
Accelerating CNN Training by Pruning
Activation Gradients

Xucheng Ye1, Pengcheng Dai2, Junyu Luo1, Xin Guo1, Yingjie Qi1,
Jianlei Yang1(B), and Yiran Chen3

1 SCSE, BDBC, Beihang University, Beijing, China
jianlei@buaa.edu.cn

2 SME, BDBC, Beihang University, Beijing, China
3 ECE, Duke University, Durham, NC, USA

Abstract. Sparsification is an efficient approach to accelerate CNN
inference, but it is challenging to take advantage of sparsity in train-
ing procedure because the involved gradients are dynamically changed.
Actually, an important observation shows that most of the activation
gradients in back-propagation are very close to zero and only have a
tiny impact on weight-updating. Hence, we consider pruning these very
small gradients randomly to accelerate CNN training according to the
statistical distribution of activation gradients. Meanwhile, we theoreti-
cally analyze the impact of pruning algorithm on the convergence. The
proposed approach is evaluated on AlexNet and ResNet-{18, 34, 50, 101,
152} with CIFAR-{10, 100} and ImageNet datasets. Experimental results
show that our training approach could substantially achieve up to 5.92×
speedups at back-propagation stage with negligible accuracy loss.

Keywords: CNN training · Acceleration · Gradients pruning

1 Introduction

Convolutional Neural Networks (CNNs) have been widely applied to many tasks
and various devices in recent years. However, the network structures are becom-
ing more and more complex, making the training of CNN on large scale datasets
very time consuming, especially with limited hardware resources. Some previous
researches have shown that CNN training could be finished within minutes on
high performance computation platforms [1–3], but thousands of GPUs have to
be utilized, which is not feasible for many scenarios. Even though there are many
existing works on network compressing, most of them are focused on inference
[4]. Our work aims to reduce the training workloads efficiently, enabling large
scale training on budgeted computation platforms.

This work is supported in part by the National Natural Science Foundation of China
(61602022), State Key Laboratory of Software Development Environment (SKLSDE-
2018ZX-07), CCF-Tencent IAGR20180101 and the 111 Talent Program B16001.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12370, pp. 322–338, 2020.
https://doi.org/10.1007/978-3-030-58595-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58595-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-58595-2_20


Accelerating CNN Training by Pruning Activation Gradients 323

The essential optimization step of CNN training is to perform Stochastic Gra-
dient Descent (SGD) algorithm in back-propagation procedure. There are several
data types involved in training dataflow: weights, weight gradients, activations,
activation gradients. Back-propagation starts from computing the weight gradi-
ents with the activations and then performs weights update [5]. Among these
steps, activation gradients back-propagation and weight gradients computation
require intensive convolution operations thus dominate the total training cost.
It is well known that computation cost can be reduced by skipping over zero-
values. Since these two convolution steps require the activation gradients as
input, improving the sparsity of activation gradients should significantly reduce
the computation cost and memory footprint during back-propagation procedure.

Without loss of generality, we assume that the numerical values of activa-
tion gradient satisfy normal distributions, and a threshold τ can be calculated
based on this hypothesis. And then stochastic pruning is applied on the acti-
vation gradients with the threshold τ while the gradients are set to zero or ±τ
randomly. Since the ReLU layers usually make the gradients distributed irreg-
ularly, we divide common networks into two categories, one is networks using
Conv-ReLU as basic blocks such as AlexNet [6] and VGGNet [7], another is
those using Conv-BN-ReLU structure such as ResNet [8]. Experiments show that
our pruning method works for both Conv-ReLU structure and Conv-BN-ReLU
structure in modern networks. A mathematical analysis is provided to demon-
strate that stochastic pruning can maintain the convergence properties of CNN
training. Additionally, our proposed training scheme is evaluated both on Intel
CPU and ARM CPU platforms, which could achieve 1.71× ∼ 3.99× and
1.79× ∼ 5.92× speedups, respectively, when compared with no pruning utilized
at back-propagation stage.

2 Related Works

Weight pruning is a well-known acceleration technique for CNN inference
phase which has been widely researched and achieved outstanding advances.
Pruning of weights can be divided into five categories [4]: element-level [9],
vector-level [10], kernel-level [11], group-level [12] and filter-level pruning [13–17].
Weight pruning focuses on raising parameters sparsity of convolutional layers.

Weight gradients pruning is proposed for training acceleration by reducing
communication cost of weight gradients exchanging in distributed learning sys-
tem. Aji [18] prunes 99% weight gradients with the smallest absolute value by
a heuristic algorithm. According to filters’ correlationship, Prakash [19] prunes
30% filters temporarily to improve training efficiency.

Activation gradients pruning is another approach to reduce training cost
but is rarely researched because activation gradients are generated dynamically
during back-propagation. Most previous works adopt top-k as the base algorithm
for sparsification. For MLP training, Sun [20] adopts min-heap algorithm to find
and retain the k elements with the largest absolute value in the activation gradi-
ents for each layer, and discards the remaining elements to improve sparsity. Wei



324 X. Ye et al.

[21] further applies this scheme to CNN’s training, but only evaluated on LeNet.
In the case of larger networks and more complex datasets, directly dropping
redundant gradients will cause significant loss of learnt information. To alleviate
this problem, Zhang [22] stores the un-propagated gradients at the last learning
step in memory and adds them to the gradients before top-k sparsification in the
current iteration. Our work can be categorized into this scope. We propose two
novel algorithms to determine the pruning threshold and preserve the valuable
information, respectively.

Quantization is another common way to reduce the computational complexity
and memory consumption of training. Gupta’s work [23] maintains the accuracy
by training the model in the precision of 16-bit fixed-point number with stochas-
tic rounding. DoReFaNet [24] derived from AlexNet [6] utilizes 1-bit, 2-bit and
6-bit fixed-point number to represent weights, activations and gradients respec-
tively, but brings visible accuracy drop. Park [25] proposed a value-aware quan-
tization method by using low-precision on small values, which can significantly
reduce memory consumption when training ResNet-152 [8] and Inception-V3 [26]
with 98% activations quantified to 3-bit. Micikevicius [5] keeps an FP32 copy for
weight update and adopts FP16 for computation, which is efficient for training
acceleration. Our approach can be regarded as gradients sparsification, and can
be also integrated with gradients quantization methods.

3 Methodologies

3.1 General Dataflow

The convolution (Conv) layer involved in each training iteration usually includes
four stages: Forward, Activation Gradients Back-propagation, Weight Gradients
Computation and Weight Update. To present the calculation of these stages, some
definitions and notations are introduced and adopted throughout this paper:

– I denotes the input of each layer at Forward stage.
– O denotes the output of each layer at Forward stage.
– W denotes the weights of Conv layer.
– dI denotes the gradients of I.
– dO denotes the gradients of O.
– dW denotes the gradients of W.
– ∗ denotes the 2-D convolution.
– η denotes the learning rate.
– W+ denotes the sequentially reversed of W.

And the four training stages of Conv layer can be summarized as:

– Forward O = I ∗ W (notice that we leave out bias here)
– Activation Gradients Back-Propagation(AGBP): dI = W+ ∗ dO
– Weight Gradients Computation(WGC ): dW = dO ∗ I
– Weight Update: W ← W - η · dW



Accelerating CNN Training by Pruning Activation Gradients 325

We found that activation gradients involved in back-propagation stage are
almost full of very small values that are extremely close to zero. It is reason-
able to assume that pruning those extremely small values has little effect on
weight update stage. Meanwhile, existing works show that pruning redundant
elements in convolution calculations can effectively reduce arithmetic complex-
ity. Therefore, we make a hypothesis that the involved Conv layers computations
in training can be accelerated substantially by pruning activation gradients.

Conv-BN-ReLU

Pruning

BN

ReLU

ReLU

Pruning

Conv-ReLU

Conv Conv

Fig. 1. Pruning stages involved for
two typical structures: Conv-ReLU

and Conv-BN-ReLU.

Value

Density

Value

Density

Fig. 2. Effect of stochastic pruning, where τ is
the pruning threshold.

3.2 Sparsification Algorithms

Distribution Based Threshold Determination (DBTD). The most impor-
tant concern of pruning is to determine which elements should be selected for
discarding. Previous works [20] use min-heap algorithm to select which elements
going to be pruned. However, they will introduce inevitable overhead signifi-
cantly when implemented on heterogeneous platforms such as FPGA or ASIC.
Hence, we propose a new threshold determination method with less time com-
plexity and more hardware compatibility.

Firstly, we analyze the distribution of activation gradients for two typical
structures of modern CNN models, as shown in Fig. 1. For Conv-ReLU structure,
where a Conv layer is followed by a ReLU layer, output activation gradients dO
are sparse, but subject to an irregular distribution. On the other hand, the input
activation gradients dI, which will be propagated to the previous layer, is almost
full of non-zero values. Statistics show that the probability distribution of dI is
symmetrical around zero and its probability density function decreases with the
increment of absolute value |dI(·)|. For Conv-BN-ReLU structure, a BN layer is
located between Conv and ReLU layer, and dO subjects to the similar distribution
of dI. With the same hypothesis [27], these gradients are assumed to subject to
a normal distribution with mean value 0 and variance σ2.



326 X. Ye et al.

For Conv-ReLU structure, dO can inherit the sparsity from dI of last Conv
layer because ReLU layer will not reduce the sparsity. Thus dI can be treated
as pruning target g in Conv-ReLU structure. For Conv-BN-ReLU structure, dO
is considered as pruning target g. In this way, the distribution of g in both
situations could be unified to normal distribution. Supposing that the scale of
g is n, we calculate the mean value of the absolute values from gradient data g,
and the expectation of it is:

E

(
1
n

n∑
i=1

|gi|
)

=
n√

2πσ2

∫
|x| exp

{
− x2

2σ2

}
dx =

√
2
π

nσ. (1)

Let

σ̂ =
1
n

√
2
π

n∑
i=1

|gi|, (2)

then

E(σ̂) = E

(
1
n

√
2
π

n∑
i=1

|gi|
)

= σ. (3)

Clearly, σ̂ is an unbiased estimator of parameter σ.
Here we adopt the mean value of the absolute values because the compu-

tational overhead is acceptable. Base on the assumption, we can compute the
threshold τ with the cumulative distribution function of the standard normal
distribution Φ, target pruning rate p and σ̂ by:

τ = Φ−1

(
1 − p

2

)
σ̂. (4)

Stochastic Pruning. Pruning a few gradients with small values has little
impact on weights update. However, once all of these small gradients are set
to 0, the distribution of activation gradients will be affected significantly, which
will influence the weights update and cause severe accuracy loss. Inspired by
Stochastic Rounding in [23], we adopt stochastic pruning to solve this problem.

Stochastic pruning treats gradients as an one-dimensional vector g with
length n, and all the components whose absolute value is smaller than the thresh-
old τ will be pruned. The algorithm details are demonstrated in Algorithm 1.
The effect of stochastic pruning on gradient distribution is illustrated in Fig. 2.



Accelerating CNN Training by Pruning Activation Gradients 327

Algorithm 1: Stochastic Pruning
Input: original activation gradients g, threshold τ
Output: sparse activation gradients ĝ
for i = 1; i ≤ n; i = i + 1 do

if |gi| < τ then
Generate a random number r ∈ [0, 1] ;
if |gi| > rτ then

ĝi = (gi > 0) ? τ : (−τ) ;
else

ĝi = 0 ;
end

end
end

Stochastic pruning could maintain the mathematical expectation of the gradi-
ents distribution while completing the pruning. Mathematical analysis in Sect. 4
will show that such a gradients sparsification method for CNN training does not
affect its convergence.

In summary, compared with existing works, our scheme has two advantages:

(1) Lower runtime cost : the arithmetic complexity of DBTD is O (n), less than
top-k which is at least O (n log k), where k stands for the number of reversed
elements. Meanwhile, DBTD is more hardware friendly and easier to be
implemented on heterogeneous platform because it does not require frequent
comparison operations.

(2) Lower memory footprint : our Stochastic Pruning approach could preserve
the convergence rate and does not require any extra memory consumption.
In contrast, [22] needs to store the un-propagated gradients of the last train-
ing steps, which is more memory consuming.

4 Convergence Analysis

The convergence rate of our proposed stochastic pruning is analyzed in this
section. Please note that it is not a rigorous mathematical proof, but just provide
some intuition on why the gradients pruning method works. We expect that
our training method with stochastic pruning has similar convergence rate with
origin training process under the GOGA (General Online Gradient Algorithm)
framework [28].

In [28], L. Bottou considers a learning problem as follows: suppose that there
is an unknown distribution P (z) and can only get a batch of samples zt each
iteration, where t denotes iteration times. The goal of training is to find the
optimal parameters w which minimize the loss function Q(z, w). For convenience,
we define the cost function as:

C(w) � EzQ(z, w) �
∫

Q(z, w) dP (z). (5)



328 X. Ye et al.

And the involved update rule for the online learning system is formulated as:

wt+1 = wt − γtH(zt, wt) , (6)

where γt is the learning rate, H (·) is the update function. It will finally converge
as long as the following assumptions are satisfied.

Assumption 1. The cost function C(wt) has a single global minimum w∗ and
satisfies the condition that

∀ε, inf
(w−w∗)2>ε

(w − w∗)∇wC(w) > 0. (7)

Assumption 2. Learning rate γt fulfills that

∞∑
t=1

γt = ∞, and

∞∑
t=1

γ2
t < ∞. (8)

Assumption 3. For each iteration, the update function H(zt, wt) meets that

E [H(z, w)] = ∇wC(w), (9)

and
E

[
H(z, w)2

] ≤ α + β(w − w∗)2, (10)

where α and β are finite constants, the update function H(z, w) consists of the
calculated gradients by back-propagation algorithm.

The only difference between our proposed algorithm and [28] is the update
function H(z, w). For original algorithm, the update function H(zt, wt) satisfies:

E [H(z, w)] = ∇wC(w). (11)

In proposed algorithm, a gradients pruning method is applied on the update func-
tion, denoted as Ĥ(z, w). In this case, if we assume original back-propagation
algorithm meets all the assumptions, the proposed algorithm also satisfies
Assumption 1 and 2. If Assumption 3 can be also held by the proposed algorithm,
we can say that both algorithms have similar convergence. For convenience, their
corresponding gradients are denoted as G � H(z, w) and Ĝ � Ĥ(z, w).

In the following we will first prove that though Ĝ �= G, the expec-
tations of them are the same. What’s more, we expect the extra noise
introduced by gradient pruning is not significant enough to violate
Assumption 3. More precisely, the following equations should be held:

E
[
Ĝ

]
= E [G] , (12)

E
[
Ĝ2

]
≤ α + βE

[
G2

]
. (13)

To discuss Assumption 3, we first give a lemma:



Accelerating CNN Training by Pruning Activation Gradients 329

Lemma 1. For a stochastic variable x, we get another stochastic variable y by
applying Algorithm 1 to x with threshold τ , which means

y = Prune(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x i.f.f. |x| ≥ τ

0 with probability p =
τ − x

τ
i.f.f. |x| < τ

τ with probability p =
x

τ
i.f.f. |x| < τ

(14)

Then y satisfies

E[y] = E [Prune(x)] = E[x], (15)

E[y2] = E
[
Prune(x)2

] ≤ τ2 + E[x2]. (16)

Then we can discuss the expectation and variance of gradients Ĝ.

4.1 Expectation of Gradients

Lemma 1 means that gradients pruning will not affect the expectation of acti-
vation gradients, which can be utilized to prove Eq. (12). Let G represent the
gradients of the whole network parameters with N layers. Thus we can split it
into layer-wise gradients:

G = (G1, G2, · · · , Gl, · · · , GN ) (17)

where Gl represents the gradients of l-th layer weights. Let GOl represents the
activation gradients for l-th layer, we have:

GOl = F1(GOl+1, ω), and Gl = F2(GOl) (18)

where F1 and F2 represents the back-propagation operation for l-th layer.
The same thing can be done for Ĝ which means:

Ĝ = (Ĝ1, Ĝ2, · · · , Ĝl, · · · , ĜN ), (19)

ĜOl = Prune
[
F1(ĜOl+1, ω)

]
, (20)

Ĝl = F2

(
ĜOl

)
. (21)

To prove Eq. (12), we only need to prove that for each l,

E
[
Ĝl

]
= E [Gl] , (22)

E
[
ĜOl

]
= E [GOl] . (23)

Note that Eq. (23) is already held for the last layer. Because the last layer is the
start of back-propagation and the proposed algorithm is the same with original



330 X. Ye et al.

algorithm before the last layer’s gradients G are calculated, we only need to
prove that:

E [Gl] = F1 (E [GOl]) (24)
E [GOl] = F2 (E [GOl+1]) (25)

Because if Eq. (24) and Eq. (25) are held, we can prove Eq. (9) by using
Lemma 1.

Proof. Assume Eq. (23) is satisfied for (l + 1)-th layer. Then for l-th layer

E[Ĝl] = F1

(
E

[
ĜOl

])
(26)

= F1

(
F2

(
E

[
Prune

(
ĜOl+1

)]))
(27)

= F1

(
F2

(
E

[
ĜOl+1

]))
(28)

= F1 (F2 (E [GOl+1])) (29)
= F1 (E [GOl]) (30)
= E[Gl] (31)

The equality of Eq. (26) and Eq. (31) could be guaranteed by Eq. (24). Equation
(27) and Eq. (30) is true because of Eq. (25). Equation (28) is right due to
Lemma 1. Since the assumption Eq. (23) is true for the last layer, then for all l,
Eq. (9) is right.

As for Eq. (24) and Eq. (25) is true because they are linear operation except
ReLU in the case of CNN and the back-propagation of ReLU can exchange with
expectation. Here we denote the back-propagation of ReLU as ReLU’. ReLU’ will
set the operand to zero or hold its value. For the former one,

E [ReLU’(x)] = 0 = ReLU’ (E [x]) .

For the latter one,

E [ReLU’(x)] = E [x] = ReLU’ (E [x]) .

Thus we prove that the expectation of gradients in the proposed algorithm
is the same with the original algorithm.

4.2 Variance of Gradients

It is difficult to prove that Eq. (10) can be also satisfied in the proposed gradient
pruning algorithm. However, we can give some intuition that this may be right
if original training method meets this condition. Equation (10) tell us that,
to guarantee the convergence during stochastic gradient descend, variance of
gradients in each step should not be too large. The proposed gradient pruning
method will indeed bring extra noise to the gradients. But we believe the extra



Accelerating CNN Training by Pruning Activation Gradients 331

noise is not significant enough to violate Eq. (10). The extra gradients noise
is determined by two factors. First is the noise generated by pruning method.
Second is the propagation of the pruning noise in the following back-propagation
process.

From Eq. (16) we can tell that the variance of the pruned gradients will only
increase by a constant number relating to threshold τ . This will certainly obey
the condition in Eq. (10). What’s more, the noise is then propagating through
Conv and ReLU layers, whose operation is either linear or sublinear. Thus we can
expect that the increase of variance will still be quadratic, which satisfies Eq.
(10). In this way, we can say that the proposed pruning algorithm has almost
the same convergence with the original algorithm under the GOGA framework.

5 Implementation

5.1 Accuracy Evaluation

PyTorch [29] framework is utilized to estimate the impact on accuracy for our
gradient pruning method. The straight-through estimator (STE) is adopted in
our implementation. We introduce an extra Pruning layer for different Conv
block as shown in Fig. 1. As mentioned above, the input and output of this layer
can be denoted as I and O. The essence of this Pruning layer is a STE which
can be defined as below:

Forward: O = I

Backward: dI = Stochastic Pruning (dO,DBTD(dO, p))

5.2 Speedup Evaluation

To estimate the acceleration effect of our algorithm, we modify the backward
Conv layers in Caffe [30] framework, which is widely used in deep learning deploy-
ment. As mentioned in Sect. 3.1, two main steps of training stage: AGBP, WGC
are all based on convolution. Most modern deep learning frameworks including
Caffe convert convolution into matrix multiplication by applying the combina-
tion of im2col and col2im functions, where im2col turns a 3-D feature map
tensor into a 2-D matrix for exploiting data reuse, and col2im is the inverse
function of im2col. Hence, our training acceleration with sparse activation gra-
dients can be accomplished by replacing the original matrix multiplication with
sparse matrix multiplication.

With our proposed algorithm, the activation gradients dO can be fairly
sparse. However, weight W and activation O are completely dense. We found
that dense × sparse matrix multiplication is required for AGBP step. How-
ever, the existing BLAS library such as Intel MKL only supports sparse ×
dense multiplication. To solve this problem, we turn to compute the transpose
of dI according to the basic property of matrix multiplication (AB)T = BT AT ,
where both A and B are matrices.



332 X. Ye et al.

To reduce the computation cost, we modify the original im2col and col2im
functions to im2col trans and col2im trans so that we can get transposed
matrix directly after calling these functions. Since plenty of runtime can be
saved by using sparse × dense multiplication, we can also achieve relatively
high speedup in the overall back-propagation process, though transpose functions
will cost extra runtime. The modified procedure can be summarized as:

AGBP : dI = col2im trans (sdmm (im2col trans (dO) , transpose (W)))

WGC : dW = sdmm (dO, im2col (I))

Here sdmm denotes the general sparse × dense matrix multiplication.

6 Experimental Results

In this section, experiments are conducted to demonstrate that the proposed
approach could reduce the training cost significantly with a negligible model
accuracy loss.

6.1 Datasets and Models

Three datasets are utilized including CIFAR-10, CIFAR-100 [31] and ImageNet
[32]. AlexNet [6] and ResNet [8] are evaluated while ResNet include Res-{18, 34,
50, 101, 152}. The last layer size of each model is changed in order to adapt them
on CIFAR datasets. Additionally for AlexNet, the kernels in first two convolution
layers are set as 3×3 with padding = 2 and stride = 1. For FC-1 and FC-2 layers
in AlexNet, they are also resized to 4096 × 2048 and 2048 × 2048, respectively.
For ResNet, kernels in first layer are replaced by 3 × 3 kernels with padding = 1
and stride = 1. Meanwhile, the pooling layer before FC-1 in ResNet is set to
Average-Pooling with the size of 4 × 4.

6.2 Training Settings

All the 6 models mentioned above are trained for 300 epochs on CIFAR-{10, 100}
datasets. While for ImageNet, AlexNet, ResNet-{18, 34, 50} are only trained for
180 epochs due to our limited computing resources.

The Momentum SGD is adopted for all training with momentum = 0.9 and
weight decay = 5 × 10−4. Learning rate lr is set to 0.05 for AlexNet and 0.1
for the others. lr-decay is set to 0.1/100 for CIFAR-{10, 100} and 0.1/45 for
ImageNet.

6.3 Results and Discussions

We set the target pruning rate p defined in Sect. 3.2 varying from 70%, 80%,
90% to 99% for comparison with the baseline. All the training are run directly
without any fine-tuning.



Accelerating CNN Training by Pruning Activation Gradients 333

Table 1. Evaluation results on CIFAR-10, where acc% means the training accuracy
and ρnnz means the average density of non-zeros.

Model Baseline p = 70% p = 80% p = 90% p = 99%

acc% ρnnz acc% ρnnz acc% ρnnz acc% ρnnz acc% ρnnz

AlexNet 90.50 0.09 90.34 0.01 90.55 0.01 90.31 0.01 89.66 0.01

ResNet-18 95.04 1 95.23 0.24 95.04 0.22 94.91 0.20 95.18 0.16

ResNet-34 94.90 1 95.13 0.24 95.09 0.21 95.16 0.19 95.02 0.15

ResNet-50 94.94 1 95.36 0.22 95.13 0.20 95.01 0.17 95.28 0.14

ResNet-101 95.60 1 95.61 0.24 95.48 0.22 95.60 0.19 94.77 0.12

ResNet-152 95.70 1 95.13 0.18 95.58 0.18 95.45 0.16 93.84 0.08

Table 2. Evaluation results on CIFAR-100, where acc% means the training accuracy
and ρnnz means the average density of non-zeros.

Model Baseline p = 70% p = 80% p = 90% p = 99%

acc% ρnnz acc% ρnnz acc% ρnnz acc% ρnnz acc% ρnnz

AlexNet 67.61 0.10 67.49 0.03 68.13 0.03 67.99 0.03 67.93 0.02

ResNet-18 76.47 1 76.89 0.27 77.16 0.25 76.44 0.23 76.66 0.19

ResNet-34 77.51 1 77.72 0.24 78.04 0.22 77.84 0.20 77.40 0.17

ResNet-50 77.74 1 78.83 0.25 78.27 0.22 78.92 0.20 78.52 0.16

ResNet-101 79.70 1 78.22 0.23 79.10 0.21 79.08 0.19 77.13 0.13

ResNet-152 79.25 1 80.51 0.22 79.42 0.19 79.76 0.18 76.40 0.10

Accuracy Analysis. From Table 1, Table 2 and Table 3 we find that there is no
obvious accuracy lost for most situations. And even for ResNet-50 on CIFAR-
100, there is 1% accuracy improvement. But for AlexNet on ImageNet, there is a
significant accuracy loss when using very aggressive pruning policy like p = 99%.
In summary, the accuracy loss is almost negligible when a non-aggressive policy
is adopted for gradients pruning.

Gradients Sparsity. The gradients density illustrated in Table 1, Table 2,
Table 3 has shown the ratio of non-zero gradients over all gradients, which is
related to the amount of calculations. Notice that the output of DBTD is the
estimation of pruning threshold, so the actual sparsity of each Conv layer’s acti-
vation gradients will be different, and ρnnz is calculated by dividing the number
of non-zero activation gradients by the number of all gradients for all Conv layers.

Although the basic block of AlexNet is Conv-ReLU whose activation gradients
are relatively sparse, our method could still reduce the gradients density for
about 5× ∼ 10× on CIFAR-{10, 100} and 3× ∼ 5× on ImageNet. While it
comes to ResNet, whose basic block is Conv-BN-ReLU and activation gradients
are naturally fully dense, our method could reduce the gradients density to



334 X. Ye et al.

Table 3. Evaluation results on ImageNet, where acc% means the training accuracy
and ρnnz means the average density of non-zeros.

Model Baseline p = 70% p = 80% p = 90% p = 99%

acc% ρnnz acc% ρnnz acc% ρnnz acc% ρnnz acc% ρnnz

AlexNet 56.38 0.07 57.10 0.05 56.84 0.04 55.38 0.04 39.58 0.02

ResNet-18 68.73 1 69.02 0.34 68.85 0.33 68.66 0.31 68.74 0.28

ResNet-34 72.93 1 72.92 0.35 72.86 0.33 72.74 0.30 72.42 0.30

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

epoch

baseline
p=70%
p=80%
p=90%
p=99%

(a) AlexNet on CIFAR-10.

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

epoch

baseline
p=70%
p=80%
p=90%
p=99%

(b) ResNet-18 on CIFAR-10.

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

Lo
ss

epoch

baseline
p=70%
p=80%
p=90%
p=99%

(c) AlexNet on ImageNet.

0 20 40 60 80 100 120 140 160 180 200

1

2

3

4

5

6

Lo
ss

epoch

baseline
p=70%
p=80%
p=90%
p=99%

(d) ResNet-18 on ImageNet.

Fig. 3. Training loss of AlexNet/ResNet on CIFAR-10 and ImageNet.

10% ∼ 30%. In addition, the deeper networks could obtain a relative lower
gradients density, which means that it works better for complicated networks.

Convergence Rate. The training loss is also displayed Fig. 3 for AlexNet,
ResNet-18 on CIFAR-10 and ImageNet datasets. Figure 3b and Fig. 3d show
that ResNet-18 is very robust for gradients pruning. For AlexNet, the gradients
pruning could be still robust on CIFAR-10. However, Fig. 3d confirms that spar-
sification with a larger p will impact the convergence rate. In conclusion, our
pruning method doesn’t have significant effect on the convergence rate in most
cases. This conclusion accords with the our convergence analysis on Sect. 4.

Acceleration on Desktop CPU. To examine the performance of our proposed
approach in practical applications, we implement experiments on low computa-
tion power scenarios, where there exists an urgent need for acceleration in the
training process. We use 1 core Intel CPU (Intel Xeon E5–2680 v4 2.4 GHz) as
computation platform and Intel MKL as BLAS library for evaluation. We set



Accelerating CNN Training by Pruning Activation Gradients 335

AlexNet ResNet18 ResNet50 ResNet101 ResNet152
0x

1x

2x

3x

4x

5x

6x
Sp

ee
dU

p
 Intel  CPU
 ARM CPU with 1 thread
 ARM CPU with 4 threads

Fig. 4. Speedup evaluation results on CPU. The height of the bar denotes the average
acceleration rate of all selected epochs.

p = 99% for ResNet-{18,50,101,152} and AlexNet on CIFAR-10 dataset and
export the dO/I/W from the training process of accuracy evaluation experi-
ment every 50 epochs, and use those data to collect the latency of AFBP and
WGC in our framework. The baseline of this experiment is the original back-
propagation implementation of Caffe. According to the results in Fig. 4, our
algorithm can achieve 1.71× ∼ 3.99× speedup on average. These speedups refer
to the acceleration of back-propagation while the forward stage is not included.

Acceleration on ARM CPU. We further evaluate our approach on ARM
platform which is wildly used in edge computing. We choose Raspberry Pi 4B
(with ARMv7 1500 Hz) as experimental device and Eigen3 [33] as BLAS library
in this experiment because Intel MKL can’t be deployed on ARM. In ARM
experiment, we use the same setting as the desktop CPU experiment in Sect. 6.3.
Besides, we evaluate our approach with both single thread and four threads.
According to Fig. 4, in single thread experiments, the speedup of Conv Layer’s
back-propagation stage on ARM platform can be up to 5.92× with AlexNet. As
for those networks that use Conv-BN-RELU as the basic module such as ResNet-
{18,50,101,152}, our approach can also achieve 2.52× ∼ 2.79× acceleration. On
the other hand, the acceleration rate decrease in four thread experiment but can
still reach 1.79× ∼ 2.78× speedup. The results illustrate that our algorithm still
performs well on embedded device which is more urgent in reducing calculation
time.

Comparison with Existing Works. Meprop [20] has only experiments on
MLP. [21] supplements the CNN evaluation on the basis of Meprop [20]. How-
ever, their chosen networks are unrepresentative because they are too naive to
be adopted in practical applications. Based on [21], MSBP [22] makes further
improvements, which is comparing with our method as illustrated in Table. 4.
Our proposed algorithm can achieve higher sparsity than MSBP while keeping a
better accuracy than baseline and MSBP on CIFAR-10. More importantly, the
experiment result also shows that our work is also well performed on ImageNet
which is more challenging but has not been evaluated in existing works.



336 X. Ye et al.

Table 4. Comparison with MSBP [22]. The network and dataset are ResNet-18 and
CIFAR-10. The definition of acc% and ρnnz can be found in Table 3.

Method acc% ρnnz Acceleration on Intel CPU Acceleration On ARM

Baseline 95.08 1 1× 1×
MSBP [22] 94.92 0.4 \ \
Ours 95.18 0.16 1.71× 2.70×

7 Conclusion

In this paper, we propose a new dynamically gradients pruning algorithm for
CNN training. Different from the existing works, we assume the activation gradi-
ents of CNN satisfy normal distribution and then estimate their variance accord-
ing to their average absolute value. After that, we calculate the pruning threshold
according to the variance and a preset parameter p. The gradients are pruned
randomly if they are under the threshold. Evaluations on state-of-the-art mod-
els have confirmed that our gradients pruning approach could accelerate the
back-propagation up to 3.99× on desktop CPU and 5.92× on ARM CPU with
a negligible accuracy loss.

References

1. Goyal, P., et al.: Accurate, large minibatch sgd: training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677 (2017)

2. You, Y., Zhang, Z., Hsieh, C.J., Demmel, J., Keutzer, K.: Imagenet training in min-
utes. In: Proceedings of the 47th International Conference on Parallel Processing,
p. 1. ACM (2018)

3. Jia, X., et al.: Highly scalable deep learning training system with mixed-precision:
training imagenet in four minutes. arXiv preprint arXiv:1807.11205 (2018)

4. Cheng, J., Wang, P.S., Li, G., Hu, Q.H., Lu, H.Q.: Recent advances in efficient com-
putation of deep convolutional neural networks. Front. Inform. Technol. Electron.
Eng. 19(1), 64–77 (2018)

5. Micikevicius, P., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740
(2017)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of the Advances in Neural Information
Processing Systems, pp. 1097–1105 (2012)

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

9. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1807.11205
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1510.00149


Accelerating CNN Training by Pruning Activation Gradients 337

10. Mao, H., et al.: Exploring the regularity of sparse structure in convolutional neural
networks. arXiv preprint arXiv:1705.08922 (2017)

11. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural
networks. ACM J. Emerg. Technol. Comput. Syst. 13(3), 32 (2017)

12. Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2554–2564 (2016)

13. Luo, J.H., Wu, J., Lin, W.: Thinet: a filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 5058–5066 (2017)

14. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural net-
works. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1389–1397 (2017)

15. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2736–2744 (2017)

16. Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., Li, H.: Coordinating filters for
faster deep neural networks. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 658–666 (2017)

17. Wen, W., et al.: Learning intrinsic sparse structures within long short-term mem-
ory. arXiv preprint arXiv:1709.05027 (2017)

18. Aji, A.F., Heafield, K.: Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021 (2017)

19. Prakash, A., Storer, J., Florencio, D., Zhang, C.: Repr: improved training of con-
volutional filters. arXiv preprint arXiv:1811.07275 (2018)

20. Sun, X., Ren, X., Ma, S., Wang, H.: meprop: sparsified back propagation for accel-
erated deep learning with reduced overfitting. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning, vol. 70, pp. 3299–3308 (2017)

21. Wei, B., Sun, X., Ren, X., Xu, J.: Minimal effort back propagation for convolutional
neural networks. arXiv preprint arXiv:1709.05804 (2017)

22. Zhang, Z., Yang, P., Ren, X., Sun, X.: Memorized sparse backpropagation. arXiv
preprint arXiv:1905.10194 (2019)

23. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: Proceedings of the International Conference on
Machine Learning, pp. 1737–1746 (2015)

24. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160 (2016)

25. Park, E., Yoo, S., Vajda, P.: Value-aware quantization for training and inference of
neural networks. In: Proceedings of the European Conference on Computer Vision,
pp. 580–595 (2018)

26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

27. Wen, W., et al.: TernGrad: ternary gradients to reduce communication in dis-
tributed deep learning. In: Proceedings of the Advances in Neural Information
Processing Systems, pp. 1509–1519 (2017)

28. Bottou, L.: Online learning and stochastic approximations. On-Line Learn. Neural
Netw. 17(9), 142 (1998)

29. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Workshop (2017)

http://arxiv.org/abs/1705.08922
http://arxiv.org/abs/1709.05027
http://arxiv.org/abs/1704.05021
http://arxiv.org/abs/1811.07275
http://arxiv.org/abs/1709.05804
http://arxiv.org/abs/1905.10194
http://arxiv.org/abs/1606.06160


338 X. Ye et al.

30. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093 (2014)

31. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, Citeseer (2009)

32. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale
hierarchical image database. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255 (2009)

33. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

http://arxiv.org/abs/1408.5093

	Accelerating CNN Training by Pruning Activation Gradients
	1 Introduction
	2 Related Works
	3 Methodologies
	3.1 General Dataflow
	3.2 Sparsification Algorithms

	4 Convergence Analysis
	4.1 Expectation of Gradients
	4.2 Variance of Gradients

	5 Implementation
	5.1 Accuracy Evaluation
	5.2 Speedup Evaluation

	6 Experimental Results
	6.1 Datasets and Models
	6.2 Training Settings
	6.3 Results and Discussions

	7 Conclusion
	References




