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Abstract— Bayesian inference is an effective approach for
solving statistical learning problems especially with uncertainty
and incompleteness. However, inference ef�ciencies are phys-
ically limited by the bottlenecks of conventional computing
platforms. In this paper, an emerging Bayesian inference system
is proposed by exploiting spintronics based stochastic computing.
A stochastic bitstream generator is realized as the kernel com-
ponents by leveraging the inherent randomness of spintronics
devices. The proposed system is evaluated by typical applications
of data fusion and Bayesian belief networks. Simulation results
indicate that the proposed approach could achieve signi�cant
improvement on inference ef�ciencies in terms of power con-
sumption and inference speed.
Keywords— Bayesian Inference, Stochastic Computing, Spin-

tronics, Magnetic Tunnel Junction

I. INTRODUCTION
The rise of deep learning has greatly promoted the de-

velopment of arti�cial intelligence, however, most modern
deep learning models face several dif�culties such as the
requirement of large scale training data and over�tting prob-
lem during learning. Furthermore, they can neither represent
the uncertainty and incompleteness of the world nor take
advantages of well-studied experience and theories. In order
to overcome these limitations, some researches trend to utilize
Bayesian inference or combine Bayesian approaches with
deep learning. Bayesian inference provides a powerful ap-
proach for information fusion, reasoning and decision making
that has established it as the key tool for data-ef�cient learn-
ing, uncertainty quanti�cation and robust model composition.
It is widely used in applications of arti�cial intelligence and
expert systems, such as multisensor fusion [1] and Bayesian
belief network [2]. Recent years, Bayesian approaches attract
the attention of neural network researches. Several studies
(such as [3]) have been proposed to combine advances in
Bayesian approaches into neural network learning.
Bayes’ theorem is the theoretical foundation of Bayesian

inference and the key operation is probabilistic computing.
The implementation of probabilistic algorithms on �oating-
point architecture has some disadvantages such as inef�cien-
cy in terms of power consumption, computing speed and
memory usage and the inability to exploit parallelism of the
Bayesian inference [4]. Further, as the scaling of feature size
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Fig. 1: Experimental measurements of the switching probabil-
ity with respect to the duration of the applied programming
pulse, for different programming voltages. [6]

of transistor, physical phenomena, such as low noise margin,
low supply voltage, manufacturing process variations and
soft errors, makes traditional integrated circuits much error-
prone [5]. Consequently, unconventional computing method
- stochastic computing (SC), that directly addresses these
issues has attracted much attention. Enable very low-cost
implementations of arithmetic operations using standard logic
elements and high degree of error tolerance are two main
attractive features of stochastic computing [5].
The separation of processing units and memories remains

a fundamental principle of von Neumann architecture com-
puters even though there are many efforts towards increasing
parallelism [7]. In order to improve Bayesian inference ef-
�ciency, several different speci�c hardware or circuits have
been proposed such as FPGA [8] and analog circuits [9].
Even though these works make an improvement on inference
ef�ciency, there are still some shortcomings with the con-
sideration of stochastic computing. Stochastic computing is
executed using stochastic bitstreams. In most previous works,
stochastic bitstreams (SB) are generated utilizing pseudo-
random number generators (RNG) and comparators as shown
in Fig. 2(a). Unfortunately, generating (pseudo-)random bits
is fairly costly. Therefore, the gate-level advantage of s-
tochastic computing is typically lost. Towards to resolve
these shortcomings, emerging nanometer-scale devices such
as spintronics are considered as the major breakthroughs. In
particular, magnetic tunnel junctions (MTJ) are well suited
for bitstream generation because of its attractive feature such
as non-volatile, low power and stochastic (Fig. 1). Several
strategies have been proposed to generate stochastic bitstreams
with spintronic devices [10]–[12]. However, shortcomings still
exist in terms of power, area or speed. And none of them
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(a) Traditional SBG

(b) o1 ≈ p1 ∗ p2 (c) o2 ≈ p1 ∗ p3 + p2 ∗ (1− p3)

Fig. 2: (a) SBG circuit; (b) Multiplication operation using AND
gate; (c) scaled addition operation using multiplexer (MUX).

explain how to incorporate the stochastic bitstream generator
with real world applications.
In this paper, a Bayesian inference system with less power

consumption and high inference speed is built by stochastic
computing based on spintronic devices and applied to tradi-
tional Bayesian inference applications. The main contributions
of this work are listed as follows:

• A complete scheme of MTJ based stochastic bitstream
generator (SBG) is proposed. Simulation results indicate
that the stochastic bitstreams generated by the proposed
SBG are with high accuracy and low correlation.

• Two ef�cient Bayesian inference systems are proposed u-
tilizing the SBG and applied to data fusion and Bayesian
belief network. Simulation results show that both two
applications could achieve reasonable results with less
energy, higher speed.

The remainder of this paper is organized as follows. Sec-
tion II states some preliminaries and related works. The dia-
gram of Bayesian inference system is illustrated in Section III.
Section IV describes details of SBG. Bayesian inference
systems for two real world applications are proposed in
Section V. Finally, conclusion is given in Section VI.

II. BACKGROUND
A. Stochastic Computing
SC was �rst introduced in the 1960’s by von Neumann [13].

The basic idea of SC is that a number is presented by the ratio
of ‘1’ in a SB and arithmetic operations are implemented
using simple logic gate(s) as shown in Fig. 2(b)(c). It is
worth to note that SBs which are highly correlated are not
as expected, because higher correlation would lead to lower
computing precision. In order to meet the requirement of suf-
�cient random and uncorrelated, pioneer researcher proposed
several SBG models such as linear feedback shift registers
(LFSRs) [14], weighted binary SNG [15]. However, these
CMOS based SBGs consume too much energy and area.

B. MTJ Basics
The core part of the MTJ is a sandwich structure con-

sisting of two ferromagnetic (FM) layers sandwiched with
a tunneling barrier. One FM layer is called as reference
layer with �xed magnetization direction. The other FM layer
is called as free layer whose magnetization direction could
be parallel (P) or antiparallel (AP) with that of reference
layer. Because of the tunnel magnetoresistance effect, the

Fig. 3: Diagram of the proposed Bayesian inference system.

nanopillar resistance depends on the relative orientation (P
or AP) of the magnetization directions of the two FM layers.
An applied �eld can switch the free layer between the two
directions. The stochastic behavior of MTJ switching has been
revealed by [16], which results from the unavoidable thermal
�uctuations of magnetization [17]. The stochastic switching
is very suitable for generating stochastic bitstreams.
Recently, the work in [10] proposes an SBG based on

MTJ. But the circuit is too simple, and its implementation
may be incomplete. Furthermore, it does not consider the
correlation of different SBs which may result in inaccuracy
of SC. A novel computing system using stochastic logic built
by voltage-controlled MTJs (VC-MTJs) is proposed in [12].
This system consumes less energy and circuit area compared
with LFSR circuits. But in this system, the bit generation still
involves too many MTJs and transistors. Bitstream correlation
is considered in this paper, but the proposed shuf�e operation
could not remove the relevance essentially and arithmetic
operations between them maybe result in an unexpected
number. For example, a bitstream sb1(‘10101010

′) presenting
0.5 will be turned into sb2(‘01010101

′) with the proposed
shuf�e operation in [12]. However, the result of sb1&sb2 will
be 0 rather than 0.25.

III. DIAGRAM OF BAYESIAN INFERENCE SYSTEM

Fig. 3 describes the diagram of the proposed Bayesian infer-
ence system (BIS). The input of BIS is a series of bias voltages
corresponding to evidence or likelihood. These evidences or
likelihood may come from sensors in robot, autonomous, etc.,
also may come from clearly fact such as the X-ray results in
Bayesian belief net for cancer diagnosis. SBG matrix within
light blue rectangle and SC architecture within light yellow
rectangle are two key components of BIS. SBG matrix is
utilized to generate SBs based on input voltages. Its scale is
related with evidence count and variable relations. Each SBG
is a hybrid MTJ/CMOS circuit yielding SB with fast speed,
low power and high accuracy. Details of SBG are described
in Section IV. SC architecture is constructed by simple logic
gates such as AND gate or multiplexer (MUX) and takes SBs as
inputs. The goal of SC architecture is to implement Bayesian
inference utilizing SBs and SC theory on the basis of Bayes’
Rule. In this architecture, stochastic computing is achieved
by a novel arrangement of AND gates and MUXs and the
interconnections between them. Usually, different applications
are solved by different inference algorithms, thus, require
different computing architectures which could be found in
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Fig. 4: Schematic of SBG circuit.

Section V. Finally, inference results are presented by the
format of random variable distribution which could provide
guidance for decision making.

IV. MTJ BASED STOCHASTIC BITSTREAM GENERATOR

Accuracy of Bayesian inference is mainly determined by
the quality of bitstreams. A “Good” bitstream should accu-
rately represent a given probability number and also have low
correlation with other bitstreams. In this section, we introduce
an SBG utilizing stochastic switching behavior of MTJ and
then exhibit the simulation results.

A. Schematic of SBG
In the proposed system, every bitstream is constructed

based on the state of MTJ. If MTJ is with high resistance
i.e. ‘AP’ state, ‘0’ will be added to the bitstream; otherwise,
‘1’ will be added. Generally, the state of MTJs could be easily
detected by CMOS sense ampli�ers.
The circuit diagram of proposed SBG is illustrated as Fig. 4

which is composed by CMOS transistors and MTJs. Both
write and read operations could be achieved with this circuit.
Bit-line (BL) and source-line (SL) are driven by two different
voltage sources. MUX2 and MUX3 are used to control either
read current or write current would go through the MTJ.
During the write operation, signal ‘Write En’ is at high level,
thus terminal ‘1’ of MUX2 and MUX3 are ON. The write
operation consists of two phases: resetting MTJ state to ‘AP’
state and switching the MTJ state from ‘AP’ to ‘P’. In the
�rst phase, terminal ‘0’ of MUX1 and terminal ‘1’ of MUX4
are ON because signal ‘Wrt. 1’ is at low level and signal
‘Rst. 0’ is at high level. Current �ows through the MTJ from
bottom to top as the blue arrow shows. In this phase, bias
voltage and duration time are set to guarantee that the state
of MTJ switches to ‘AP’ state at 100% probability. In the
second phase of write operation, terminal ‘1’ of MUX1 and
terminal ‘0’ of MUX1 are ON because signal ‘Wrt. 1’ is at
high level and signal ‘Rst. 0’ is at low level. Current �ows
through the MTJ from top to bottom as the red arrow shows.
In this phase, bias voltage and duration time are set based
on the wanted probability value. During the read operation,
terminal ‘0’ of MUX2 and MUX3 and transistor N1 are ON. A

Fig. 5: Simulation results of SBG circuit.

Fig. 6: Applied voltage v.s. switching probability.

Pre-Charge Sense Ampli�er (PCSA) [18] is used to read the
state of MTJ.
Three-cycle Cadence simulated waveform is illustrated in

Fig. 5. Each cycle consists of three operations of resetting 0,
writing 1 and reading MTJ state. In each cycle, the MTJ state
is �rst reset to be ‘AP’ state during which ‘Write En’ and
‘Rst. 1’ are high and ‘Wrt. 1’ is low. Current goes through
the MTJ from bottom to up as the blue arrow shows in Fig.
4. Then comes writing 1 stage during which ‘Rst. 0’ is low
and ‘Wrt. 1’ is high. Current goes through the MTJ from up
to bottom as the red arrow shows in Fig. 4. In this stage, the
state of MTJ may or may not switch from ‘AP’ to ‘P’. Then
comes the reading stage during which ‘Read En.’ becomes
high and ‘Write En.’ becomes low. In this stage, the state of
MTJ is read out by PCSA circuit as the last wave shows. In
the given example, writing 1 operation fails in the �rst cycle
and successes in the following two cycles. Thus, bitstream is
generated as ‘011’.

B. Probability-Voltage relationship based on MC simulation
SBG is used to generate SBs to represent probability num-

ber. Different bias voltages correspond to different probability
values. In this section, the Probability-Voltage relationship
of proposed SBG is analyzed using Monte-Carlo simulation
strategy. The simulation is processed by Cadence Virtuoso
with 45 nm CMOS and 40 nm MTJ technologies. In the
simulation, a behavioral model of MTJ considering the s-
tochastic switch feature is described by Verilog-A language
[19]. The write duration time is set to be 5 ns because the
relationship of voltage and probability is closed to linear under
this setting. The reset duration time is set to be 10 ns in order
to guarantee a 100% reset switching. For each bias voltage
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Fig. 7: Comparison between arithmetic computing and s-
tochastic computing.

ranging from 1.13 V to 1.36 V, 1000 Monte-Carlo simulations
are performed. The simulated P-V relationship is illustrated in
Fig. 6 by the red line. From the �gure we can �nd that as the
increasing of voltage, the switching probability also increases
monotonously. It means that voltages and probability values
are almost corresponding one by one.
C. Evaluation
Two evaluation experiment results are presented in this

section which prove that the stochastic bitstreams generated
by the proposed SBG are high accuracy and low correlation.
Firstly, bitstreams are generated with length of 64, 128

and 256. As shown in Fig. 6, results of all the three classes
bitstreams are well coincident with Monte-Carlo simulation
results. Compared with Monte-Carlo simulation results, the
average errors are only 1.6%, 1.3% and 1.1% for length of
64, 128 and 256, respectively. It is obvious that the longer the
bitstream, the smaller the error. As described above, “good”
bitstream requires low correlation with other bitstreams. In
the Verilog-A model, an effective seed generation strategy
is integrated into MTJ model. The strategy could guarantee
that different MTJs use different seeds. Because the seeds are
independent of each other, there is no correlation between any
two bitstreams. To verify the random strategy, in the second
experiment, a multiplication of two bitstreams driven by the
same voltage is executed using AND gate. Both the results
of exact computing and stochastic computing with different
bitstream lengths are shown in Fig. 7. Statistical results show
that the average errors are only about 2.8%, 2.0% and 1.2%,
respectively.
So far, an SBG circuit is constructed based on MTJ and its

ef�ciency has been proven by simulation results. It is served
as the most important component of the Bayesian inference
system proposed in Section V.

V. APPLICATIONS

Different applications may be solved by different Bayesian
inference mechanisms. Thus, structures of BIS are also dif-
ferent. In this section, two different types of applications with
different inference mechanisms are considered. Using the MTJ
based SBG and stochastic computing theory, we build two
Bayesian inference systems for the two applications.
A. Data fusion for target location
Data fusion is the process of integrating multiple data

sources to produce more consistent, accurate, and useful in-
formation than that provided by any individual data source. In
this section, a simple data fusion example and corresponding
Bayesian inference system are studied.
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Fig. 8: Bayesian inference system for object location problem.

1) Problem de'nition and Bayesian inference algorithm:
There are three noisy sensors on the 2D plane and each
of them could provide two sensor data independently: Dis-
tance (D) and Bearing (B). The problem is to calculate the
object location (x�, y∗) on the plane under the estimated
data (D1, B1, D2, B2, D3, B3). The values of the problem
parameters are similar to that in [20] as following. Three
sensors locate at (0,0), (0, 32) and (32, 0) and the object actual
position is (28,29). For each sensor i, Given a position (x, y),
the distance model p(Di|x y) and bearing model p(Bi|x y)
satisfy the following Gaussian distributions:

p(Di|x y) = N(μdi, θdi), p(Bi|x y) = N(μbi, θbi).

where, μdi means the Euclidian distance between the sensor i
and position (x, y), θdi = 5+μdi/10. And μbi is the viewing
angle of the sensor i and position (x, y), θbi is set as 14.0626
degree.
The inference algorithm using sensor data can be expressed

as p(x y|D1B1D2B2D3B3). Based on Bayes’ theory,

p(x y|D1 B1 D2 B2 D3 B3) ∝ p(x y) ∗
∏

i

p(Bi|x y)p(Di|x y) (1)

In Eqn. (1), p(x y) is known as the prior probability and the
following six conditional probabilities are known as evidence
or likelihood information. In this problem, the object may
locate at any position. The prior probability p(x y) has the
same value for every position. So p(x y) is ignored in the
following Bayesian inference system.

2) Bayesian inference system: It can be seen from
Bayesian inference mechanism (Eqn. (1)) that the distribution
of object location is calculated by the product of a series
of conditional probabilities. In stochastic computing, this is
processed using AND gates. In addition, we could �nd that
the calculation of probability value that the object locates
at one position is independent for each other. Based on the
analysis, the Bayesian inference architecture is illustrated in
Fig. 8 as a matrix structure for this application. For each
position, 6 SGBs are deployed to yield stochastic bitstreams
and 5 AND gates are deployed to achieve multiplication. Thus,
for a 64 × 64 grid, 24576 SBGs and 20480 AND gates are
needed. In Fig. 8, the output of each row is the posterior
probability value that the object locates at this position. In
our simulation, 64 × 64 counters are used to decode the
outputs from stochastic bitstreams to �oat-point numbers
by calculating the proportion of ‘1’. The proposed system
makes the best use of high parallel attribute of Bayesian
inference and stochastic computing. Utilizing the independent
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(a) Exact inference (b) SB length = 64

(c) SB length = 128 (d) SB length = 256

Fig. 9: Data fusion result of target location problem on 64
× 64 grid. (a) Exact inference results. (b)-(d) Stochastic
computing results with length of 64, 128, 256.

TABLE I: KL divergence analysis of target location problem

Grid Size Bitstream Length

64 128 256

64×64 0.0090 0.0043 0.0018
32×32 0.0086 0.0041 0.0019
16×16 0.0080 0.0035 0.0011

of inference algorithm (i.e. Eqn. (1)), all rows of the system
could perform stochastic computing at the same time. In each
row, all the SBGs could yield bitstreams in parallel and the
“And” operations are also implemented concurrently during
reading the MTJ state.

3) Simulation Results: Cadence Virtuoso is used to analyze
the accuracy and ef�ciency of the proposed BIS. In the
simulation, 64×64, 32×32 and 16×16 grids are utilized to test
our Bayesian inference system. The �ner the grid, the more
accurate the target position. For every grid scale, stochastic
bitstreams with length of 64, 128 and 256 are generated
to perform stochastic computing. The longer the stochastic
bitstream, the higher the stochastic calculation accuracy. In
Fig. 9, four object location inferred results are shown by
heat map on 64 × 64 grid. Fig. 9(a) is the exact inference
result using arithmetic computing in �oat-point arithmetic
computer. Fig. 9(b), 9(c) and 9(d) are the inference results
by the proposed Bayesian inference system with stochastic
bitstreams length of 64, 128 and 256, respectively. The
simulation results indicate that the proposed system could
achieve the Bayesian inference results correctly. Compared
with exact inference results, the longer the stochastic bit-
stream, the smaller the error. To quantify the precision of
the inference system, the Kullback-Leibler divergence (KL
divergence) between stochastic inference distribution and the
exact reference distribution is calculated. As shown in Table I,
the �rst column shows the grid scale. The following 3 columns
are the KL divergence value for different bitstream lengths.
Taking 32×32 grid for example, 10−3 KL divergence requires

Fig. 10: Bayesian belief network for heart disaster.

length of 256. But for the same precision, the work in [20]
requires length of 105. The outstanding results bene�t from
the high accuracy and low correlation bitstreams generated by
the MTJ based SBG. As reported in [20], for a problem with
32 × 32 grid, the software version on a typical laptop takes
919 mJ, and the FPGA based Bayesian machine only takes
0.23 mJ with stochastic bitstream length of 1000. Bene�ting
from the low power consumption of MTJs and high quality
of SBG, the proposed Bayesian inference system only spends
less than 0.01 mJ to achieve the same accuracy with the 32
×32 grid. Speed of the proposed Bayesian inference system
depends on the bitstream length. Because of the high parallel,
the whole inference process only takes 40T ns, where ‘T’
means the bitstream length.

B. Bayesian Belief Network
Bayesian belief network is a probabilistic graphical model

that represents a set of random variables and their conditional
dependencies via a directed acyclic graph. In this section, a
Bayesian belief network for heart disaster is studied.

1) Problem de'nition and Bayesian inference algorithm:
Fig. 10 is a Bayesian belief network (BBN) example for heart
disaster prediction. In this network, the parent nodes of heart
disaster (HD) are factors that cause heart disaster, including
exercise (E) and diet (D). The child nodes are clinical man-
ifestations of HD, including blood pressure (BP) and chest
pain (CP). In addition to the graph structure, Conditional
probability tables (CPT) are also given. For example, the
second value 0.45 in the CPT of node HD means that if
a person takes regular exercise but unhealthy diet, the risk
of HD is 0.45. In this problem, we pay more attention to
inference based on given evidences. The inference mechanism
could be classed as two groups based on the junction tree
algorithm. The �rst case is considering E, D and HD as a
group and calculating p(HD) as Eqn. (2):

p(HD = Y ) =[p(HD|E = Y D = Y )p(D = Y )+

p(HD|E = Y D = N)p(D = N)]p(E = Y )+

[p(HD|E = ND = Y )p(D = Y )+

p(HD|E = ND = N)p(D = N)]p(E = N)

(2)

Here, Y means yes and N means No. If exercise or diet is
determined, p(E) or p(D) in Eqn. (2) is 1, otherwise, is the
value in CPT. The second case is considering HD, HB and
CP as a group and calculating p(HD|HBCP ) as Eqn. (3):

p(HD = Y |HB CP ) =
p(HB|HD = Y )p(CP |HD = Y )P (HD = Y )

p(HB CP )
(3)
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(b)
Fig. 11: Bayesian Inference system for BBN. (a) Implemen-
tation of Eqn. (2). (b)Implementation of Eqn. (3).

TABLE II: Example of BBN inference setting

Probability (ctrl1, ctrl2, ctrl3, ctrl4) [21] SC

p(HD|BP ) (0.25, 0.75, 1.00, 0.00) 0.803 0.805
p(HD|D,E,BP ) (1.00, 1.00, 1.00, 0.00) 0.586 0.592
p(HD|E,BP ) (0.25, 1.00, 1.00, 0.00) 0.687 0.694
p(HD|D,E,BP, CP ) (1.00, 1.00, 1.00, 1.00) 0.777 0.742
p(HD|CP ) (0.25, 0.75, 0.00, 1.00) 0.703 0.700

The denominator of Eqn. (3) can be calculated as Eqn. (4):
p(HB|HD = Y )p(CP |HD = Y )P (HD = Y )+

p(HB|HD = N)p(CP |HD = N)P (HD = N)
(4)

Here, p(HD = Y ) is calculated by Eqn. (2). If HB or CP is
diagnosed, the conditional probability value in Eqn. (3) is the
value in CPT, otherwise is 1.

2) Bayesian inference system: Based on the inference
algorithm, the inference system could be easily constructed.
Eqn. (2) could be calculated by three MUXs as shown in
Fig. 11(a). Eqn. (3) could be calculated by three AND gates
and �ve MUXs as shown in Fig. 11(b). Based on the evidence,
the Bayesian inference is performed by different combination
of MUX control signal.

3) Simulation Results: The simulation of Bayesian infer-
ence system for BBN is also used Cadence Virtuoso and the
simulation results are shown in Table II. The �rst column
of the table lists some the possible posterior probability.
The second columns gives the corresponding settings of
control signal for each MUX. Column 3 shows the exact
results calculated by [21]. Column 4 is the results calculated
by the proposed bayesian inference system using stochastic
computing. The comparison between column 6 and column
7 indicates that the proposed Bayesian inference system for
BBN could achieve reasonable results.

VI. CONCLUSION

In this paper, a stochastic bitstream generator based on MTJ
is proposed �rstly. Simulation results shows that the proposed
SBG could yield “good” stochastic bitstreams. Not only can
the probability values be accurately expressed, but also the
correlations between each other are low. Based on MTJ based
SBG and stochastic computing theory, two Bayesian inference
systems for different applications are proposed. Simulation
results indicate that both the two systems could achieve high

inference accuracy with fast running speed and low power
consumption. The future work will be carried on from two
aspects. The �rst one is further improving the performance of
SBG in terms of accuracy, speed and power in order to build
more ef�cient Bayesian inference system. The second one is
improving scalability to larger problems and widening extent
of application.
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