
Front.Comput.Sci.

DOI

LETTER

Prototyping Federated Learning on Edge Computing Systems

Jianlei Yang 1,2 �, Yixiao Duan 1,2, Tong Qiao 1,2, Huanyu Zhou 1,2, Jingyuan Wang 1, Weisheng Zhao 2,3

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2 Fert Beijing Research Institute, BDBC, Beihang University, Beijing 100191, China

3 School of Microelectronics, Beihang University, Beijing 100191, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2019

1 Introduction

Deep learning has obtained a great success in computing tech-

nologies and has been affiliated to people’s lives inseparably re-

cent years. Nowadays, the most common approach to deploy

these deep learning models is to collect the users data and train

them in central servers. Nevertheless, the users data might be in-

evitably undermined during the process of collection and upload-

ing, and users sensitive information might be exposed to danger.

Aiming at reducing the risk of privacy leakage, Google proposed

Federated Learning, which has been successfully applied to sev-

eral applications, e.g. data alliance among enterprises [1], next

word prediction in Gboard [2], etc.

Previous Federated Learning research has reported some

applications in the protocol of enterprise cooperative pattern,

which is at the level of service [1], or in the software applica-

tion from user perspectives [3]. Since there will be trillions IoT

devices in the future, the system efficiency and privacy protec-

tion should be taken special attention on evaluating Federated

Learning algorithms in edge or mobile computing platforms.

In this letter, a typical Federated Learning application is de-

ployed onto edge computing system and shows how to efficiently

implement the deep learning models on edge computing sys-

tems. Considering the communication bottleneck between dif-

ferent devices when exchanging and updating the learned mod-

els, Asynchronous Federated Learning (Async-FL) is intro-

duced in comparison with the conventional Synchronous Fed-

erated Learning (Sync-FL), which is also extended from smart

phone’s applications [4] to IoT scenarios.

Manuscript received on June, 2019, revised on October, 2019.

E-mail: jianlei@buaa.edu.cn

2 Methodologies

Instead of uploading users data to central servers, Federated

Learning (FL) distributes training or inference tasks to user de-

vices for privacy protection. Usually FL requires several train-

ing rounds, and for each round the edge devices accept the

global network, perform training tasks, submit the learned mod-

els for model aggregating. An important concern of these train-

ing rounds is the convergence rate. A typical system architecture

of FL is proposed in [3], which is called Sync-FL because their

partially learned models are merged synchronously. Difference

with Sync-FL, the Async-FL approach is deployed in this

letter. Some notations are defined as following:

• C denotes the global network on central server.

• En denotes the network on the n-th edge device, where 1 ≤

n ≤ N.

• I is the total training rounds, and K is the epoch number for

each round.

• p is the bounce rate of Async-FL.

2.1 Synchronous Federated Learning (Sync-FL)

For the i-th training round of Sync-FL, it has three steps [5]:

(1) Broadcasting: broadcast C to the edge devices, En ←− C.

(2) Training & Submitting: train En on the i-th device for K

epochs, then submits En to the server.

(3) Aggregating: after receiving the scattered models {En}, the

server aggregates them by weighted average as a new global

network C.

However, there are some obvious drawbacks in Sync-FL.

First, the central server cannot perform model aggregation until

all of the {En}models have been received. Since there are usually



2
Yixiao Duan, Jianlei Yang, et al: Prototyping Federated Learning on Edge Computing Systems

UpdateUpdate

Training Training

Training

Training

Update

Training

UpdateUpdate

Training

Update

Training

Training

Update

Training

Training

Update

Training

Training

 Reconnect to server when the network is unstable

 Pull a latest model from server when reconnection is out of time

 Wait for model update congestion dissolving

Waiting for pulling a current latest model

Waiting for pulling a newer latest model

Network connection lost

Network connection recovered

Waiting for next update

Fig. 1 System Architecture of Federated Learning on Edge Computing Platforms.

some differences in computation capacities among different edge

devices, their consumed training and communication time will

be different so that the total performance is determined by the

worst case. Moreover, broadcasting the global network to all the

edge clients at the same time will increase the communication

time significantly when there are large scale of edge devices are

deployed, i.e., the communication pressure is O (N).

2.2 Asynchronous Federated Learning (Async-FL)

The drawbacks of Sync-FL motivate us to introduce

Async-FL. As shown in Algorithm 1, Async-FL has also

mainly three steps which are slightly different to Sync-FL. For

the i-th training round:

(1) Pulling: pull the current global network Ci down from the

central server to the n-th edge device as its local network

Ei∗

n , then refresh the local round counter i∗ to i.

(2) Training & Submitting: train Ei∗

n on the i-th device for K

epochs, then submits Ẽi∗
n to the server.

(3) Updating: once the server receives a network Ẽi∗
n , perform

bounce-update (with bounce rate p) on the global network

immediately, and accumulate i.

For each training round, Sync-FL sends the network to all

of the devices and waits for all of the trained models to aggre-

gate. But for Async-FL, it only sends the latest model to the

request device and then performs bounce-update for each train-

ing round. Async-FL could hide the latency of pulling and

submitting since they are not performed simultaneously for dif-

ferent devices. Some certain devices could continue their train-

ing tasks when other devices are communicating with the server.

Algorithm 1 : Asynchronous Federated Learning

1: procedure Device(n-th)

2: while not Finish do

3: (1) Pull global network: Ei∗

n ←− Ci, i∗ ←− i

4: (2) Train local network for K epochs: Ei∗

n { Ẽi∗
n

5: Submit Ẽi∗
n to the central server.

6: end while

7: end procedure

8: procedure Server

9: for i from 1 until I do

10: Wait until ∃n ∈ [1,N], Ẽi∗
n has been submitted.

11: (3) Update: Ci+1 ←− (1 − p)Ci + pẼi∗
n

12: Send current network Ci+1 to the n-th device.

13: end for

14: end procedure

Additionally, the server in Async-FL could update the global

network when it receives the learned model from the faster de-

vices with no need for waiting for other slower devices. Thus

the communication pressure is reduced from O (N) to O (1).

2.3 System Architectures

The system design of Async-FL is illustrated in Fig.1. It shows

how to communicate between edge devices and central/cloud

server. Considering intelligent IoT devices like voice assistants,

router, smart light and thermometer in a modern house, even

though the computation capabilities or communication qualities

of difference devices are discrepant, the model update will be

not blocked in central server. Meanwhile, Async-FL is robust

to disturbance of few devices accessibility to the server because



Front. Comput. Sci.
3

(a) Accuracy to training time (b) Accuracy to total epochs

Fig. 2 Model training convergence rate of Sync-FL and Async-FL with identically or non-identically input data distribution.

the latest global model could be accessed once the lost connec-

tion is recovered. However, the server has to resolve the update

request congestion when there are many devices.

3 Experiment Results and Analysis

The Sync-FL and Async-FL algorithms are implemented on

a group of six Raspberry Pi 3B+ devices. The experiments are

conducted by LeNet on MNIST dataset. Usually the discrep-

ancy in computation capabilities is extremely large in real IoT

conditions, while the capabilities of devices in our experiment

are almost the same, so a random latency (maximum to 2 times

of practical training time) is assigned into each device to emulate

the discrepancy among different devices. For the input training

data, they also have discrepant distributions between different

devices so that two kinds of distribution are exploited: Idd (iden-

tically distribution, each device receives all kinds of labeled data

with the same probability), and NoIdd (non-identically distribu-

tion, each device only receives biased labeled data).

The experimental results are shown in Fig.2 for illustrating

the convergence rate with different approaches. For a certain dis-

tribution both Idd and NoIdd cases, Async-FL converges faster

than Sync-FL. Since different devices usually accept different

kinds of input data, NoIdd case is much more practical in real

world, i.e., people take pictures of scenery which consistent with

their preferences. Fig. 2(a) shows the circumstances under Idd

perform better than that under NoIdd. The total exploited epochs

are also compared as shown in Fig.2(b), which means the sum

of the epochs from all devices. Since the lower communication

frequency between server and edge devices, training tasks per-

formed synchronously in Sync-FL have less total epochs than

Async-FL, which also results slower convergence to time.

4 Conclusion

This letter prototypes a practical usage of FL onto edge sys-

tems. Considering the existing differences in computation abil-

ities among different devices, Async-FL is proposed to relive

the communication burden and tolerate the network issues. Ex-

perimental results show that Async-FL could behave better

than traditionalSync-FL under certain circumstances, typically

in edge system where there are significant discrepancies in com-

putational abilities and input data distribution.

Acknowledgements Prof. Yang’s work was supported in part by the Na-

tional Natural Science Foundation of China (61602022), State Key Laboratory

of Software Development Environment (SKLSDE-2018ZX-07), CCF-Tencent

IAGR20180101 and the International Collaboration Project under Grant B16001.

Prof. Wang’s work was partially supported by the National Key R&D Program

of China (2019YFB2101804) and National Natural Science Foundation of China

(Grant No. 61572059).

References

1. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: Concept

and applications. ACM Transactions on Intelligent Systems and Technology,

10(2):12:1–12:19, 2019.

2. Andrew H, Kanishka R, Rajiv M, Swaroop R, Francoise B. Federated learn-

ing for mobile keyboard prediction. CoRR, abs/1811.03604, 2018.

3. Keith B, Hubert E, Wolfgang G, Dzmitry H, Alex I, Vladimir I. Towards

federated learning at scale: System design. CoRR, abs/1902.01046, 2019.

4. Chen Y, Ning Y, Huzefa R. Asynchronous Online Federated Learning for

Edge Devices. CoRR, abs/1911.02134, 2019.

5. Sun S, Chen W, Bian J, Liu X, Liu T. Slim-dp: A multi-agent system for

communication-efficient distributed deep learning. In Proceedings of AAMS,

721–729, 2018.


