new obstacle-avoiding CTS approach with
separate clock tree construction and buffer insertion stages
based on an integral view to explore the global optimization
space. Aiming at skew optimization under constraints of
slew and obstacles, our CTS approach features the clock tree
construction stage with the obstacle-aware topology genera-
tion algorithm called OBB, balanced insertion of candidate
buffer positions, and a fast heuristic buffer insertion algo-
rithm. Experimental results show the effectiveness of our
CTS approach with significantly improved skew and latency
than [6] by 46% and 63% on average, and 15.3% reduction
in skew than [5]. Our OBB heuristic obtains 36% improve-
ment in skew than the classic balanced bipartition algorithm
(BB) in [9].

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Placement and
routing ; J.6 [ Computer-aided Engineering ]: Computer-
aided design

General Terms
Algorithms, Performance, Design

Keywords
Buffer insertion, Skew optimization, Obstacle avoidance, Slew,
Clock tree synthesis

1. INTRODUCTION
Clock tree synthesis is an important element and prob-

lem in physical design which controls the pace of the whole
circuit. As VLSI technology moves into the nanometer ter-
ritory along with feature shrinking, buffer insertion becomes
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unavoidable in the CTS flow to reduce delay and keep the
signal integrity. Most existing buffer insertion strategies ei-
ther embed buffer insertion into the clock tree construction
process, or conduct buffer insertion after the clock tree is
constructed. The first strategy can generate better balanced
structure with available accurate downstream delay and load
information, but the simultaneous clock tree construction
and buffer insertion is easily trapped in local optimal so-
lution. The second strategy which separates the two cor-
relative parts leads to degraded solution quality due to the
lack of a global view. In this paper, to minimize skew under
constraints of slew and obstacles, we present a new CTS ap-
proach with separate stages of obstacle-avoiding clock tree
construction and buffer insertion based on comprehensive
considerations of their relevance, which enables better solu-
tion space exploration to obtain improved solution quality.

As interconnects get thinner, clock networks cannot work
without buffers. Many researches have worked on buffer in-
sertion as an independent stage based on a given tree topol-
ogy. Dynamic programming (DP) is first introduced to opti-
mize the path delay of buffer insertion based on an existing
wiring tree in [1]. Afterwards, in [2], more diverse targets are
taken into account for buffer insertion, such as power mini-
mization, signal slew, area, etc. Yet, the skew problem after
buffer insertion was not followed closely by then. [3] sym-
metrically inserts buffers based on a symmetric tree struc-
ture. The algorithm obtains notable optimization in skew,
but the resource will be a problem in large scale benchmarks.
[4] presents a simultaneous buffer insertion/sizing and wire
sizing algorithm ClockTune which is claimed to guarantee
zero skew and minimize power and delay. The algorithm is
based on a D-C plane, where the sampling of the solutions on
the plane is not subtly planned. In [6], an integrated process
of clock tree construction and buffer insertion based on the
Deferred-Merge Embedding (DME) framework [9] is studied.
The paper highlights the delay model and the look-up table
providing accurate delay/slew during buffer insertion, while
the positions of buffers which only depends on slew limits
the skew that can be optimized. And it may cost a lot of
routing resources on balancing the branches since the buffers
are only inserted when the slew on the wire is about to vio-
late the constraint, which means, the delay changes caused
by buffer insertion is not carefully analyzed and utilized. In
our paper, buffers’ positions are relatively flexible on a wire
as there are redundant candidate buffer positions to keep the
signal integrity and so the actual buffer insertion positions
could give consideration to the delay balance.
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In the VLSI physical design flow, CTS is performed after
placement, so the already placed cells, macro blocks, and IPs
become obstacles for following buffer insertion process. Re-
searches [5][7][8] have worked on obstacle-avoiding routing
or buffer insertion. [5][7] process obstacles after the initial
zero skew clock tree (ZST) is constructed. For avoiding ob-
stacles, every on-obstacle subnet is rerouted independently,
which probably destroys the initial tree’s balance on skew,
capacitance, etc. [8] uses a Walk-Segment Breadth First
Search (WSBFS) method to realize routing, the algorithm
can achieve an exact routing plan based on a pre-prepared
wiring structure. As we know, avoiding buffers on obstacles
is not difficult. The real difficulty lies in reducing the nega-
tive effects on skew/delay caused by obstacle avoidance. In
this paper, we make efforts to predict and correct the nega-
tive effects of obstacle avoidance for skew-minimized buffer
insertion.

Classical H-tree and X-tree are excellent ZSTs. However,
they require harsh conditions for sinks’ positions and capac-
itance. Yet, Shih et al. regained this as symmetric structure
in [3]. They sophisticatedly constructed a symmetric tree
with almost the same structure on each path, and therefore
balanced buffer insertion is easy to realize. The algorithm in
[3] displays the advantages of symmetric structure on small
scale benchmarks. However, the algorithm might not be
suitable for large-scale benchmarks with obstacles since the
algorithm would realize the tree with all paths equal to the
longest path. And as [3] uses pseudo sinks to form the sym-
metric tree, the resource for wiring along with buffers in-
serted on such wires might be a ticking time bomb for the
chip. A trade-off should be found between the algorithm’s
performance and resource it will take. Thus, we do not
adopt symmetric structure in our CTS flow considering the
potential risk.

In this paper, we focus on the construction of a buffered
clock tree subject to the constraints of obstacles and the
input slew of buffers and sinks. We compare our results with
a recent work [6] which addresses the same problem as us
except for obstacles and also with the intermediate results
of one ISPD’09 contest winner [5], in which our problem
is defined as a sub-problem of their whole flow, our CTS
approach proves to be more effective. The contributions of
this work are summarized as follows:

• An improved obstacle-aware algorithm called OBB is
proposed to generate the clock tree topology based on
BB [9] algorithm and the analysis of obstacles.

• An effective heuristic distribution algorithm of the can-
didate buffer positions (CBP) is adopted considering
the negative impaction caused by obstacle avoidance
on the paths’ balance.

• An efficient sampling technique is adopted to speedup
the DP algorithm on the basis of skew optimization
during the process of slew constrained buffer insertion.

The rest of this paper is organized as follows. Section 2
describes the problem to be solved in this paper and gives
the overall flow of our algorithm. Section 3 explains the de-
tails of the flow. Section 4 reports the experimental results.
Finally section 5 concludes our work.

2. ALGORITHMIC FLOW
In this paper, we concentrate on buffered clock tree syn-

thesis problem. Given a set of sinks SI , a set of obstacles
OB, the task is to construct a buffered clock tree T = (V, E)

Input

Output

Clock routing

Generation of CBPs

Slew constrained buffer insertion with
skew optimizaiton

Refinement to
balance CBPs

Initial length-based
insertion of obstacle-
avoiding CBPs

DME-based clock
routing with none-

overlap

Obstacle-aware
topology generation

Figure 1: The algorithmic flow

satisfying the following requirements: (1) no inserted buffers
overlap with the obstacles; (2) the input slew of all the sinks
and buffers are within a prespecified limit. We name a tree
structure satisfying conditions (1) and (2) as a legal struc-
ture. The optimization goal is to optimize the skew of T .

For a clock tree T , some basic notations are defined here.
v ∈ V, SI ⊆ V ,e ∈ E. ev is the edge from v to its parent
node. B denotes the buffer library, and we assume none-
buffer as a special buffer type in B, which denotes that no
buffer is inserted.

Figure 1 shows our buffered clock tree synthesis algorithm
which includes three steps: (1) obstacle-aware clock tree
construction; (2) generation of obstacle-avoiding CBPs; (3)
buffer insertion. For benchmarks without obstacles, the ex-
periments show that the traditional zero-skew routing al-
gorithms can lead to good skew after our buffer insertion
strategy. But for benchmarks with obstacles, they seem not
to work well since the wire snaking for obstacle avoidance
will destroy the initial balance state. Our CTS approach
features a global view on obstacles for the final skew. And
it mainly reflects in the efforts we make to keep the poten-
tial balance character of the tree, especially before buffers
are inserted.

The main job of step (1) is to route a ZST in a rect-
angle. Our algorithm is based on BB+DME [9], where
BB is short for Balanced Bipartition and DME is short for
Deferred-Merge Embedding. In this stage, a heuristic topol-
ogy generation algorithm named OBB is proposed for ob-
stacle avoidance. OBB predicts the obstacles’ impaction on
real routing, and attempts to raise the tree level impacted
by obstacles. Paths’ difference at upper levels is generally
easier to deal with than that at lower levels. This is because
the unbalanced delays induced by upper-level wires’ differ-
ences involve less wires, and thus would be easier to repair.
Note that in this stage the merge nodes have no overlaps
with obstacles, but our routing method which directly con-
nects two nodes may generate wires crossing the obstacles.
We will reroute if CBPs appear on the obstacles based on
the CBP insertion algorithm of the next stage. All lengths
and distances are Manhattan distance in this paper.

Step (2) is the preparation stage for step (3), and it aims
to generate a tree structure with CBPs for legal zero-skew
buffered tree (ZSBT), i.e., after step (2), a legal ZSBT would
potentially exist in the solution space for step (3). Our fun-
damental algorithm to insert CBPs is a length-based inser-
tion with a fixed length constraint. But experiments have
shown that if benchmarks contain obstacles, fixed-length-
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based insertion does not always work well. The reason is
that the obstacle-avoidance preparation for CBP insertion
would probably change the initial zero-skew routing strategy
to make sure that every CBP on wires be off the obstacles.
I.e., for obstacle avoidance, some path might be too long
after the wire snaking, and therefore more buffers would be
inserted on this path for slew constraint which implies more
delay than that we have planned. To cover the potential
legal ZSBT solution in the solution space of buffer insertion,
we add a refinement stage after the initial CBP insertion to
balance the tree structure and the CBPs’ distribution. The
algorithm is detailed in Section 3.2.

Step (3) focuses on skew-optimized and slew constrained
buffer insertion. Slew is a hard restriction because it directly
affects the function of a circuit. In [10], the slew constrained
and minimum cost buffer insertion is studied. Based on
a slew model, the illegal solution will be pruned from one
node’s solution set. In our algorithm, the slew model is ref-
erenced and proved to be useful. The general cost function
of [10] is adaptable for objectives like power, area, and de-
lay. For this situation, we have done an experiment in which
the cost function is set to optimize skew. Yet, the algorithm
seems not to be suitable for skew minimization. The slew
buffering [10] assumes all paths are independent from other
paths while the skew problem is actually a match problem,
which means, different paths are not irrelevant to each other
when they are setting their delays.

DP is popular for buffer insertion. Nevertheless, as the
depth of the tree increases, DP would generate more and
more solutions and causes a runtime issue. Shi and Li have
done good research works on speeding up the DP algorithm
[11]-[14]. The essential factor in their theory is the domi-
nate concept that controls the solution space at one node.
However, the dominate concept is not applicable for skew op-
timization because no complete solution at non-root nodes
could dominate the other solutions according to the delay,
or the temporary skew. In this paper, we propose an ef-
fective sampling technique to reduce the runtime and the
clock skew. This sampling technique borrows the concept of
A/D converter in communications, which converts the data
from analog to digital through sampling and keeps the sig-
nal waveform. In our case, the delay values in the original
solution set are not continuous as analog signal, but they
are dense enough to form a delay curve. We will sample
this dense solution set to be sparser and meanwhile keep
the shape of the delay curve of the original solution set.

3. DETAILS OF THE ALGORITHMS
3.1 Obstacle-aware clock tree construction

BB+DME in [9] generates a ZST with minimum wire
length. We adopt it as our basic algorithm for clock tree
construction. Since obstacles are not considered in [9], we
improve the basic BB+DME algorithm to consider obstacle
avoidance.

Heuristic BB (OBB): BB is detailed in [9]. For simplicity,
we borrow notations in [9] to explain our improved clock tree
topology generation approach. For a sink set G, Oct(G) is
its bounded octagon, and REF, the reference set to par-
tition G, is a subset of ordered Oct(G). For each REF,
every sink in G has a weight defined as minval+maxval
=min{dr(pi, poi)|poi ∈ REF}+ max{dr(pi, poi)|poi ∈ REF},
and dr(pi, pj) is the Manhattan distance between points pi

and pj . All the sinks are inserted into a sorted list in non-

decreasing order of their weights. Then all the sinks in G
are partitioned into two subsets based on load balance. This
method is sufficient for benchmarks without obstacles. But
for benchmarks with obstacles as shown in Figure 2a, the
classic BB algorithm may not find a good solution. We im-
prove the BB algorithm to consider obstacle avoidance. The
key is to change the sinks’ order in the list.

Figure 2a shows an example. We assume all sinks are of
the same capacitance. If REF consists of sinks s1, s2, s3, s4(see
Figure 2a), BB will partition the sink set by the solid line
(see Figure 2b) where sink ss will finally be connected by
the dotted line. But because an obstacle exists, the actual
connection will be the dotted line in Figure 2c. In this sit-
uation, the obstacle directly affects the lowest level of the
tree which will propagate to all the other paths for delay
balance. In our OBB, the weight of a sink is modified to
minOBval +minval +maxval, where minOBval is the es-
timation of the actual wire length connecting pi and pmin−oi

(see the dotted line shown in Figure 2c), where pmin−oi is de-
fined as the point with min{dr(pi, poi)|poi ∈ REF} without
consideration of obstacles. The way to calculate minOBval
is simplified from our obstacle-avoiding algorithm in section
3.2 just for estimation. The reason we care about pmin−oi

is that BB tends to partition pi with pmin−oi in future since
they are close to each other. As shown in Figure 2c, our OBB
algorithm will partition the set with the solid line. Obsta-
cle’s impaction happens at top level and will just propagate
among the top-level wires.

Extended Trr: In [9], Titled rectangular region (Trr) is
a critical concept on computing the parent node’s merging
segment (ms) to realize zero skew in DME process. Trri ∩
Trrj is always a Manhattan arc (Marc) in [9] because it
takes the minimum Manhattan distance dd (see the dotted
line in Figure 3a) between core(Trri) and core(Trrj) to be
kval (kval = radiusi + radiusj). If we enlarge kval to be
greater than dd, the result will be a Trr region (proved
in [9]), and here we call it Extended Trr. Since the same
equations to compute radiusi and radiusj as [9] are adopted
to balance the delays, the points in the intersection area
(see Figure 3b) are all candidate merging nodes for zero
skew. When there are obstacles, an ms with original kval
may overlap with obstacles. We can remove the overlapping
part and take the remaining part as the ms. But if the
initial ms entirely overlaps with obstacles, an alternative
ms is needed. Extended Trr is useful in this case. In our
algorithm, when entire overlap happens, kval is iteratively
enlarged by a certain step length until we find a Trr where
available points exist off obstacles. The overhead of this
algorithm is the increased wire length, but the advantage is
that the feature of zero skew is maintained with obstacles.

boundary

s1
s2

s3

s4

ss

(a)

s1
s2

s3

s4

ss

(b)

s1
s2

s3

s4

ss

(c)

Figure 2: Obstacle-avoiding clock tree topology generation.
(a) Example with a large obstacle. (b) The solid line shows
the top partition based on BB without considering obsta-
cles. (c) The solid line shows the partition based on OBB.
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Figure 3: The intersection of Trrs. (a) Trri ∩ Trrj with
radiusi + radiusj = dd. The result is Marc, shown as
the overlap segment AB. (b) Trri ∩ Trrj with radiusi +
radiusj > dd. The result is a Trr region.
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Figure 4: Reroute for obstacle avoidance. (a) If lcross ≤
LLimit, ignore the obstacle. If CBP happens in the obstacle
as point A, point B close to the child node will substitute it.
(b) Complex overlap: the bold segments on the boundary
with stars as the endpoints are detour candidates between
si and sj . (c) Wire snaking for obstacle avoidance impacts
the original balance of the tree.

3.2 Generation of obstacle-avoiding CBPs
In this paper, a CBP refers to a candidate position for

buffers. CBPs are constrained to slew and obstacles. The
slew constraint requires the CBPs be distributed on both
nodes and wires. The nodes have already been guaranteed
to be off obstacles in the clock tree construction stage, while
rerouting is required if CBPs on wires appear on obstacles.

A natural-avoiding algorithm is adopted for rerouting.
In the algorithm, a fixed length Llimit determined by the
slew constraint and the buffer’s drive capability is set to be
ability-bound for a wire, i.e., when a wire crosses an obstacle
with length lcross ≤ LLimit, the obstacle would be ignored
(see Figure 4a). If lcross > LLimit, the wire should detour.
Our algorithm processes obstacles crossed by wires one by
one. For example, in Figure 4b, line 1 is the original wire
connecting nodes si and sj . The bold segments marked as
a or b are two detour choices. Detour with smaller length
is favorable. For the detour marked as a, after avoiding
obstacle ob1, the wire becomes line 3 which overlaps with
obstacle ob2, and for the detour marked as b, the wire be-
comes line 2. Next, this algorithm will process line 2 or line
3. This natural-avoiding algorithm could not guarantee the
minimum length, but it can process various obstacles with
complex shapes.

After the wire-on-obstacle-check and detour are conducted,
CBPs can be inserted on the wire from child node to parent
node by an interval Llimit. This fixed-length-based insertion
strategy leads to a roughly uniform distribution of CBPs on
the whole tree. However, experiments show that the severe
unbalance of delays is often introduced by unbalanced wire
snaking for obstacle avoidance. As shown in Figure 4c, ob-
stacle ob conceptually exists among nodes n2, n3 and n4. It
is possible that wire en4 needs to snake as the dotted curve
for obstacle avoidance, but wire en3 doesn’t. So, unbalance

Table 1: Formulas to recursively calculate the six-tuple so-
lution of single branch node and binary node.

Elements Formula
of six-tuple single branch node binary node

c(v) c(vc) + c(evc ) + c(bi) c(vl) + c(evl)
+c(vr) + c(evr ) + c(bi)

d(v) d(vc) + d(evc) + d(bi) [d(vl) + d(evl)
+d(vr) + d(evr )]/2 + d(bi)

maxD(v) maxD(vc) max(maxD(vl) + d(evl),
+d(evc) + d(bi) maxD(vr) + d(evr ))

minD(v) minD(vc) min(minD(vl) + d(evl),
+d(evc) + d(bi) minD(vr) + d(evr ))

sk(v) sk(vc) maxD(v) − minD(v)
sl(v) refer to [10] refer to [10]

happens between the path n4 − n1 and other paths in the
dotted ellipse. To maintain the balance, we have to make
compensations on the paths in the dotted ellipse. For a bi-
nary node which is defined as a node having two children,
our measure is as follows: firstly, check if the node’s two
children are unbalanced on delay (including the delay of the
wire connecting to the parent node). If they are unbalanced,
calculate the difference difflen of increased lengths caused by
obstacle avoidance, and the number of CBPs incCBP that
should be compensated can be computed by difflen/Llimit;
then uniformly add incCBP CBPs to the path with smaller
delay. Note that this compensation process should be done
in a bottom-up manner, so the unbalance at lower levels
could be propagated to upper levels.

3.3 Buffer insertion with skew optimization
Our buffer insertion is implemented through two phases:

the bottom-up phase to generate candidate solutions for
each node, and the top-down phase to deploy the buffers.
During the bottom-up phase, node v’s candidate solution
set is formulated as Sv = {s1, s2, · · · , sn}, where si is a
six-tuple (c, d, maxD, minD, sk, sl). c denotes the total ca-
pacitance of sub-tree Tv; d, maxD, and minD denote the
average, the maximum and the minimum delay values from
v to its leaves, respectively; sk denotes skew of sub-tree Tv,
and sl for slew is calculated as [10] which denotes the accu-
mulated slew degradation from the last downstream buffer.
If v is a sink node, c is sink capacitance, d = maxD =
minD = 0, sk = 0, sl = 0; if v is a single branch node with
buffer bi whose child is vc, the six-tuple of v is computed as
shown in Table 1; if v is a binary node, and vl, vr are its left
and right child, the six-tuple of v is calculated by equations
in Table 1. sl(v)’s calculation is detailed in [10], and the
buffer’s intrinsic delay and output slew in the formulation
are achieved through a look-up table.

min(sk(v)) = min(maxD(v) − minD(v))

= min(maxD(v)) − max(minD(v)) (1)

For a binary node v, we assume SL and SR are its left
and right child’s solution sets, SL = {sl1 , sl2 , . . . , slm}, SR =
{sr1 , sr2 , . . . , srn}; then v’s solution set is generated from
combining sli and srj , i ∈ [0, m], j ∈ [0, n]. There are totally
m∗n solutions. For node v, the minimum skew is calculated
by Equation (1). It indicates that we have to minimize the
maximum delay and maximize the minimum delay to get
the optimal skew. So both large delays and small delays
might contribute to skew minimization. Therefore, if the
slew of a node for all solutions is within SLlimit, |B| ∗ |S|
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(S is the child’s solution set) solutions will be introduced at
each single-branch buffer position; at a binary node, |B| ∗
|SL|∗ |SR| solutions will be introduced. Overall, the number
of solutions increases exponentially. So, we have to prune
the solution set to solve the runtime issue, and meanwhile
try to keep the optimal solution in the solution set.

Sampling technique: Equation (1) tells that node v’s skew
sk(v) directly depends on its maximum delay and minimum
delay, which we name as boundary delay. The method to
optimize skew is to minimize the maximum delay and max-
imize the minimum delay of the tree. Targeting to min-
imize the whole tree’s skew, only the difference of maxD
and minD at the root node needs to be considered. The
delay at the root node is the result of the delay’s growth
at the non-root nodes along the path. To include balanced
delays at root node, we should concentrate on the bound-
ary potential of delays at the internal nodes. Here boundary
potential is defined as the potential ability of a delay value
to become a boundary delay. Of course, the internal nodes’
maxDs and minDs are important potential boundary delays
at the root node. But the delays between boundary delays
might also become the future maxD or minD. In order not
to prune the potential maxD and minD during the bottom-
up process, we will sample the solution set to maintain the
diversity of delays at the internal nodes. The sampling tech-
nique used on node v’s solution set Sv includes three parts.
The delay values (minD, maxD, d) are the main criteria for
sampling, and we define α as the sampling interval.

Algorithm 1 Sample d

Input: S′
v : Sv after doing Sample minD and maxD

Output: S′′
v : v’s simplified solution set

1: minAD = min(d), maxAD = max(d) from S′
v

2: calculate the number of solution groups based on α:
solGroup = (maxAD − minAD)/α + 1

3: generate a 2-D vector CSols[solGroup]
4: for i = 0 to |S′

v | − 1 do
5: push back S′

v[i] to CSols[floor((S′
v [i].d−minAD)/α)]

6: end for
7: sta[i]: the number of all original solutions in CSols[i]
8: dis[i]: the allocated solution number for CSols[i]
9: for i = 0 to solGroup − 1 do

10: dis[i] = floor(sta[i] ∗ solGroup/|S′
v| + 0.5)

11: if dis[i] = 0 and sta[i] > 0 then
12: dis[i] = 1
13: end if
14: end for
15: for i = 0 to i = solGroup − 1 do
16: randomly select dis[i] solutions from CSols[i]
17: end for

(1) Sample minD: Each solution has a minD. For all so-
lutions, there are a minimum minD and a maximum minD.
Sv is ordered in a minD-ascending list. This sampling minD
technique is to start from the first solution in ordered Sv,
and select the next solution whose minD is at least α larger
than the previous solution. If more than one solution exist at
a certain minD value, the selection can be done randomly or
according to the target. In our algorithm, random selection
is adopted.

(2) Sample maxD: This part is similar to Sample minD
part except that the sampling criterion changes from minD
to maxD, and the initial solution set does not contain the
selected solutions in Sample minD.

(3) Sample d: As mentioned before, the delay d might have
boundary potential to become a boundary delay. So, we con-

Table 2: Comparison of [6] and our work.
Benchmark No. Worst slew(ps) Skew(ps) Max Latency(ns)

sinks ours [6] ours [6] ours [6]
09f11 121 80.5 99.2 22.2 45.2 0.92 2.26
09f12 117 75.4 83.6 18.7 45.8 0.90 1.92
09f21 117 83.5 99.2 32.2 51.1 0.97 2.16
09f22 91 80.8 100 16.5 42.4 0.77 1.62
09f31’ 273 88.0 98.1 60.1 65.1 1.28 4.22
09f32’ 190 80.9 85.2 26.9 52.3 1.26 3.38
09fnb1’ 330 73.3 80 31.0 68.6 0.44 4.67

Avg.comparison 0.875 1.000 0.544 1.000 0.368 1.000

Table 3: Comparison of [5] and our work on skew (ps).
Benchmark 09f11 09f12 09f21 09f22 09f31 09f32 09fnb1 Ava.

[5] 46.78 66.24 76.31 33.65 129.2 98.27 21.13 -
ours 38.84 31.93 48.51 41.66 84.78 46.44 34.05 -

ours/[5] 0.830 0.482 0.636 1.238 0.656 0.473 1.612 0.847

tinue to pick some solutions out of the remaining solution set
S′

v. The specific algorithm is shown in Algorithm 1. Here,
α is used to divide the solutions into different groups based
on delay values d (see details in steps 1-6). During delay in-
terval of α, there are sta[i] solutions, but our sampling tech-
nique will only allow dis[i] solutions in this interval. dis[i]
is calculated based on steps 9-13. And the solutions could
be selected randomly or according to specific targets. In our
algorithm, target-driven selection is adopted. For a binary
node, solutions with smaller skew are favorable, and for a
single-branch node, solutions with smaller power are chosen.

The value of α significantly affects the sampling, especially
Sample minD and maxD. α is configured mainly depending
on the path-delay range and the scale of the problem. The
combination of the selected solutions from the three parts of
sampling technique makes of the final solution set of node v.

4. EXPERIMENTAL RESULTS
We implemented our algorithm in C++ on a 2.33GHz In-

tel Xeon Linux workstation with 8GB memory. This paper
focuses on obstacle-avoiding buffered clock tree construction
without considering wire sizing and process variation. So, all
configurations of the ISPD benchmarks remain unchanged
except that the wire library consists only wire 0 with unit re-
sistance 0.0001Ohm/nm and unit capacitance 0.0002fF/nm,
and the parameters about process variation are disabled.
The final results are simulated by NGSPICE. Note that
ISPD’09 benchmarks (09f11, 09f12, 09f21, 09f22, 09f31,
09f32, 09fnb1, 09fnb2), and ISPD’10 benchmarks (10f01-
10f08, where 10f0X is for the original benchmark 0X.in)
are adopted to test our algorithm, in which, 09f31, 09f32,
09fnb1, 09fnb2, 10f01-10f05 all consist obstacles.

The parameters Llimit and α used in our algorithm is set
to 500000nm and 1ps in all the ISPD benchmarks.

Table 2 shows the comparison of our algorithm and [6] on
benchmarks without obstacles. 09fXX’ is a benchmark gen-
erated from 09fXX with obstacles removed. Since no obsta-
cles exist, our techniques to eliminate the negative impaction
of obstacles do not work, and the effectiveness of the buffer

Table 4: Comparison of OBB and BB
No. Skew Max Latency power CPU

Benchmark sinks (ps) (ns) (×103fF) (s)
OBB BB OBB BB OBB BB OBB BB

09f31 273 76.8 187.1 1.680 1.377 181.0 183.0 2814 111
09f35 193 22.3 94.2 1.392 1.429 126.2 136.4 76 66
09fnb2 440 48.3 37.1 0.652 0.622 58.5 56.0 133 118
10f01 1107 71.4 87.0 0.869 1.050 158.9 152.2 1404 4416

ob04.in 1499 30.8 36.9 0.495 0.495 68.2 71.1 501 688
ob07.in 1780 33.7 43.7 0.502 0.502 73.9 70.2 527 550

Avg.comparison 0.729 1.000 1.002 1.000 1.012 1.000 4.939 1.000
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Table 5: Comparison of our algorithm on benchmarks with (yes) and without (no) obstacles.
benchmark No. No. Skew(ps) Power(×103fF) Max Latency(ns) CPU(s) Skew/Max latency

sinks obstacles yes no yes no yes no yes no yes no
09f31 273 88 76.8 60.1 181.0 180.0 1.680 1.344 2814 66 4.6% 4.5%
09f32 190 99 33.2 26.9 134.1 133.9 1.291 1.291 53 46 2.6% 2.1%
09fnb1 330 53 23.9 31.0 27.4 26.6 0.520 0.468 106 99 4.6% 6.6%
09fnb2 440 1346 48.3 38.9 58.5 54.7 0.652 0.625 133 122 7.4% 6.2%
10f01 1107 4 71.4 60.6 158.9 149.8 0.869 0.819 1404 318 8.2% 7.4%
10f02 2249 1 55.2 55.9 293.6 307.9 0.966 0.980 723 706 5.7% 5.7%
10f03 1200 2 38.4 37.9 55.8 55.4 0.471 0.470 381 353 8.2% 8.1%
10f04 1845 2 54.6 54.4 81.1 81.1 0.520 0.520 624 593 10.5% 10.5%
10f05 1016 1 32.7 28.9 38.2 38.0 0.494 0.499 334 301 6.6% 5.8%

Avg.comparison 1.093 1.000 1.015 1.000 1.049 1.000 6.070 1.000 6.48% 6.31%

insertion strategy can be tested. It is apparent that our algo-
rithm performs better than [6]. The skew and max latency of
[6] are reduced by 45.6% and 63.2% on average, respectively
(Avg. comparison is calculated by Avg(

∑
(ours/[6]))). In

[5], an excellent flow CONTANGO for ISPD 2009 contest is
completed. The flow before wire sizing addresses our slew
constrained and obstacle-avoiding CTS problem with con-
sideration about the signal polarity. Table 3 shows the skew
result of our algorithm plus [5]’s signal polarity strategy. It
is compared with the result after TBSZ displayed in Table
III in [5]. The data reveals the advantages of our algorithm
on skew by average 15.3% reduction.

In Table 4, the effectiveness of OBB is tested. Here OBB
represents the flow proposed in this paper, and BB repre-
sents our flow with BB generating the tree’s topology. Only
four original benchmarks are listed because the results of
OBB and BB on the rest benchmarks are identical. The
reasons for no difference may be (1) no obstacles exist; (2)
obstacles are too small; (3) obstacles are near the periphery.
In one word, the obstacles do not affect the topology genera-
tion in the rest benchmarks. Benchmarks ob04.in, ob07.in in
Table 4 are the same as 10f04 and 10f07 except that a large
obstacle is inserted at the center part of the chip, respec-
tively. From the table, skew is 27.1% improved on average
than BB with a little more cost on power and max latency.

Table 5 shows the simulation results of all the benchmarks
with obstacles. In order to show the effect of our obstacle-
avoiding techniques, benchmarks are also tested with all ob-
stacles removed. Most of the Avg numbers are calculated
similar to Table 2 except for Skew/MaxLatency which is
the average of the numbers on its column. 6.48% and 6.31%
show that though the skew with obstacles becomes 1.09X
larger, the percentages they share the max latency is almost
the same with the cost of power and max latency within 5%.

All the above experiments demonstrate that our algorith-
mic flow is effective and robust on obstacle-avoiding and slew
constrained clock tree synthesis.

5. CONCLUSION
We have proposed a three-stage algorithm to generate a

slew constrained and obstacle-avoiding buffered clock tree
with skew optimization, which features the global perspec-
tive to deal with the obstacles’ impaction on the skew. The
experimental results in Section 4 show its effectiveness and
robustness. In future, we will try to involve more consider-
ations like wire sizing and process variation.
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