
eSLAM: An Energy-Efficient Accelerator for Real-Time
ORB-SLAM on FPGA Platform∗

Runze Liu †¶, Jianlei Yang †¶, Yiran Chen §, Weisheng Zhao ‡¶

† School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
‡ School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China.

¶ Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, 100191, China.
§ Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.

jianlei@buaa.edu.cn weisheng.zhao@buaa.edu.cn

ABSTRACT
Simultaneous Localization and Mapping (SLAM) is a critical task
for autonomous navigation. However, due to the computational
complexity of SLAM algorithms, it is very difficult to achieve real-
time implementation on low-power platforms. We propose an
energy-efficient architecture for real-time ORB (Oriented-FAST
and Rotated-BRIEF) based visual SLAM system by accelerating the
most time-consuming stages of feature extraction and matching on
FPGA platform. Moreover, the original ORB descriptor pattern is
reformed as a rotational symmetric manner which is much more
hardware friendly. Optimizations including rescheduling and paral-
lelizing are further utilized to improve the throughput and reduce
the memory footprint. Compared with Intel i7 and ARM Cortex-A9
CPUs on TUM dataset, our FPGA realization achieves up to 3× and
31× frame rate improvement, as well as up to 71× and 25× energy
efficiency improvement, respectively.

KEYWORDS
Visual SLAM, ORB, FPGA, Acceleration

1 INTRODUCTION
Simultaneous Localization and Mapping (SLAM) [3] is a critical
technique for autonomous navigation systems to build/update a
map of the surrounding environment and estimate their own loca-
tions in this map. SLAM is a fundamental problem for higher-level
tasks such as path planning and navigation, and widely used in
applications such as self-driving cars, robotics, virtual reality and
augmented reality.

Recently, feature-based visual SLAM has received particular at-
tention because of its robustness to large motions and illumination
changes compared with other visual SLAM approaches such as

∗This work was supported in part by the National Natural Science Foundation of
China (61602022, 61501013, 61571023, 61521091 and 1157040329), State Key Labo-
ratory of Software Development Environment (SKLSDE-2018ZX-07), National Key
Technology Program of China (2017ZX01032101), CCF-Tencent IAGR20180101 and
the International Collaboration Project under Grant B16001.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317820

optical flow method or direct method. Among feature-based ap-
proaches, ORB (Oriented-FAST and Rotated-BRIEF) [8] is the most
widely adopted feature because of its high efficiency and robustness.
However, the high computational intensity of feature extraction
and matching makes it very challenging to run ORB-based visual
SLAM on low-power embedded platforms, such as drones and mo-
bile robots, for real-time applications.

Several prior efforts have been made to accelerate visual SLAM
on low-power platforms, but no fully integrated ORB-based vi-
sual SLAM is proposed on such platforms so far. Feature matching
and ORB extraction is accelerated on FPGA for visual SLAM sys-
tem, respectively in [2] and [4]. A SIFT-feature based SLAM is
implemented on FPGA [6] where only matrix computation is ac-
celerated but the most time-consuming part, feature extraction,
is not involved. A optical-flow based visual inertial odometry is
implemented on ASIC [11], which is relatively less computational
intensive but may fail in scenarios with variational illuminations
or large motions/displacements, because the basic assumptions of
optical flow method are invalid in these scenarios [5].

In this paper, eSLAM is proposed as a heterogeneous architec-
ture of ORB-based visual SLAM system. The most time-consuming
procedures of feature extraction and matching are accelerated on
FPGA while the remaining tasks including pose estimation, pose
optimization and map updating are performed on the host ARM
processor. The main contributions of this paper are listed as below:

• A novel ORB-based visual SLAM accelerator is proposed for
real-time applications on energy-efficient FPGA platforms.

• A rotationally symmetric ORB descriptor pattern is utilized
to make our algorithm much more hardware-friendly.

• Optimization including rescheduling and parallelizing are
further exploited to improve the computation throughput.

The remainder of this paper is organized as follows. Section 2
presents the ORB-based visual SLAM framework and the introduced
rotationally symmetric descriptor. Section 3 illustrates the detailed
architecture of eSLAM. Experimental results are evaluated for the
proposed eSLAM in Section 4. Concluding remarks are given in
Section 5.

2 ORB-BASED VISUAL SLAM SYSTEM
2.1 ORB-SLAM Framework
The ORB-based visual SLAM system takes RGB-D (RGB and depth)
images for mapping and localization. Its framework, as shown in
Figure 1, consists of fivemain procedures: feature extraction, feature
matching, pose estimation, pose optimization and map updating. In

https://doi.org/10.1145/3316781.3317820

Input Image
Feature
Extraction

Feature
Matching

Pose
Estimation

Key
Frame ?

Pose
Optimization

Map
Updating

False

True

FPGA Acceleration

ARM Processor (Host)

Figure 1: Visual SLAM algorithm framework.

this work, feature extraction and feature matching are accelerated
on FPGA, and remaining tasks are performed on ARM processor.

Feature Extraction: In this function, ORB features are extracted
from the input RGB images. ORB is a very efficient and robust combi-
nation of FAST (Features from Accelerated Segment Test) keypoint
and BRIEF (Binary Robust Independent Elementary Features) [1]
descriptor. It calculates orientations of every feature and rotates
the descriptor pattern accordingly to make the features rotation-
ally invariant. And to obtain scale invariance, a 4-layer pyramid
is generated from the original image. Aiming to implement ORB
algorithm on hardware efficiently, a hardware-friendly, rotationally
symmetric BRIEF descriptor pattern is proposed in this work and
illustrated in Section 2.2.

Feature Matching: In feature matching, each feature detected
in the current frame is matched with a 3D map point in the global
map according to the distance between their BRIEF descriptors.
BRIEF descriptors are binary strings, their distances are described
by Hamming distances.

Pose Estimation:We apply PnP (Perspective-n-Points) method
to the matched feature pairs to estimate the translation and the
rotation of the camera. RANSAC (Random Sample Consensus) is
used to eliminate the mismatches.

Pose Optimization: In this function, camera pose estimated
by PnP is optimized by minimizing the reprojection error of the
observed map points. Assuming that the pixel coordinates of the
features in the current frame are (c1, c2, ..., cn), the positions of the
matched map points are (д1,д2, ...,дn), the pose of the camera is p,
and h(дi ,p) refers to the pixel coordinate of дi when it is projected
to the current frame. The reprojection error E can be defined as the
following formula:

E =
n∑
i=1

∥ci − h(дi ,p)∥
2 (1)

Levenberg-Marquardt method [7] is applied iteratively to minimize
E while adjusting the camera pose p.

Map Updating:Map updating is only executed in key frames.
Key frames are a set of frames where the translation or rotation of
the camera is larger than a threshold. When a key frame is detected,
the 3D map points in the key frame are added to the global map,
and the map points that have not been matched for a long period of
time are deleted from the global map to prevent it from becoming
too large.

Figure 2: Pattern of RS-BRIEF (left) and BRIEF (right).

2.2 Rotationally Symmetric BRIEF
To compute the BRIEF descriptor of a feature, 2 sets of locations
in the neighborhood around the feature, LS (S1, S2, ..., S256) and
LD (D1,D2, ...,D256), are introduced. In ORB algorithm, to make
the feature invariant to rotation, LS and LD are rotated according
to the feature’s orientation and denoted as LSR (SR1, SR2, ..., SR256)
and LDR (DR1,DR2, ..., DR256). The descriptorT (B1,B2, ...,B256) is
a 256 bits binary string. Bi is 1 if I (SRi) > I (DRi), else it is 0, where
I (SRi) and I (DRi) are the pixel intensities on location SRi and DRi .

Originally, LS and LD are randomly selected in the neighbor-
hood according to Gaussian distribution. And every location after
rotation needs to be calculated using the following formula:

x ′ = x · cosθ − y · sinθ

y′ = y · cosθ + x · sinθ
(2)

where (x ,y) refers to the initial location and (x ′,y′) refers to the
location after rotation. Since 512 locations are required to be rotated
in order to compute the descriptor of each feature, the rotation
procedure is quite compute-intensive.

To reduce the computation cost of rotation procedure, a popular
approach is to pre-compute the rotated BRIEF patterns [8] instead of
computing them directly each time. In this approach, the orientation
of features is discretized into 30 different values, i.e., 12 degrees,
24 degrees, 36 degrees, etc. Then 30 BRIEF patterns after rotation
are pre-computed and built as a lookup table. The lookup table
is utilized to obtain the descriptors when necessary so that the
computation cost could be reduced significantly.

One drawback of the above approach is the degradation in accu-
racy. Because the orientation of features is discretized, there will be
a deviation from the true value which is up to 6 degrees (half of 12
degrees). However, considering that the test locations are selected
from a circular patch with a radius of 15 pixels, the maximum error
of a test location is about 1 pixel on the smoothened image. Hence,
the influence on the accuracy is almost negligible.

Although the pre-computing approach could reduce the com-
putation cost significantly in algorithm level, it is still difficult to
implement them on hardware platforms directly. For FPGA hard-
ware implementations, all the 30 BRIEF patterns are required to be
pre-computed and stored as a lookup table, which will introduce
considerable amount of extra resources so that it still could not
satisfy the required energy efficiency.

In order to make descriptor computing more hardware-friendly,
we put forward a special way to select the test locations and pro-
posed a 32-fold rotationally symmetric BRIEF pattern (RS-BRIEF).
The procedure to generate RS-BRIEF pattern is as follows. First of all,

it selects 2 sets of locations,LS1(S1, S2, ..., S8) andLD1(D1,D2, ...,D8),
in the neighborhood around the feature according to Gaussian dis-
tribution. Each of the 2 sets contains 8 locations. Then, it rotates
LS1 and LD1 by increments of every 11.25 degrees, i.e., 11.25, 22.5,
..., 348.75, to generate LS2,LS3, ...,LS32 and LD2,LD3, ...,LD32. The
2 sets, L′S (LS1 ∪ LS2 ∪ ... ∪ LS32) and L′D (LD1 ∪ LD2 ∪ ... ∪ LD32),
are the final test locations. The RS-BRIEF pattern is visualized and
compared with the original BRIEF pattern in Figure 2.

In summary, the rotationally symmetric pattern (RS-BRIEF) is
generated by rotating the two sets of seeded locations, LS1 and LD1.
To calculate descriptors with RS-BRIEF pattern, the operations of
rotating test locations can be reduced to changing the order of these
locations or shifting the generated descriptor. And consequently it
could be much more hardware friendly than original BRIEF descrip-
tors by dramatically reducing the computation without introducing
extra memory footprint.

3 eSLAM ARCHITECTURE

ARM
Processor

BRIEF
Matcher

InstructionData

Image
ResizingORB

Extractor

SDRAM

Figure 3: Overall architecture of eSLAM.

The overall architecture of the proposed ORB-based visual SLAM
accelerator, eSLAM, is shown in Figure 3. It is partially accelerated
on programmable logic of FPGA and hosted by an ARM processor.
The ORB Extractor and the BRIEF Matcher are implemented to
accelerate feature extraction and matching, which account for over
90% of the runtime on general computing platforms. And the Image
Resizing module is adopted to generate image pyramids layer by
layer for the ORB Extractor. When the ORB Extractor is processing
one layer, the Image Resizing module applies nearest neighbor
downsampling on the same layer to generate the next layer until the
whole image pyramid is processed. The ARM processor performs
pose estimation, pose optimization as well as map updating.

3.1 ORB Extractor
The ORB Extractor aims to extract ORB features from images. It
reads data from SDRAM via AXI bus, and computes the ORB fea-
tures with a local cache. After feature extraction is finished, it sends
the result back to SDRAM and the descriptors of the features to the
BRIEF Matcher. The original workflow of ORB feature extraction
could be summarized as follows:
(1) Detecting keypoints from the input image. Assuming thatM

keypoints are detected.
(2) Filtering the keypoints. After filtering, only the N keypoints

with the best Harris scores are kept, where N < M .

Image Cache
FAST

Detection

Image
Smoother

NMS

BRIEF
Computing

A
X
I
In
te
rf
a
ce

Heap
Orientation
Computing

BRIEF
Rotator

Smoothened
Image Cache

Score Cache

To BRIEF Matcher

Figure 4: Architecture of the ORB Extractor.

(3) Computing descriptors for the remained N keypoints.
Obviously there are two major problems when implementing

the original workflow on hardware platforms. Firstly, the Detecting
and Filtering procedures could be executed in parallel while the
descriptors Computing procedure has to be idled until the Filter-
ing is finished. Furthermore, it requires amount of on-chip cache
to store the intermediate data when Computing the descriptors.
In order to improve the computation throughput and reduce the
memory consumption, the workflow of ORB feature extracting is
rescheduled as a streaming manner as follows:
(1) Detecting keypoints from the input image. Assuming thatM

keypoints are detected.
(2) Computing descriptors for the detectedM keypoints.
(3) Filtering and reserving N features with the best Harris scores.

After rescheduling, the descriptors Computing procedure is exe-
cuted before Filtering procedure so that they could run simultane-
ously and be pipelined for the streaming keypoints. Compared with
the original workflow, there areM − N extra keypoints calculated
which will introduce some overheads but the latency has been opti-
mized significantly due to the eliminated idle states. Moreover, the
required on-chip cache is also reduced dramatically according to
the streaming processing manner.

The detailed architecture of the ORB Extractor is shown in Figure
4. It is connected to AXI Interface and includes a FAST Detection
module, a Image Smoother, an NMS (non-maximum suppression)
module, a BRIEF Computing module, an Orientation Computing
module, a BRIEF Rotator, a Heap and Caches (Image Cache, Score
Cache and Smoothened Image Cache). The details of these modules
are demonstrated as follows:

AXI Interface: The AXI Interface supports accessing SDRAM
via AXI bus. The input image is read from SDRAM via AXI bus and
stored in Image Cache while the computation results stored in the
Heap are written back to SDRAM.

FASTDetection: The FASTDetectionmodule takes a 7×7 pixels
patch from the Image Cache as input. It detects FAST keypoint
on this pixels patch and computes Harris corner score for each
keypoint. If a FAST keypoint is detected, the corresponding Harris
score is written into Score Cache.

Image Smoother: This module applies Gaussian blur opera-
tions on the 7 × 7 pixels patch of the original image for smoothing.
Then the smoothened image is utilized for calculating descriptors
and orientations of features.

NMS: The NMS module applies non-maximum suppression on
the results of the FAST Detection module. It removes FAST key-
points that are too close to each other, and only reserves the one
with maximum Harris score in any 3 × 3 pixels patch.

Orientation Computing: This module determines the orienta-
tion of each feature. The orientation is defined as the vector from
the center of the feature to the mass center of the circular patch.
The position (u,v) of the mass center is defined as:

u =

∑
(x,y)∈C (I (x ,y) · x)∑

(x,y)∈C I (x ,y)

v =

∑
(x,y)∈C (I (x ,y) · y)∑

(x,y)∈C I (x ,y)

(3)

whereC refers to the circular patch and I (x ,y) refers to the intensity
of the pixel located at (x ,y). The Orientation Computing module
builds a lookup table to determine the orientation from v/u and
the signs of u and v . Since the pattern of the test locations is 32-
fold rotationally symmetric, the feature orientations are discretized
and represented by an integral label ranged from 0 to 31, where 0
represents 0 degree, 1 represents 11.25 degrees, 2 represents 22.5
degrees, etc.

BRIEF Computing: The BRIEF Computing module takes cir-
cular patches of smoothened pixels to calculate descriptors for
features. The test locations it uses to generate descriptors follow
the rotationally symmetric pattern we proposed.

BRIEF Rotator: The BRIEF Rotator shifts the descriptor accord-
ing to the feature orientation, which provides the same results as
rotating the test locations of RS-BRIEF. Assuming that the feature
orientation is n, the BRIEF Rotator moves the 8 × n bits from the
beginning of the descriptor to the end.

Heap: The Heap is created to store and filter the descriptors,
coordinates and Harris scores of features. To filter out some of
the superfluous features, a max-heap structure is utilized to guar-
antee that only the 1024 features with the best Harris scores are
reserved. Once the feature extraction is finished and stored in the
heap, the descriptors and coordinates are sent to SDRAM through
AXI Interface, and the descriptors are also delivered to the BRIEF
Matcher.

Figure 5: I/O mechanism of Image Cache. Line A, B and C
refers to the 3 cache lines of Image Cache. Each square rep-
resents 8 columns of pixels.

Cache: There are 3 caches in ORB Extractor including the Image
Cache storing pixels of the input image, the Score Cache storing
the Harris scores of the keypoints, and the Smoothened Image
Cache storing the smoothened image. These caches are designed

by a manner of “ping-pong mechanism” so that the streaming data
could be processed simultaneously. The Image Cache is taken as
an example to explain the data I/O mechanism. The Image Cache
consists of 3 cache lines, each of which stores 8 columns of image
pixels. As shown in Figure 5, the 3 cache lines receive input data by
turns. The data I/O of the cache lines is controlled by a finite-state
machine (FSM). The FSM is initialized by pre-storing 16 columns
of pixels in cache line A and B. For each FSM state, one cache line
receives input data while the other two send the data for output.

3.2 BRIEF Matcher

Figure 6: Architecture of the BRIEF Matcher.

In the BREIF Matcher module, the features extracted from the
current frame is compared with the map points of the global map.
The features descriptors are obtained from the ORB Extractor, and
the descriptors of global map are from SDRAM via AXI bus. The
matching results are sent back to SDRAM at last.

The architecture of the BRIEF Matcher is shown in Figure 6. It is
connected to AXI interface and includes a Descriptor Cache, a Dis-
tance Computing module, a Comparator and a Result Cache. The
matching procedure starts following the ORB extraction. Assum-
ing 2 sets of descriptors DA(DS1,DS2, ...,DSn) and DB (DD1,DD2,
...,DDm) have been pre-stored in Descriptor Cache, where DA is
the descriptors obtained from current frame, and DB is the descrip-
tors of the map points in the global map. For each descriptor DSi
in DA, the Distance Computing module calculates the Hamming
distances betweenDSi and each descriptorDD j inDB . With the cal-
culated Hamming distancesHD(Hi1,Hi2, ...,Him), the Comparator
searches through HD and finds the minimum value to determine
the matching result and stores them into the Result Cache.

3.3 Parallelizing Mechanism
Since eSLAM is a heterogeneous system with the ARM processor
as the host controller and FPGA as the acceleration modules, the
parallelizing mechanism is critical to improve the computation
throughput. The utilized parallelized pipeline is shown in Figure
7. For normal frames processing, while the ARM processor is per-
forming pose estimation and pose optimization, the ORB Extractor
and BRIEF Matcher are fired up to do feature extraction and feature
matching for the next frame. However, it is different to process key
frames because map updating is executed on the ARM processor
after pose estimation and pose optimization. The ORB Extractor
performs feature extraction on FPGA in parallel with the ARM
processor, but the BRIEF Matcher would not start to work until
map updating is finished.

With the parallelizing mechanism above, the several stages could
be performed efficiently in pipeline. For normal frames, feature

Figure 7: Parallelized pipeline of normal frame (upper) and
key frame (lower), where FE refers to feature extraction, FM
refers to feature matching, PE refers to pose estimation, PO
refers to pose optimization and MU refers to map updating.

extraction and matching runs in parallel with pose estimation and
optimization. And for key frames, feature extraction runs in parallel
with pose estimation and optimization. These parallel processing
manners could improve the computing throughout significantly.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Hardware Implementation: The proposed eSLAM system is im-
plemented on Xilinx Zynq XCZ7045 SoC [12], which integrates
an ARM Cortex-A9 processor and FPGA resources. The clock fre-
quency of the ARM processor is 767MHz, and the clock of acceler-
ating modules is 100MHz. The resource utilization of the proposed
system is shown in Table 1. Since only about 1/4 resources are
utilized on XCZ7045, it is possible to prototype them onto SoCs
with less resources and lower price, such as XCZ7030/XCZ7020.

Table 1: The FPGA resources utilization of eSLAM.

LUT FF DSP BRAM

Utilization 56954
(26.0%)

67809
(15.5%)

111
(12.3%)

78
(14.3%)

Dataset: The proposed eSLAM is evaluated on TUM dataset [10].
It contains RGB images along with depth information and is widely
used in visual SLAM community. The image resolution is 640 ×
480. Five different sequences in the dataset, f r1/xyz, f r1/desk ,
f r1/room, f r2/ xyz and f r2/rpy are used for evaluation. Each
sequence contains a ground truth trajectory that is obtained by a
high-accuracy motion-capture system.

4.2 Accuracy Analysis
The accuracy of the visual SLAM system is measured by trajec-
tory error which means the difference between the ground truth
trajectory and the estimated trajectory. As shown in Figure 8, the
average trajectory error is compared with the original ORB based
SLAM implementation on the five sequences from TUM dataset.

Figure 8: Average trajectory error of the SLAM implemen-
tation with RS-BRIEF compared with the original ORB on
TUM dataset.

Figure 9: Estimated trajectory of the RS-BRIEF descriptor
and original ORB descriptor based SLAM implementations,
compared with the ground truth trajectory on f r1/desk .

For f r1/xyz, f r1/room, and f r2/xyz sequence, the implementa-
tion with original ORB has a better accuracy than with RS-BRIEF
descriptor. However, the implementation with RS-BRIEF descriptor
could have a better accuracy than with original ORB when evalu-
ated on f r1/desk and f r2/rpy sequence. Among the five sequences,
the total average error of RS-BRIEF based implementation is about
4.3 cm, and the original ORB based implementation is about 4.16
cm, which indicates that the accuracy of RS-BRIEF descriptor is
comparable to the original descriptor.

Meanwhile, the trajectories estimated by the RS-BRIEF based im-
plementation and the original ORB based implementation are also
compared with the ground truth trajectory on f r1/desk sequence
and visualized in Figure 9. Aiming to display the trajectories clearly,
only a piece of them are selected as shown in Figure 9.

4.3 Performance Evaluation
The performance of the proposed eSLAM system is compared with
the software implementations on the integrated ARM Cortex-A9
processor of XCZ7045 SoC and an Intel i7-4700mq processor [9].
The runtime comparison is shown in Table 2. Accelerated by ORB

Table 2: Detailed runtime breakdown of eSLAM compared
with software implementations on ARM processor and In-
tel i7 CPU.

eSLAM ARM Intel i7
Feature Extraction 9.1ms 291.6ms 32.5ms

Feature Matching 4.0ms 246.2ms 19.7ms

Pose Estimation 9.2ms 0.9ms

Pose Optimization 8.7ms 0.5ms

Map Updating 9.9ms 1.2ms

Extractor and BRIEF Matcher, the latency of feature extraction
and matching procedure in eSLAM is reduced to 9.1ms and 4ms ,
respectively. Compared with Intel CPU and ARM, eSLAM could
achieve 3.6× and 32× speedup in feature extraction, 4.9× and 61.6×
speedup in feature matching.

Table 3 compares the average runtime per frame, the frame rate,
the energy consumed per frame, the power consumption of eSLAM
with the ARM processor and the Intel CPU. For normal frames,
eSLAM performs feature extraction (FE) and matching (FM) simul-
taneously with pose estimation (PE) and optimization (PO). The
average runtime is the sum of processing time of PE and PO, 17.9ms .
For key frames, FE is performed simultaneously with PE. eSLAM’s
average runtime time is 31.8ms , which is the sum of processing
time of FM, PE, PO and MU. Compared with the ARM processor,
eSLAM achieves about 17.8× speedup when processing key frames
and 31× speedup for normal frames. Compared with the Intel i7
processor, it could achieve 1.7× to 3× speedups.

In terms of energy consumption, the proposed eSLAM also shows
great advantage compared with the ARM and Intel CPU. Although
the power consumption of eSLAM is increased by about 23% com-
pared with the ARM processor due to the additional FPGA accel-
erating modules, the energy consumed per frame is still reduced
by 14× to 25× depending on the key frame rate. Compared with
the Intel i7 processor, the energy consumption is reduced by 41×
to 71×.

4.4 Discussions
As shown in Table 3, the key frame rate of eSLAM is 31.45 f ps , and
the normal frame rate is 55.87 f ps , which is much less than 171
f ps which is achieved by Navion [11]. This gap is mainly because
of the adopted different algorithms. Navion adopts the optical-
flow method while only keypoints are detected but descriptors
calculation and feature matching are not required. However, the
adopted feature-based approach in eSLAM is much more robust in
many scenarios where optical-flow methods may fail. Because the
optical-flowmethods are only available with two basic assumptions:
constant illumination and small motions/displacements existed [5].

Compared with the ORB extractor implemented on FPGA in
[4], the ORB extractor in eSLAM has deployed hardware-friendly
optimization, such as RS-BRIEF and workflow rescheduling. Hence,
the latency of feature extraction in eSLAM is approximately 39%
less than the latency of [4], even if 48% more pixels are processed
in eSLAM because of the involved extra two layers in the image
pyramid.

Table 3: Frame rate and energy efficiency comparison re-
sults, where “N-frame” represents the normal frame, and “K-
frame” represents the key frame.

ARM Intel i7 eSLAM

Runtime N-frame 555.7ms 53.6ms 17.9ms

K-frame 565.6ms 54.8ms 31.8ms

Frame
Rate

N-frame 1.8 f ps 18.66 f ps 55.87 f ps

K-frame 1.77 f ps 18.25 f ps 31.45 f ps

Power 1.574W 47W 1.936W
Energy

per Frame
N-frame 875mJ 2519mJ 35mJ

K-frame 890mJ 2575mJ 62mJ

5 CONCLUSIONS
In this paper, a heterogeneous ORB-based visual SLAM system,
eSLAM, is proposed for energy-efficient and real-time applications
and evaluated on Zynq platforms. The ORB algorithm is first refor-
mulated as a rotationally symmetric pattern for hardware-friendly
implementation. Meanwhile, the most time-consuming stages, i.e.,
feature extraction and matching, are accelerated on FPGA to reduce
the latency significantly. The eSLAM is also designed as a pipelined
manner to further improve the throughput and reduce the memory
footprint. The evaluation results on TUMdataset have shown eSLAM
could achieve 1.7× to 3× speedup in frame rate, and 41× to 71×
improvement in energy efficiency when compared with the Intel
i7 CPU. Compared with the ARM processor, eSLAM could achieve
17.8× to 31× speedup in frame rate, and 14× to 25× improvement
in energy efficiency.

REFERENCES
[1] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. 2010.

BRIEF: binary robust independent elementary features. In Proceedings of European
Conference on Computer Vision (ECCV). 778–792.

[2] J. Cong, B. Grigorian, G. Reinman, and M. Vitanza. 2011. Accelerating vision and
navigation applications on a customizable platform. In Proceedings of IEEE Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP). 25–32.

[3] Hugh Durrant-Whyte and Tim Bailey. 2006. Simultaneous localization and
mapping: part I. IEEE robotics & automation magazine 13, 2 (2006), 99–110.

[4] Weikang Fang, Yanjun Zhang, Bo Yu, and Shaoshan Liu. 2017. FPGA-based ORB
Feature Extraction for Real-Time Visual SLAM. In Proceedings of International
Conference on Field Programmable Technology (FPT). 275–278.

[5] David Fleet and Yair Weiss. 2006. Optical flow estimation. In Handbook of
mathematical models in computer vision. Springer, 237–257.

[6] Mengyuan Gu, Kaiyuan Guo, Wenqiang Wang, Yu Wang, and Huazhong Yang.
2015. An FPGA-based real-time simultaneous localization and mapping system.
In Proceedings of International Conference on Field Programmable Technology (FPT).
200–203.

[7] Jorge J. Moré. 1978. The Levenberg-Marquardt algorithm: Implementation and
theory. Lecture Notes in Mathematics 630 (1978), 105–116.

[8] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski. 2012. ORB:
an efficient alternative to SIFT or SURF. In Proceedings of International Conference
on Computer Vision (ICCV). 2564–2571.

[9] Intel Chip’s Specifications. 2017. Intel Core i7-4700MQ Processor, 22nm.
(2017). https://ark.intel.com/content/www/us/en/ark/products/75117/intel-core-
i7-4700mq-processor-6m-cache-up-to-3-40-ghz.html.

[10] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. 2012. A benchmark for the evaluation of RGB-D SLAM systems. In
IEEE/RSJ International Conference on Intelligent Robots and Systems. 573–580.

[11] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. 2019. Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry
Accelerator for Autonomous Navigation of Nano Drones. IEEE Journal of Solid-
State Circuits (JSSC) (2019), 1–14.

[12] Xilinx. 2018. Zynq-7000 SoC. (2018). https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

