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Abstract - Vectorless power grid verification technique makes it 
possible to estimate the worst-case voltage fluctuations of the 
on-chip power delivery network at the early design stage. For 
most of the existing vectorless verification algorithms, the sub-
problem of linear system solution which computes the inverse of 
the power grid matrix takes up a large part of the computation 
time and has become a critical bottleneck of the whole algorithm. 
In this paper, we propose a new algorithm that combines the -
matrix-based technique and the multilevel method to construct a 
data-sparse approximate inverse of the power grid matrix. Ex-
perimental results have shown that the proposed algorithm can 
obtain an almost linear complexity both in runtime and memory 
consumption for efficient vectorless power grid verification. 

I INTRODUCTION 

As supply voltages of integrated circuits are lowered to 
reduce the power consumption while subthreshold voltages 
are decreased for better performance, the impact of voltage 
fluctuations is becoming increasingly significant. A robust 
power grid must provide sufficient voltage at each gate in 
order to guarantee the proper logic functionality at the in-
tended design speed. So power grid verification is becoming a 
critical procedure to guarantee a functional and robust chip 
design. However, the increasing complexity and decreasing 
feature size of modern integrated circuits has made power grid 
verification a challenging task. 

Most of the existing power grid verification techniques use 
DC or transient simulation methods to simulate the power grid 
and evaluate the power supply noises. But the simulation- 
based technique has two major drawbacks. First, it is usually 
too expensive to enumerate all possible waveform combina-
tions or to determine the worst-case waveform pattern. Second, 
the early stage verification cannot be performed since the 
detailed current waveform information is still unknown. 

To address the requirement of early stage power grid 
verification, a class of vectorless verification algorithms has 
been proposed in [1], and studied in [2–8]. These algorithms 
use the notion of current constraints to specify a feasible space 
in which currents can vary during circuit operation, and 
estimate the worst-case voltage fluctuations by solving linear 
programming problems under these current constraints. The 
power grid model used in these verification algorithms has 
been extended from the RC model in [1] to the RLC model in 
[2, 7]. And the current constraints have also been extended 
from DC constraints to transient constraints [8]. Most of the 
vectorless verification algorithms consist of two major sub- 

problems: the linear system solution and the linear program-
ming solution. Sparse approximate inverse methods (SPAI [3] 
and AINV [6]) and a hierarchical matrix inversion algorithm 
[5] are proposed to speed up the linear system solution. A 
convex dual algorithm [4] and a network simplex method [6] 
are proposed to speed up the linear programming solution. 

The sub-problem of linear system solution in vectorless 
power grid verification aims to find out the functions that 
relate the voltage fluctuations and current excitations at each 
node of the power grid. We need to compute the whole inverse 
of the power grid matrix, or equivalently, to solve the corre-
sponding linear equations at each node. The computation is 
quite expensive due to the extremely large size of the power 
grid and usually takes up a large part of the whole computa-
tion cost. 

In this paper, we propose a new approximate matrix inver-
sion algorithm for vectorless power grid verification. Major 
contributions of the paper are as follows. 

1. Different from the sparse approximate inverse methods 
such as SPAI and AINV used in [3] and [6] respectively, 
we use the -matrix-based technique to construct a 
“data sparse” approximate inverse of the power grid 
matrix. Both of the theoretical analysis and experimental 
results have shown that the -matrix-based approxi-
mate inverse method can achieve a higher degree of 
approximate accuracy with a certain amount of memory 
footprint. 

2. We propose an improved multilevel matrix inversion 
scheme which can be combined with the -matrix- 
based technique to further accelerate the computation 
speed and reduce the memory footprint. 

3. Since -matrix is constructed based on a hierarchical 
block structure instead of the row-by-row manner in 
SPAI, the approximate accuracy of each row may have 
some fluctuations. In order to ensure the robustness of 
the -matrix-based approximate inverse method, we 
introduce an iterative refinement scheme to control the 
approximate accuracy by a user-specified parameter 
according to the actual accuracy requirement. 

The reminder of this paper is organized as follows. The 
problem formulation and previous approaches are summarized 
in Section II. The details of the proposed algorithm are 
presented in Section III. Experimental results are given in 
Section IV. Concluding remarks are given in Section V. 

II. BACKGROUND 

A. Problem Formulation 
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A power grid consists of several metal layers, with each 
layer containing either horizontal or vertical wires. In a 
realistic design, some wires may be missing or truncated, and 
the periodicity and density of the wires may also vary. 

An RC model of the power grid for vectorless power grid 
verification is introduced in [1]. In this model, each branch of 
the power grid is represented by a resistor and there is a 
capacitor from every grid node to ground. Let  be the 
vector of voltage drops, then the system equation can be written 
as: 

                  (1) 
where  is an  conductance matrix and  is an 
diagonal matrix of node capacitances. 

A more complicated RLC model is introduced in [2, 7], in 
which each branch is represented either by a resistor, referred 
to as an -branch, or by a resistor in series with an inductor, 
referred to as an -branch. The presence of inductances can 
cause the voltage on a given node of the power grid to 
fluctuate in both directions, either increasing or decreasing. 
The system equations can be written as: 

         (2) 
and 

              (3) 
where  is an  conductance matrix,  is an 
diagonal matrix of node capacitances,   is an  inci-
dence matrix whose elements are either ±1 or 0, and  is an 

 diagonal matrix of inductance values. 
There are two kinds of current constraints used in most of 

the existing vectorless power grid verification algorithms: 
local constraints 

              (4) 
and global constraints 

                  (5) 
where  is an  matrix which contains only 0s and 1s. 
Local constraints define upper bounds on individual current 
sources and global constraints define upper bounds for certain 
groups of current sources. [6] uses additional equality con-
straints for the special P/G grid model in which the ground 
grid is not symmetric to the power grid. These constraints give 
DC upper bounds on transient waveforms. If the upper bounds 
are also defined by a set of transient waveforms, the results of 
vectorless power grid verification may be more realistic while 
the problem will be more difficult to solve. [8] uses the hierar-
chical current and power constraints to represent the transient 
constraints approximately. 

B. Previous Methods 

Vectorless power grid verification aims to verify the safety 
of the power grid by estimating the worst-case voltage fluctua-
tions under given current constraints. The current constraints 
define the feasible space of current excitations and the system 
equations describe the functional relationship between voltage 
fluctuations and current excitations implicitly. But it still 
needs a lot of work to convert the original problem to a set of 
linear programming problems. In simple terms, the functional 
relationship between voltage fluctuations and current excita-
tions at each node of the power grid needs to be converted to 
an explicit form. Details of the theoretical derivations can be 
found in [3] and [7]. Finally, most of the existing vectorless 
power grid verification algorithms boil down to two major 

sub-problems: the linear system solution which finds out the 
function that relates the voltage fluctuations and the current 
excitations by computing the inverse of the power grid matrix, 
and the linear programming solution which computes the 
worst-case voltage fluctuations at each node of the power grid 
subject to the current constraints. 

Since the linear system solution problem needs not just one, 
but  linear equation solutions, the time complexity is quite 
large. If we use preconditioned conjugate gradient (PCG) 
methods to compute the corresponding row of the inverse 
matrix for each node, the whole linear system solution may 
take up about 80% of the computation time [4]. 

The linear system solution in vectorless power grid verifi-
cation has some special properties compared with the similar 
problem in power grid simulation. First, it is a multiple right- 
hand sides problem. Second, the calculation accuracy needs to 
be user-specified and is usually lower than the required 
accuracy in DC or transient simulation. For the multiple right- 
hand sides problem, the Cholesky factorization based direct 
solver is a good choice since the resulting factor matrix is 
reusable. But the memory usage of the direct solver is usually 
too large due to the fill-in when computing the factor matrix. 
The iterative solvers can take advantage of the relatively low 
accuracy requirements. But the runtime is still quite long 
when dealing with the multiple right-hand sides problem. So 
the sparse approximate inverse based method [3, 6] which can 
take advantage of the two properties at the same time seems to 
be a more promising choice. 

C. Sparse Approximate Inverse Methods 

Sparse approximate inverse methods such as SPAI and 
AINV have been widely studied as a class of preconditioning 
techniques [10]. These methods try to approximate the inverse 

 of a sparse matrix  using a sparse matrix . The basis 
for sparse approximate inverse approaches is the assumption 
that although the inverse of a sparse matrix is generally dense, 
the majority of elements in the inverse are small enough to be 
neglected. A well-known result that supports this assumption 
is that if a banded matrix  is positive definite, the following 
bound can be established: , where ,

 and  is the element of  at the -th location 
[11]. This result indicates that values of the elements in the 
inverse matrix will decay exponentially away from the 
diagonal. 

However, there are still some limitations of these sparse 
approximate inverse methods. For example, a very large 
constant  in the estimate may lead to unacceptable slow 
decay in practice [10], and as the problem size increases, the 
approximate accuracy of the sparse approximations with a 
certain sparsity pattern will always decline. 

The power grid analysis problem shows a global coupling 
property. But the sparse approximate inverse can only contain 
some local information since there are only a fixed number of 
nonzero elements in each row of the approximate inverse. The 
fact that AINV has a better approximate performance than 
SPAI [6] can be explained as it is a factorization based method 
which can store more nonzero elements implicitly. So if we 
want to get a better sparse approximation, we have to find a 
method which can bring in more global information with a 
certain amount of memory footprint. 
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III. PROPOSED APPROACH 

A. Algorithm Overview 

Based on the analysis above, we propose a new approxi-
mate inverse algorithm which combines the -matrix-based 
technique and the multilevel method. Both of the two tech-
niques can bring in more global information and help us to get 
a better approximation to the inverse matrix. Fig.1 shows the 
overall approximate inverse computation flow. The algorithm 
is under a multilevel framework on the whole, and the -
matrix-based technique is used to compute the approximate 
inverse of the coarse-grid operator. In order to ensure the 
robustness of the algorithm, we also introduce an iterative 
refinement scheme to control the approximate accuracy.

Fig.1. The approximate inverse computation flow.

B. Hierarchical Matrices 

Hierarchical matrices, or -matrices in short, provide a 
data-sparse way to approximate fully populated matrices [14, 
15]. Given an -matrix, the standard matrix operations such 
as matrix-vector multiplication, matrix-matrix addition and 
multiplication as well as approximate matrix inversion can all 
be defined for this -matrix format. The application of -
matrix for power grid simulation has been studied in [9]. 

An -matrix approximation to a given dense matrix is 
based on a certain hierarchical block structure of the matrix in 
which some off-diagonal blocks are represented by low-rank 
approximations. Let  with . Then 
there exist matrices  and  such that 

. The storage required to store the matrix  is now 
 instead of , which is significantly smaller if 

. If  is not of rank  but can be approxi-
mated by a matrix  which satisfies  and 

 (  is small enough), we can still replace 
 by the low-rank approximation. 
The blocks which allow for such low rank representations 

are selected from the hierarchy of partitions organized in the 
so-called cluster tree. And the accuracy of an -matrix 
approximation depends on how well the individual blocks in 
the partition can be approximated by low rank matrices. To 

obtain a suitable block partition, we construct a hierarchy of 
partitions from which the coarsest one that satisfies a certain 
admissibility condition which shall ensure the approximability 
by a low rank matrix is chosen. 

There are two ways to construct the cluster tree: geometric 
clustering and algebraic clustering [9]. Geometric clustering 
methods need the detailed geometric information of the 
problem. These methods are based on the observation that for 
many differential and integral operators, if the parts of the 
geometry associated with the index sets  and  are well 
separated, then the matrix block  can be approxi-
mated by a low-rank matrix. They are usually used for solving 
problems arising from the finite element method (FEM) or the 
boundary element method (BEM). But since the power grid 
may have an irregular structure, geometric clustering methods 
are not applicable. Algebraic clustering methods are per-
formed purely algebraically by using the connectivity relation 
of the indices stored in the matrix itself. So they are more 
suitable for the approximate representation of the matrix 
induced by the power grid. 

Given the sparse matrix  arising from the vectorless 
power grid verification problem, we want to compute the 
approximate inverse matrix  using the -matrix-based 
technique. But since we only have the original matrix  at 
this stage, we will convert  into the -matrix format firstly. 
And then we can use the corresponding -matrix arithmetic 
to compute the -matrix-based inverse directly or to perform 
the -Cholesky factorization and using the resulting factor 
matrix to represent the approximate inverse implicitly. 

In terms of complexity, most of the standard -matrix 
operations can be performed in almost optimal complexity, i.e., 

 with moderate parameter  [14–16]. And the 
space complexity of -matrix is also nearly optimal (about 

). The time complexity of the -matrix inversion 
and the -Cholesky factorization are both , but 
the -Cholesky factorization can be computed significantly 
faster than the direct -matrix inversion due to the relatively 
small constants involved in the complexity estimation. So the 
factorization based method is usually a better choice for the 
approximate inverse algorithm. 

C. Multilevel Methods 

Although most of the -matrix arithmetic can be per-
formed in nearly optimal complexity, from the experimental 
results in [9] we can see that the constants in these complexity 
estimates are still a bit large. In this section, we will introduce 
the multilevel matrix inversion scheme that can be combined 
with the -matrix-based method to get further improvement 
in both of run time and space requirements. 

The basic idea of multilevel matrix inversion methods 
comes from the block preconditioning technique [12]. We can 
reorder the nodes of the power grid in a red-black manner, so 
the original matrix can be transformed into a 2×2 block form: 

                  (6) 

in which the submatrices  and  are both diagonal 
matrices. The block LU factorization of  is: 

       (7) 

The original matrix 

The -th level coarse-grid operator 

The -matrices-based approximate 
inverse of :

The original right-hand vector , and 
the original solution 

The approximate solution of =
computed by multilevel method

?

Yes

The final approximate solution 

No
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in which  is the Schur complement. The 
linear equation 

             (8) 

can be rewritten as: 

         (9) 

and solved by the block forward and backward substitution: 

Algorithm 1. Block Matrix Inversion (BMI) 
1.
2.
3.

The Schur complement  is still a sparse matrix although 
it usually will be denser than the original matrix . If we just 
want an approximate solution, we can use the -matrix- 
based technique to approximate the inverse of :

                (10) 
and get an implicit expression of the approximate inverse: 

Algorithm 2. Approximate Block Matrix Inversion (ABMI) 
1.
2. Compute 
3.

The block matrix inversion algorithm can be viewed as a 
2-level scheme. The multilevel matrix inversion methods are 
based on some interesting similarities between the block 
matrix inversion algorithm and the algebraic multigrid 
methods. Let 

                   (11)
be the fine-grid operator. The coarse grid selected by the 
classical algebraic multigrid method is just the red-black 
coarsening if every connection in  is viewed as a strong 
dependence. The corresponding restriction operator and 
prolongation operator are 

             (12) 
and 

               (13) 

Then we can see that the coarse-grid operator 

            (14) 
is just the Schur complement. So we can rewrite the block 
matrix inversion algorithm using the expansion 

          (15) 

The block matrix inversion algorithm can be viewed as 
another expression of the coarse-grid correction scheme: The 
vector

           (16) 

is the original approximate solution on the fine grid, and the 
residual is 

   (17) 

Then the residual equation is solved on the coarse grid, and 
the result is used to correct the original solution. 

In the multilevel approximate matrix inversion scheme, the 
second step in algorithm 2 is replaced by a recursive solution: 

Algorithm 3. Multilevel Approximate Matrix Inversion 
(MAMI) 

1.
2. If 
3.     Compute 
               
4. Else 
5.     MAMI
6. End If 
7.

When the -th level coarse-grid operator S com-
puted by the algebraic multigrid method is an approximation 
to the corresponding Schur complement. 

The multilevel method described above has been studied in 
[13]. But we can extend the block matrix inversion algorithm 
to multilevel approach in a different way. The block matrix 
inversion algorithm can also be expressed in the following 
form: 

             (18) 

This can be interpreted as a nested iteration scheme. We 
first solve the problem on the coarse grid, and the solution is 

           (19) 

Then we use the coarse-grid result to obtain a better initial 
guess on the fine grid: 

  (20) 

and relax one time using the Gauss–Seidel method. The 
corresponding algorithm can be described as: 

Algorithm 4. Modified Block Matrix Inversion (MBMI) 
1.
2.
3. Solve 
4.
5.

And then the 2-level scheme can be extended to the multi-
level version by a recursive solution of the third step just like 
algorithm 3. In this 2-level scheme, if we solve the equation 

 accurately, algorithm 4 is essentially equivalent to 
algorithm 1. However, if this equation is solved by using an 
approximate inverse of  like algorithm 2, experimental 
results show that the new algorithm may be more accurate. 

In fact, the algorithms above are not really related to the 
multigrid idea in the sense that these algorithms are not based 
on the fundamental multigrid principles of smoothing and 
coarse-level correction. So if the number of levels we used is 
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too large, the approximation error of the Schur complement in 
each level will cause the decline in accuracy of the approxi-
mate solution. 

Most of the calculations involved in these algorithms are 
sparse matrix operations such as matrix-vector multiplication 
and matrix-matrix addition. It seems that the matrix-matrix 
multiplication used in the calculation of the Schur comple-
ment is the most complicated step and needs a large amount of 
computation. If we just use the sparse matrix-matrix multipli-
cation to calculate  directly, the time complexity is 

 in which  is the largest number of nonzero 
elements in each row of  ( ). But we can take advan-
tage of the special meaning of the product  on the 
corresponding graph. The -th element of  is 
nonzero means that the coarse-grid nodes  and  can be 
connected by a path with length . So we can use the 
breadth first search (BFS) strategy to find the positions of all 
the nonzero elements in  and then compute their exact 
values. The time complexity can be reduce to 
which is actually  since that  and .

D. Iterative Refinement Scheme 

In most cases, the algorithm described above can give an 
approximate inverse with quite high accuracy. However, since 
the -matrix is constructed based on a hierarchical block 
structure, we cannot ensure that approximate accuracy of each 
row can all meet the requirement even though the whole 
matrix has achieved a high approximate accuracy. The itera-
tive refinement scheme is used to enhance the robustness of 
the -matrix-based algorithm. 

A feasible strategy is to use the approximate inverse as a 
preconditioner of the PCG method. But the relatively large 
computational cost is the major drawback of this strategy. 
Since the required accuracy of the linear system solution in 
vectorless power grid verification algorithms is usually not 
very high, and we have already constructed a relatively good 
approximate inverse, a simpler iterative refinement scheme 
can be used: let  be the approximate inverse, we can use 
the linear iteration 

       (21) 
to compute a more accurate solution. The iterative refinement 
scheme has a convergence rate of . The extra 
computational cost is mainly the computation of the residual 

 which can also be used in the user-specified 
error tolerance control procedure introduced in [4]. 

IV. EXPERIMENTAL RESULTS 

We implement the proposed multilevel -matrix-based 
approximate matrix inversion algorithm using C++. The 
sparse -matrix arithmetic is implemented based on the 

-matrices library, HLIBpro [16]. The multilevel method is 
implemented based on algorithm 4. For comparison, we also 
use two classical methods, Cholmod [17] and ICCG, to solve 
the linear systems arising from vectorless power grid verifi-
cation problems. The ICCG solver is implemented based on 
incomplete Cholesky factorization with zero fill-in. All these 
experiments are performed on a 64-bit Linux machine with 
2.33GHz Intel Xeon E5345 processor and 8GB memory. 

The test cases are generated based on the power grids used 
in [4]. The original power grids are mainly small and medium 
sized 3-D regular grids. We expand these power grids to larger 
size, and introduce some irregularities to these test cases 
randomly. The current constraints are also generated based on 
the benchmarks used in [4]. 

For each of the test cases, we choose 1000 nodes of the 
power grid randomly to test the run time and memory usage. 
The experimental results are presented in Table I. The setup 
time corresponds to the time spent on -matrix construction 
and -Cholesky factorization in -matrix-based method, 
the -th level coarse-grid operator construction in multilevel 
method, and the Cholesky factorization in Cholmod. These 
setup operations need to be done only once. In fact, the time 
spent on the preconditioner construction in ICCG can be also 
viewed as setup time, and it is not counted in the solve time of 
ICCG. The solve time is the average time spent in computing 
each column of the inverse matrix. This is the main factor that 
affects the total run time since the number of columns that 
need to be computed is extremely large. For ICCG method, 
the error tolerance control procedure introduced in [4] is used 
to ensure that the iterative solver can achieve about the same 
approximate accuracy as the multilevel -matrix-based 
method, so the convergence tolerance is larger than the usual 
setting in DC or transient simulation, and the solve time also 
becomes smaller. The approximate error is measured by the 
average 1-norm of error vectors. The 1-norm is used instead of 
the 2-norm mainly for the convenience of the error estimation 
which is introduced below. 

Fig.2 and Fig.3 show the results of solve time and memory 
usage comparison respectively. We use the power function 
fitting method to get a rough estimate of the time and space 
complexity of each algorithm being tested. The results are 
consistent with the theoretical analysis that -matrices can 
be computed and stored in almost linear complexity. 

From the experimental results we can also see that the pro-
posed multilevel matrix inversion scheme is an effective way 
to improve the performance of the -matrix-based method. 
The algorithm that combines the two techniques achieves 20X 
speed up over the ICCG solver on the largest power grid with 
about 1.45M nodes. It is even faster than the forward and 
backward substitution performed by Cholmod while the 
memory usage is less than half of the memory used by the 
direct solver. 

In terms of approximate accuracy, since the exact solution 
has been computed by Cholmod, we can get the error vector 
of the approximate inverse algorithm directly instead of the 
residual vector. So the error estimation becomes much easier. 
Denote the objective function of the linear programming 
problem at some node by . From the local current 
constraints we can know that the maximum current excitation 
is less than 10mA, i.e., . It is also easy to see that 

, where  is the error vector and 
is the error of the final result caused by . So on average, the 
error introduced by the proposed matrix inversion algorithm is 
only about 0.01mV~0.1mV. 

V. CONCLUSIONS 

In this paper, we present a multilevel -matrix-based 
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TABLE I.  Experimental results of linear system solution problem 

Grid 
Size 

-matrix -matrix + Multilevel Cholmod ICCG
Setup

(s) 
Solve 

(s) Memory Avg. 
Error 

Setup 
(s) 

Solve
(s) Memory Avg. 

Error 
Setup

(s) 
Solve

(s) Memory Solve 
(s) 

5875 0.62 0.02 7.50MB 4.9E-4 0.46 0.01 3.80MB 1.3E-3 0.18 0.03 5.42MB 0.02 
22939 3.48 0.08 33.74MB 2.5E-4 2.72 0.05 19.89MB 3.9E-4 0.76 0.12 30.09MB 0.13 
35668 6.17 0.13 53.55MB 1.2E-3 4.25 0.08 29.14MB 6.6E-4 0.93 0.2 52.42MB 0.23 
51195 9.55 0.19 83.01MB 9.7E-4 6.57 0.12 43.79MB 1.2E-3 1.36 0.31 84.37MB 0.36 
90643 18.83 0.35 161.37MB 2.5E-3 14.37 0.22 87.05MB 2.1E-3 2.61 0.54 176.05MB 0.78 
141283 31.94 0.58 254.48MB 2.0E-3 21.87 0.34 127.76MB 2.7E-3 4.54 0.89 302.26MB 1.60 
203725 65.97 0.89 479.94MB 1.2E-3 37.53 0.50 196.14MB 1.2E-3 6.92 1.28 469.77MB 2.73 
277559 94.71 1.22 670.13MB 3.4E-3 55.40 0.66 295.32MB 2.3E-3 8.74 1.64 687.82MB 4.82 
562363 206.24 2.56 1.39GB 1.1E-3 155.79 1.42 671.49MB 1.2E-3 26.39 3.87 1.63GB 12.07
681265 344.76 3.29 2.04GB 1.0E-3 220.04 1.76 910.42MB 1.2E-3 31.68 4.54 2.09GB 16.48
953245 443.93 4.54 2.72GB 9.9E-4 371.59 2.50 1.33GB 2.0E-3 45.57 6.38 3.08GB 32.87

1446655 802.83 7.16 4.60GB 4.4E-3 1833.54 4.01 2.45GB 4.7E-3 81.13 9.82 5.61GB 87.29

Fig.2. Solve time comparison.

Fig.3. Memory usage comparison.

approximate matrix inversion algorithm. We combine the -
matrix-based technique and the multilevel method to compute 
an approximate inverse of the power grid matrix which can be 
adopted in efficient vectorless power grid verification. Experi-
mental results have shown that the combination of the two 
different techniques is successful. The resulting algorithm can 
accelerate the linear system solution significantly with 
relatively small memory footprint. 
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